Fractal Characterization of Multiscale Fracture Network Distribution in Dolomites: Outcrop Analogue of Subsurface Reservoirs
Abstract
:1. Introduction
2. Geological Setting
3. Theoretical Background
- (1)
- The parts of the object have the same structure as the object as a whole, except that they are slightly deformed in different scales (there are small fluctuations in the degree of fractality between scales)—a property of self-similarity.
- (2)
- Forms are often irregular and fragmented and remain so in all scales in which they exist.
- (3)
- They are created through an iterative process.
- (4)
- They have a fractal dimension.
4. Materials and Methods
5. Results
- (1)
- Small Fdim values (Fractalysebox-count: from 1.465 to 1.525; Fractalysermass: from 1.592 to 1.650; and FracLac: from 1.492 to 1.600). Small values of fractal dimensions were obtained for outcrops with a relatively small number of fractures, i.e., less fragmented outcrops, or where large fractures dominated (Figure 8A). These were outcrops where not all sets of fractures had been developed or were not visible. In these parts of the outcrop, the fracture system’s complexity was lower, resulting in lower Fdim values.
- (2)
- Average Fdim values (Fractalysebox-count: from 1.525 to 1.625; Fractalysermass: from 1.650 to 1.700; and FracLac: from 1.600 to 1.675). Most of the analyzed photos of outcrops belonged in this interval. This interval could be considered representative of the Upper Triassic dolomites of Žumberak.
- (3)
- Large Fdim values (Fractalysebox-count: from 1.625 to 1.670; Fractalysermass: from 1.700 to 1.802; and FracLac: from 1.675 to 1.725). The largest fractal dimensions were obtained for the more fractured parts of the outcrops, which resulted in a more complex fracture system (Figure 8B). Fractures filled large portions of the analyzed space irregularly, so the fracture network’s complexity was high, resulting in high fractal dimension values.
6. Discussion and Conclusions
- (1)
- Small 2D Fdim values (Fractalysebox-count: from 1.465 to 1.525; Fractalysermass: from 1.592 to 1.650; and FracLac: from 1.492 to 1.600).
- (2)
- Average 2D Fdim values (Fractalysebox-count: from 1.525 to 1.625; Fractalysermass: from 1.650 to 1.700; and FracLac: from 1.600 to 1.675). Most of the analyzed photos of outcrops were in this category.
- (3)
- Large 2D Fdim values (Fractalysebox-count: from 1,625 to 1.670; Fractalysermass: from 1.700 to 1.802; and FracLac: from 1.675 to 1.725).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Price, N.J. Fault and Joint Development in Brittle and Semibrittle Rock; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Ramsay, J.G. Folding and Fracturing of Rocks; McGraw-Hill: New York, NY, USA, 1967; ISBN 1-930665-89-X. [Google Scholar]
- Hancock, P.L. Brittle Microtectonics: Principles and Practice. J. Struct. Geol. 1985, 7, 437–457. [Google Scholar] [CrossRef]
- Ramsay, J.G.; Huber, M.I. The Techniques of Modern Structural Geology. Volume 2: Folds and Fractures. Geol. Mag. 1988, 125, 316–317. [Google Scholar]
- McGinnis, R.N.; Ferrill, D.A.; Morris, A.P.; Smart, K.J.; Lehrmann, D. Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration. J. Struct. Geol. 2017, 95, 160–170. [Google Scholar] [CrossRef]
- Aguilera, R. Naturally Fractured Reservoirs; PennWell Books: Tulsa, OK, USA, 1995; 521p. [Google Scholar]
- Antonellini, M.; Mollema, P.N. A Natural Analog for a Fractured and Faulted Reservoir in Dolomite: Triassic Sella Group, Northern Italy. Am. Assoc. Pet. Geol. Bull. 2000, 84, 314–344. [Google Scholar] [CrossRef]
- Pavičić, I.; Briševac, Z.; Vrbaški, A.; Grgasović, T.; Duić, Ž.; Šijak, D.; Dragičević, I. Geometric and Fractal Characterization of Pore Systems in the Upper Triassic Dolomites Based on Image Processing Techniques (Example from Žumberak Mts, NW Croatia). Sustainability 2021, 13, 7668. [Google Scholar] [CrossRef]
- Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A Review. J. Struct. Geol. 2014, 69, 377–394. [Google Scholar] [CrossRef]
- Zoback, M.D.; Gorelick, S.M. Earthquake Triggering and Large-Scale Geologic Storage of Carbon Dioxide. Proc. Natl. Acad. Sci. USA 2012, 109, 10164–10168. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.; Youn, D.-J. Effects of Fracture Distribution and Length Scale on the Equivalent Continuum Elastic Compliance of Fractured Rock Masses. J. Rock Mech. Geotech. Eng. 2015, 7, 626–637. [Google Scholar] [CrossRef]
- Zhu, W.; Lei, G.; He, X.; Patzek, T.W.; Wang, M. Fractal and Multifractal Characterization of Stochastic Fracture Networks and Real Outcrops. J. Struct. Geol. 2022, 155, 104508. [Google Scholar] [CrossRef]
- Watanabe, K.; Takahashi, H. Fractal Geometry Characterization of Geothermal Reservoir Fracture Networks. J. Geophys. Res. Solid Earth 1995, 100, 521–528. [Google Scholar] [CrossRef]
- Bonnet, E.; Bour, O.; Odling, N.E.; Davy, P.; Main, I.; Cowie, P.; Berkowitz, B. Scaling of Fracture Systems in Geological Media. Rev. Geophys. 2001, 39, 347–383. [Google Scholar] [CrossRef]
- Berkowitz, B. Characterizing Flow and Transport in Fractured Geological Media: A Review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- Fountain, A.G.; Jacobel, R.W.; Schlichting, R.; Jansson, P. Fractures as the Main Pathways of Water Flow in Temperate Glaciers. Nature 2005, 433, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Follin, S.; Hartley, L.; Rhén, I.; Jackson, P.; Joyce, S.; Roberts, D.; Swift, B. A Methodology to Constrain the Parameters of a Hydrogeological Discrete Fracture Network Model for Sparsely Fractured Crystalline Rock, Exemplified by Data from the Proposed High-Level Nuclear Waste Repository Site at Forsmark, Sweden. Hydrogeol. J. 2014, 22, 313–331. [Google Scholar] [CrossRef]
- He, X.; Hoteit, H.; Al Sinan, M.M.; Kwak, H.T. Modeling Hydraulic Response of Rock Fractures under Effective Normal Stress. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, Virtual, 3–5 November 2020. [Google Scholar]
- He, X.; Sinan, M.; Kwak, H.; Hoteit, H. A Corrected Cubic Law for Single-Phase Laminar Flow through Rough-Walled Fractures. Adv. Water Resour. 2021, 154, 103984. [Google Scholar] [CrossRef]
- Odling, N.E. Scaling and Connectivity of Joint Systems in Sandstones from Western Norway. J. Struct. Geol. 1997, 19, 1257–1271. [Google Scholar] [CrossRef]
- Yangsheng, Z.; Zengchao, F.; Dong, Y.; Weiguo, L.; Zijun, F. Three-Dimensional Fractal Distribution of the Number of Rock-Mass Fracture Surfaces and Its Simulation Technology. Comput. Geotech. 2015, 65, 136–146. [Google Scholar] [CrossRef]
- Srinivasa Rao, Y.; Reddy, T.V.K.; Nayudu, P.T. Groundwater Targeting in a Hard-Rock Terrain Using Fracture-Pattern Modeling, Niva River Basin, Andhra Pradesh, India. Hydrogeol. J. 2000, 8, 494–502. [Google Scholar] [CrossRef]
- Su, X.; Feng, Y.; Chen, J.; Pan, J. The Characteristics and Origins of Cleat in Coal from Western North China. Int. J. Coal Geol. 2001, 47, 51–62. [Google Scholar] [CrossRef]
- Gurov, E.P.; Koeberl, C. Shocked Rocks and Impact Glasses from the El’gygytgyn Impact Structure, Russia. Meteorit. Planet. Sci. 2004, 39, 1495–1508. [Google Scholar] [CrossRef]
- Nascimento Da Silva, C.C.; De Medeiros, W.E.; De Sá, E.F.J.; Neto, P.X. Resistivity and Ground-Penetrating Radar Images of Fractures in a Crystalline Aquifer: A Case Study in Caiçara Farm—NE Brazil. J. Appl. Geophys. 2004, 56, 295–307. [Google Scholar] [CrossRef]
- Watkins, H.; Butler, R.W.H.; Bond, C.E.; Healy, D. Influence of Structural Position on Fracture Networks in the Torridon Group, Achnashellach Fold and Thrust Belt, NW Scotland. J. Struct. Geol. 2015, 74, 64–80. [Google Scholar] [CrossRef]
- Tsang, C.-F.; Bernier, F.; Davies, C. Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays—In the Context of Radioactive Waste Disposal. Int. J. Rock Mech. Min. Sci. 2005, 42, 109–125. [Google Scholar] [CrossRef]
- Goryainov, P.M.; Ivanyuk, G.Y.; Kalashnikov, A.O. Topography Formation as an Element of Lithospheric Self-Organization. Russ. Geol. Geophys. 2013, 54, 1071–1082. [Google Scholar] [CrossRef]
- Ivanyuk, G.; Yakovenchuk, V.; Pakhomovsky, Y.; Kalashnikov, A.; Mikhailova, J.; Goryainov, P. Self-Organization of the Khibiny Alkaline Massif (Kola Peninsula, Russia); InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Shevyrev, S.; Gorobeyko, E.V.; Carranza, E.J.M.; Boriskina, N.G. First-Pass Prospectivity Mapping for Au–Ag Mineralization in Sikhote–Alin Superterrane, Southeast Russia through Field Sampling, Image Enhancement on ASTER Data, and MaxEnt Modeling. Earth Sci. Inform. 2023, 16, 695–716. [Google Scholar] [CrossRef]
- Jambayev, A.S. Discrete Fracture Network Modeling for a Carbonate Reservoir. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2013. [Google Scholar]
- Panza, E.; Agosta, F.; Zambrano, M.; Tondi, E.; Prosser, G.; Giorgioni, M.; Janiseck, J.M. Structural Architecture and Discrete Fracture Network Modelling of Layered Fractured Carbonates (Altamura Fm., Italy). Ital. J. Geosci. 2015, 134, 409–422. [Google Scholar] [CrossRef]
- Gauthier, B.D.M.; Lake, S.D. Probabilistic Modeling of Faults below the Limit of Seismic Resolution in Pelican Field, North Sea, Offshore United Kingdom. Am. Assoc. Pet. Geol. Bull. 1993, 77, 761–777. [Google Scholar] [CrossRef]
- Nelson, R.A. Geologic Analysis of Naturally Fractured Reservoirs; Gulf Professional Publishing: Houston, TX, USA, 2001; p. 352. ISBN 9780884153177. [Google Scholar]
- de Joussineau, G.; Aydin, A. The Evolution of the Damage Zone with Fault Growth in Sandstone and Its Multiscale Characteristics. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Agosta, F.; Alessandroni, M.; Tondi, E.; Aydin, A. Oblique Normal Faulting along the Northern Edge of the Majella Anticline, Central Italy: Inferences on Hydrocarbon Migration and Accumulation. J. Struct. Geol. 2009, 31, 674–690. [Google Scholar] [CrossRef]
- Agosta, F.; Tondi, E. Faulting and Fracturing of Carbonate Rocks: New Insights into Deformation Mechanisms, Petrophysics and Fluid Flow Properties. J. Struct. Geol. 2010, 32, 1185–1186. [Google Scholar] [CrossRef]
- Rustichelli, A.; Tondi, E.; Agosta, F.; Cilona, A.; Giorgioni, M. Development and Distribution of Bed-Parallel Compaction Bands and Pressure Solution Seams in Carbonates (Bolognano Formation, Majella Mountain, Italy). J. Struct. Geol. 2012, 37, 181–199. [Google Scholar] [CrossRef]
- Rustichelli, A.; Tondi, E.; Agosta, F.; Di Celma, C.; Giorgioni, M. Sedimentologic and Diagenetic Controls on Pore-Network Characteristics of Oligocene–Miocene Ramp Carbonates (Majella Mountain, Central Italy). Am. Assoc. Pet. Geol. Bull. 2013, 97, 487–524. [Google Scholar] [CrossRef]
- Cacas, M.C.; Daniel, J.M.; Letouzey, J. Nested Geological Modelling of Naturally Fractured Reservoirs. Pet. Geosci. 2001, 7, S43–S52. [Google Scholar] [CrossRef]
- Healy, D.; Rizzo, R.E.; Cornwell, D.G.; Farrell, N.J.C.; Watkins, H.; Timms, N.E.; Gomez-Rivas, E.; Smith, M. FracPaQ: A MATLABTM Toolbox for the Quantification of Fracture Patterns. J. Struct. Geol. 2017, 95, 1–16. [Google Scholar] [CrossRef]
- Mace, R.E.; Marrett, R.A.; Hovorka, S.D. Fractal Scaling of Secondary Porosity in Karstic Exposures of the Edwards Aquifer. In Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, San Antonio, TX, USA, 24–28 September 2005; Volume 40796, pp. 178–187. [Google Scholar] [CrossRef]
- Verbovšek, T. Extrapolation of Fractal Dimensions of Natural Fracture Networks from One to Two Dimensions in Dolomites of Slovenia. Geosci. J. 2009, 13, 343–351. [Google Scholar] [CrossRef]
- Bour, O.; Davy, P. Fault Length Distribution. Water Resour. 1997, 33, 1567–1583. [Google Scholar] [CrossRef]
- Radliński, A.P.; Radlińska, E.Z.; Agamalian, M.; Wignall, G.D.; Lindner, P.; Randl, O.G. Fractal Geometry of Rocks. Phys. Rev. Lett. 1999, 82, 3078. [Google Scholar] [CrossRef]
- Ehlen, J. Fractal Analysis of Joint Patterns in Granite. Int. J. Rock Mech. Min. Sci. 2000, 37, 909–922. [Google Scholar] [CrossRef]
- Kusumayudha, S.B.; Zen, M.T.; Notosiswoyo, S.; Gautama, R.S. Fractal Analysis of the Oyo River, Cave Systems, and Topography of the Gunungsewu Karst Area, Central Java, Indonesia. Hydrogeol. J. 2000, 8, 271–278. [Google Scholar] [CrossRef]
- Schuller, D.J.; Rao, A.R.; Jeong, G.D. Fractal Characteristics of Dense Stream Networks. J. Hydrol. 2001, 243, 1–16. [Google Scholar] [CrossRef]
- Xiaohua, Z.; Yunlong, C.; Xiuchun, Y. On Fractal Dimensions of China’s Coastlines. Math. Geol. 2004, 36, 447–461. [Google Scholar] [CrossRef]
- Šušteršič, F. Relationships between Deflector Faults, Collapse Dolines and Collector Channel Formation: Some Examples from Slovenia. Int. J. Speleol. 2006, 35, 1–12. [Google Scholar] [CrossRef]
- Brewer, J.; Di Girolamo, L. Limitations of Fractal Dimension Estimation Algorithms with Implications for Cloud Studies. Atmos. Res. 2006, 82, 433–454. [Google Scholar] [CrossRef]
- Davy, P.; Bour, O.; De Dreuzy, J.-R.; Darcel, C. Flow in Multiscale Fractal Fracture Networks. Geol. Soc. Lond. Spec. Publ. 2006, 261, 31–45. [Google Scholar] [CrossRef]
- Davy, P.; Le Goc, R.; Darcel, C.; Bour, O.; De Dreuzy, J.R.; Munier, R. A Likely Universal Model of Fracture Scaling and Its Consequence for Crustal Hydromechanics. J. Geophys. Res. Solid Earth 2010, 115., 1–13. [Google Scholar] [CrossRef]
- Verbovšek, T.; Veselič, M. Factors Influencing the Hydraulic Properties of Wells in Dolomite Aquifers of Slovenia. Hydrogeol. J. 2008, 16, 779–795. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and Multifractal Analysis: A Review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Y.; Li, B.; Wang, X. A Fractal Model for Characterizing Fluid Flow in Fractured Rock Masses Based on Randomly Distributed Rock Fracture Networks. Comput. Geotech. 2015, 65, 45–55. [Google Scholar] [CrossRef]
- Pavičić, I.; Dragičević, I.; Vlahović, T.; Grgasović, T. Fractal Analysis of Fracture Systems in Upper Triassic Dolomites in Žumberak Mountain, Croatia. Rud. Geol. Naft. Zb. 2017, 32, 1–13. [Google Scholar] [CrossRef]
- Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef]
- Barker, J.A. A Generalized Radial Flow Model for Hydraulic Tests in Fractured Rock. Water Resour. Res. 1988, 24, 1796–1804. [Google Scholar] [CrossRef]
- Turcotte, D.L. Fractals, Chaos, Self-organized Criticality and Tectonics. Terra Nova 1992, 4, 4–12. [Google Scholar] [CrossRef]
- Turcotte, D. Fractals and Chaos in Geology and Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521567336. [Google Scholar]
- Rodriguez-Iturbe, I.; Rinaldo, A. Fractal River Basins: Chance and Self-Organization; Cambridge University Press: Cambridge, UK, 1997; ISBN 0521004055. [Google Scholar]
- Boro, H.; Rosero, E.; Bertotti, G. Fracture-Network Analysis of the Latemar Platform (Northern Italy): Integrating Outcrop Studies to Constrain the Hydraulic Properties of Fractures in Reservoir Models. Pet. Geosci. 2014, 20, 79–92. [Google Scholar] [CrossRef]
- Jacquemyn, C.; Huysmans, M.; Hunt, D.; Casini, G.; Swennen, R. Multi-Scale Three-Dimensional Distribution of Fracture- and Igneous Intrusion-Controlled Hydrothermal Dolomite from Digital Outcrop Model, Latemar Platform, Dolomites, Northern Italy. Am. Assoc. Pet. Geol. Bull. 2017, 101, 957–984. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, H.; Wang, L.; Zhang, Q.; Cai, J. Fractal Analysis of Shape Factor for Matrix-Fracture Transfer Function in Fractured Reservoirs. Oil Gas Sci. Technol. 2020, 75, 47. [Google Scholar] [CrossRef]
- Barton, C.C. Fractal Analysis of Scaling and Spatial Clustering of Fractures. In Fractals in the Earth Sciences; Springer: Boston, MA, USA, 1995; pp. 141–178. [Google Scholar]
- Zetterlund, M.; Ericsson, L.O.; Stigsson, M. Fracture Mapping for Geological Prognoses. Comparison of Fractures from Boreholes, Tunnel and 3-D Blocks. In Proceedings of the ISRM International Symposium—EUROCK 2012, Stockholm, Sweden, 28–30 May 2012; pp. 1–13. [Google Scholar]
- Lee, C.-C.; Lee, C.-H.; Yeh, H.-F.; Lin, H.-I. Modeling Spatial Fracture Intensity as a Control on Flow in Fractured Rock. Environ. Earth Sci. 2011, 63, 1199–1211. [Google Scholar] [CrossRef]
- Ukar, E.; Laubach, S.E.; Hooker, J.N. Outcrops as Guides to Subsurface Natural Fractures: Example from the Nikanassin Formation Tight-Gas Sandstone, Grande Cache, Alberta Foothills, Canada. Mar. Pet. Geol. 2019, 103, 255–275. [Google Scholar] [CrossRef]
- Pan, J.B.; Lee, C.C.; Lee, C.H.; Yeh, H.F.; Lin, H.I. Application of Fracture Network Model with Crack Permeability Tensor on Flow and Transport in Fractured Rock. Eng. Geol. 2010, 116, 166–177. [Google Scholar] [CrossRef]
- Jelmert, T.A. Fractal Dimensions of a Fractured Formation in the Rondane Mountain Plateau, Norway. In Proceedings of the IAMG’05: GIS and Spatial Analysis, Toronto, ON, Canada, 21–26 August 2005; Volume 1, pp. 329–334. [Google Scholar]
- Park, S.I.; Kim, Y.S.; Ryoo, C.R.; Sanderson, D.J. Fractal Analysis of the Evolution of a Fracture Network in a Granite Outcrop, SE Korea. Geosci. J. 2010, 14, 201–215. [Google Scholar] [CrossRef]
- Watanabe, K.; Takahashi, H. Fractal Characterization of Subsurface Fracture Network for Geothermal Energy Extraction System. In Proceedings of the 18th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 26–28 January 1993; pp. 119–124. [Google Scholar]
- Gurel, E.; Coskuner, Y.B.; Akin, S. Fractal Modeling of Outcrop Fracture Patterns in Alasehir Geothermal Reservoir Turkey. In Proceedings of the 41st Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 February 2016; pp. 1–8. [Google Scholar]
- Yao, Y.; Wu, Y.S.; Zhang, R. The Transient Flow Analysis of Fluid in a Fractal, Double-Porosity Reservoir. Transp. Porous Media 2012, 94, 175–187. [Google Scholar] [CrossRef]
- Xu, P.; Liu, H.; Sasmito, A.P.; Qiu, S.; Li, C. Effective Permeability of Fractured Porous MEDIA with FRACTAL DUAL-POROSITY MODEL. Fractals 2017, 25, 1740014. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, B.; Su, Y.; Sheng, G.; Yao, W.; Gao, H.; Wang, K. A Composite Dual-Porosity Fractal Model for Channel-Fractured Horizontal Wells. Eng. Appl. Comput. Fluid Mech. 2018, 12, 104–116. [Google Scholar] [CrossRef]
- Bolshov, L.; Kondratenko, P.; Matveev, L.; Pruess, K. Elements of Fractal Generalization of Dual-Porosity Model for Solute Transport in Unsaturated Fractured Rocks. Vadose Zone J. 2008, 7, 1198–1206. [Google Scholar] [CrossRef]
- Kim, T.H.; Schechter, D.S. Estimation of Fracture Porosity of Naturally Fractured Reservoirs With No Matrix Porosity Using Fractal Discrete Fracture Networks. SPE Reserv. Eval. Eng. 2009, 12, 232–242. [Google Scholar] [CrossRef]
- Díaz, E. Evaluation of a Discrete Fracture Network (DFN) Model and Comparison with Fractured Carbonate Outcrops, Monte Conero, Italy. In Proceedings of the 7th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy, 12–15 June 2012. [Google Scholar]
- Bisdom, K.; Gauthier, B.D.M.; Bertotti, G.; Hardebol, N.J. Calibrating Discrete Fracture-Network Models with a Carbonate Three-Dimensional Outcrop Fracture Network: Implications for Naturally Fractured Reservoir Modeling. Am. Assoc. Pet. Geol. Bull. 2014, 98, 1351–1376. [Google Scholar] [CrossRef]
- Cacas, M.C.; Ledoux, E.; de Marsily, G.; Tillie, B.; Barbreau, A.; Durand, E.; Feuga, B.; Peaudecerf, P. Modeling Fracture Flow with a Stochastic Discrete Fracture Network: Calibration and Validation: 1. The Flow Model. Water Resour. Res. 1990, 26, 479–489. [Google Scholar] [CrossRef]
- Voeckler, H.; Allen, D.M. Estimating Regional-Scale Fractured Bedrock Hydraulic Conductivity Using Discrete Fracture Network (DFN) Modeling. Hydrogeol. J. 2012, 20, 1081–1100. [Google Scholar] [CrossRef]
- Lei, Q.; Latham, J.-P.; Tsang, C.-F. The Use of Discrete Fracture Networks for Modelling Coupled Geomechanical and Hydrological Behaviour of Fractured Rocks. Comput. Geotech. 2017, 85, 151–176. [Google Scholar] [CrossRef]
- Bearinger, D.; Hillier, C. Fracture Characterization: From Core to Discrete Fracture Network Model. Geophysics 2016, 39, 347–383. [Google Scholar]
- Tavakkoli, M.; Mohammadsadeghi, M.; Shaheabadi, A.; Khajoee, S.; Malakooti, R.; Beidokhti, M.S. Deterministic versus Stochastic Discrete Fracture Network (DFN) Modeling, Application in a Heterogeneous Naturally Fractured Reservoir. In Proceedings of the Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 14–16 December 2009. [Google Scholar] [CrossRef]
- Zambrano, M.; Tondi, E.; Korneva, I.; Panza, E.; Agosta, F.; Janiseck, J.M.; Giorgioni, M. Fracture Properties Analysis and Discrete Fracture Network Modelling of Faulted Tight Limestones, Murge Plateau, Italy. Ital. J. Geosci. 2016, 135, 55–67. [Google Scholar] [CrossRef]
- Panza, E.; Sessa, E.; Agosta, F.; Giorgioni, M. Discrete Fracture Network Modelling of a Hydrocarbon-Bearing, Oblique-Slip Fault Zone: Inferences on Fault-Controlled Fluid Storage and Migration Properties of Carbonate Fault Damage Zones. Mar. Pet. Geol. 2018, 89, 263–279. [Google Scholar] [CrossRef]
- Pavičić, I. Origin, Spatial Distribution and Qunatification of Porosity in Upper Triassic Dolomites in Žumberak Mts; University of Zagreb: Zagreb, Croatia, 2018. [Google Scholar]
- Grgasović, T. Stratigraphy of Later Triassic Deposits in Žumberak Area; Faculty of Scinece, University of Zagreb: Zagreb, Croatia, 1998. [Google Scholar]
- von Gümbel, C.W. Geognostische Mittheilungen Aus Den Alpen, Das Mendel-Und Schlerngebirge. Sitzungsberichte der Bayer. Akad. der Wiss. Math.-Phys. Cl. 1873, 1873, 14–88. [Google Scholar]
- Ichiki, M.; Ogawa, Y.; Kaida, T.; Koyama, T.; Uyeshima, M.; Demachi, T.; Hirahara, S.; Honkura, Y.; Kanda, W.; Kono, T.; et al. Electrical image of subduction zone beneath northeastern Japan. J. Geophys. Res. Solid Earth 2015, 120, 7937–7965. [Google Scholar] [CrossRef]
- Doglioni, C. Tectonics of the Dolomites (Southern Alps, Northern Italy). J. Struct. Geol. 1987, 9, 181–193. [Google Scholar] [CrossRef]
- Masaryk, P.; Lintnerová, O. Diagenesis and Porosity of the Upper Triassic Carbonates of the Pre-Neogene Vienna Basin Basement. Geol. Carpathica 1997, 48, 371–386. [Google Scholar]
- Haas, J.; Budai, T. Triassic Sequence Stratigraphy of the Transdanubian Range (Hungary). Geol. Carpathica 1999, 50, 459–475. [Google Scholar]
- Haas, J. Facies Analysis of the Cyclic Dachstein Limestone Formation (Upper Triassic) in the Bakony Mountains, Hungary. Facies 2004, 50, 263–286. [Google Scholar] [CrossRef]
- Schleicher, D. Hausdorff Dimension, Its Properties, and Its Surprises. Am. Math. Mon. 2007, 114, 509–528. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature/Revised and Enlarged Edition; WH Free Co.: New York, NY, USA, 1983; Volume 1495. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 53, ISBN 9788578110796. [Google Scholar]
- Barton, C.C.; Paul, R.; Pointe, L. Fractals in the Earth Sciences; Plenum Press: New York, NY, USA, 1995; Volume 53, ISBN 978-1-4899-1399-9. [Google Scholar]
- Steacy, S.J.; Sammis, C.G. An Automaton for Fractal Patterns of Fragmentation. Nature 1991, 353, 250–252. [Google Scholar] [CrossRef]
- Baveye, P.; Boast, C.W.; Ogawa, S.; Parlange, J.Y.; Steenhuis, T. Influence of Image Resolution and Thresholding on the Apparent Mass Fractal Characteristics of Preferential Flow Patterns in Field Soils. Water Resour. Res. 1998, 34, 2783–2796. [Google Scholar] [CrossRef]
- Wang, W. Rock Fracture Image Segmentation Algorithms. In Image Segmentation; InTech: London, UK, 2011. [Google Scholar]
- Yu, B.M. Fractal Dimensions for Multiphase Fractal Media. Fractals 2006, 14, 111–118. [Google Scholar] [CrossRef]
- Leonard, T.; Papasouliotis, O.; Main, I.G. A Poisson Model for Identifying Characteristic Size Effects in Frequency Data: Application to Frequency-size Distributions for Global Earthquakes,“Starquakes”, and Fault Lengths. J. Geophys. Res. Solid Earth 2001, 106, 13473–13484. [Google Scholar] [CrossRef]
- Karperien, A. Fraclac for Imagej; Charles Sturt University: Bathurst, Australia, 2013. [Google Scholar]
- La Pointe, P.R. A Method to Characterize Fracture Density and Connectivity through Fractal Geometry. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1988, 25, 421–429. [Google Scholar] [CrossRef]
- Verbovšek, T. Hydrogeology and Geochemistry of Fractured Dolomites—A Case Study of Slovenia. In Aquifers: Formation, Transport and Pollution; Laughton, R.H., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; ISBN 978-1-61668-051-0. [Google Scholar]
- Billi, A.; Salvini, F.; Storti, F. The Damage Zone-Fault Core Transition in Carbonate Rocks: Implications for Fault Growth, Structure and Permeability. J. Struct. Geol. 2003, 25, 1779–1794. [Google Scholar] [CrossRef]
- Fisher, Q.J.; Knipe, R.J. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Mar. Pet. Geol. 2001, 18, 1063–1081. [Google Scholar] [CrossRef]
- Antonellini, M.; Aydin, A. Effect of Faulting on Fluid Flow in Porous Sandstones: Geometry and Spatial Distribution. Am. Assoc. Pet. Geol. Bull. 1995, 79, 642–671. [Google Scholar]
- Storti, F.; Balsamo, F.; Cappanera, F.; Tosi, G. Sub-Seismic Scale Fracture Pattern and in Situ Permeability Data in the Chalk atop of the Krempe Salt Ridge at Lägerdorf, NW Germany: Inferences on Synfolding Stress Field Evolution and Its Impact on Fracture Connectivity. Mar. Pet. Geol. 2011, 28, 1315–1332. [Google Scholar] [CrossRef]
- Wennberg, O.P.; Svånå, T.; Azizzadeh, M.; Aqrawi, A.M.M.; Brockbank, P.; Lyslo, K.B.; Ogilvie, S. Fracture Intensity vs. Mechanical Stratigraphy in Platform Top Carbonates: The Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran. Pet. Geosci. 2006, 12, 235–245. [Google Scholar] [CrossRef]
Placemark | Photograph Name | X (HTRS) | Y (HTRS) | Formation (Member) | Age | Vegetation in Image |
---|---|---|---|---|---|---|
FRA-1 | IMG_1571 | 421,714.6204 | 5063852.169 | Slapnica (Vranjak) | Carnian | YES |
FRA-2 | IMG_1683 | 421,714.6204 | 5,063,852.169 | Slapnica (Vranjak) | Norian-Rhaetian | YES |
IMG_1705 | NO | |||||
IMG_1710 | NO | |||||
IMG_1712 | NO | |||||
FRA-3 | IMG_1766 | 421,650.0122 | 5,065,208.69 | Slapnica (Vranjak) | Carnian | YES |
IMG_1769 | NO | |||||
IMG_1774 | NO | |||||
IMG_1779 | NO | |||||
FRA-4 | IMG_1796 | 421,632.2322 | 5,064,660.356 | Main Dolomite | Norian-Rhaetian | YES |
FRA-5 | PAN_24 | 421,794.3962 | 5,065,208.69 | Main Dolomite | Norian-Rhaetian | YES |
PAN_24_B | YES | |||||
IMG_1870 | YES | |||||
IMG_1887 | NO | |||||
IMG_1887 (O) | NO | |||||
FRA-6 | PAN_1904-1911 | 421,689.2998 | 5,064,905.212 | Main Dolomite | Norian-Rhaetian | YES |
FRA-7 | PAN_1935-1952 | 421,653.4046 | 5,066,561.463 | Main Dolomite | Norian-Rhaetian | YES |
IMG_1964 | NO | |||||
FRA-8 | IMG_2012 | 421,372.0408 | 5,066,843.261 | Main Dolomite | Norian-Rhaetian | YES |
IMG_2016 | NO | |||||
IMG_2020 | NO | |||||
FRA-9 | PAN-51 | 421,280.3314 | 5,066,884.165 | Main Dolomite | Norian-Rhaetian | YES |
IMG_2032 (O) | YES | |||||
FRA-10 | PAN_2056-2060 | 421,099.8951 | 5,067,986.247 | Main Dolomite | Norian-Rhaetian | YES |
PAN_2062-2075 | YES | |||||
IMG_2088 | YES | |||||
IMG_2091 | NO | |||||
FRA-11 | IMG_2106 | 421,235.9503 | 5,067,584.525 | Main Dolomite | Norian-Rhaetian | NO |
FRA-12 | IMG_2110 | 421,232.7753 | 5,067,460.7 | Main Dolomite | Norian-Rhaetian | YES |
IMG_2117 | NO | |||||
IMG_2121 | YES | |||||
IMG_2119 | NO | |||||
FRA-13 | PAN_2188-2191 | 421,539.1634 | 5,067,416.25 | Main Dolomite | Norian-Rhaetian | YES |
FRA-14 | PAN_1647-1653 | 416,393.1683 | 5,069,792.002 | Main Dolomite | Norian-Rhaetian | YES |
IMG_1656 | NO |
Fractalyse (Radius Mass) | Fractalyse Box Counting | FracLac (Plugin for ImageJ) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fdim | AVG (per Outcrop) | Fdim ext | AVG ext (per Outcrop) | Fdim | AVG (per Outcrop) | Fdim ext | AVG ext (per Outcrop) | Fdim | AVG (per Outcrop) | Fdim ext | AVG ext (per Outcrop) | |
AVG | 1.68 | 1.68 | 2.74 | 2.74 | 1.57 | 1.56 | 2.63 | 2.62 | 1.65 | 1.65 | 2.71 | 2.71 |
MEDIAN | 1.68 | 1.68 | 2.74 | 2.74 | 1.57 | 1.58 | 2.63 | 2.64 | 1.65 | 1.65 | 2.71 | 2.71 |
MAX | 1.80 | 1.73 | 2.86 | 2.79 | 1.67 | 1.64 | 2.73 | 2.70 | 1.72 | 1.69 | 2.78 | 2.75 |
MIN | 1.59 | 1.60 | 2.65 | 2.66 | 1.47 | 1.47 | 2.53 | 2.53 | 1.49 | 1.53 | 2.55 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavičić, I.; Duić, Ž.; Vrbaški, A.; Dragičević, I. Fractal Characterization of Multiscale Fracture Network Distribution in Dolomites: Outcrop Analogue of Subsurface Reservoirs. Fractal Fract. 2023, 7, 676. https://doi.org/10.3390/fractalfract7090676
Pavičić I, Duić Ž, Vrbaški A, Dragičević I. Fractal Characterization of Multiscale Fracture Network Distribution in Dolomites: Outcrop Analogue of Subsurface Reservoirs. Fractal and Fractional. 2023; 7(9):676. https://doi.org/10.3390/fractalfract7090676
Chicago/Turabian StylePavičić, Ivica, Željko Duić, Anja Vrbaški, and Ivan Dragičević. 2023. "Fractal Characterization of Multiscale Fracture Network Distribution in Dolomites: Outcrop Analogue of Subsurface Reservoirs" Fractal and Fractional 7, no. 9: 676. https://doi.org/10.3390/fractalfract7090676
APA StylePavičić, I., Duić, Ž., Vrbaški, A., & Dragičević, I. (2023). Fractal Characterization of Multiscale Fracture Network Distribution in Dolomites: Outcrop Analogue of Subsurface Reservoirs. Fractal and Fractional, 7(9), 676. https://doi.org/10.3390/fractalfract7090676