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Abstract: Fractured aquifers, especially dolomites, are important hydrocarbon reservoirs and sources
of thermal and groundwater in many parts of the world, especially in the Alpine-Dinaric-Carpathian
region. The most dominant porosity type is fracture porosity, which acts as the preferential fluid path-
way in the subsurface, thus strongly controlling fluid flow. Outcrops provide valuable information
for the characterization of fracture networks. Dolomite rock properties and structural and diagenetic
processes result in fractured systems that can be considered fractals. The fracture network was
analyzed on 14 vertical outcrops in 35 digitized photographs. The values of the fractal dimensions
varied slightly by the software and method used, but the trends were consistent, which confirms that
all methods are valid. Small values of fractal dimension indicate the dominance of a few small or
large fractures, and high values of fractal dimension result from a combination of large numbers of
small fractures accompanied by a few large fractures. The mean value of the fractal dimension for
analyzed fracture networks was 1.648. The results indicate that the fracture network of the Upper
Triassic dolomites can be approximated by fractal distribution and can be considered a natural fractal,
and values can be extrapolated to higher and lower scales (1D and 3D).

Keywords: fractal dimension; fracture systems; Triassic dolomites; box-counting; radius mass

1. Introduction

Discontinuities in rocks occur when the rock has lost cohesion due to brittle
deformation [1–5] Fractured dolomites can be significant oil and gas reservoirs or geother-
mal water and/or groundwater aquifers. In most dolomites, fluid flow is established
dominantly through faults and fractures [6–8]. The depositional porosity of these rocks
is relatively low, usually less than 5% [8], so fracture systems control the main fluid flow.
Natural fractures usually comprise complex patterns and spatial distribution in large-scale
intervals, from microns to hundreds of kilometers [9–12]. All rocks, especially dolomites,
are fractured at some scale (micro, meso, macro-scale), and discontinuities at all scales
affect geomechanical and hydrogeological behavior [5,12–19]. The mechanical proper-
ties such as rock mass stability, heterogeneity, anisotropy, conductibility, permeability,
connectivity, and displacement deformation are related to the distribution pattern, scale,
and abundance of fracture zones and fractures [20,21]. Understanding spatial fracture
distribution and space-filling patterns is a challenging task relevant to engineering ap-
plications such as underground construction, geothermal systems, petroleum reservoir
exploration, unconventional shale gas production, groundwater management, CO2 storage,
radioactive waste disposal, and mining of mineral resources [22–30]. Therefore, knowledge
and understanding of the properties of fracture systems greatly benefit the management
of exploitation, design, and execution of new drill holes and the understanding of the
petrophysical characteristics of rocks [7,31].
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Direct observation of the fault and fracture systems is often not possible due to
the depths at which the rocks are located when they represent reservoirs of oil and gas,
geothermal water, and even groundwater. In the petroleum industry, the only exact input
data on fractures is one-dimensional (borehole data), but this is often insufficient to model
the three-dimensional (3D) distribution of fractures [32]. Also, borehole data refer mainly
to small fractures representing a close area around the borehole [32,33]. Discontinuity
distribution and fault displacements (10 and more meters) are available after seismic data
interpretation [32,34]. There is a significant gap in knowledge of fault and fracture systems
between the borehole and seismic data resolution. The characteristics of the fracture systems
in this interval are the most important for characterizing the properties of the reservoirs
or aquifers [32]. To precisely model such fractures, a detailed survey of rock outcrops on
the surface (“analog outcrop studies”) can be of great help [7,35–39]. Rock outcrops are
extremely reliable data sources on fracture systems because they contain continuous 2D to
3D data on their geometry and distribution, depending on some controlling factors such
as the thickness of layers and the geological structure in which the observed outcrop is
located [32,40]. However, three-dimensional porosity data are rarely available, and their
acquisition is often very expensive [41]. Two-dimensional (outcrops, quarries, orthophotos,
geophysical data, microscopic preparations, etc.) and one-dimensional data (borehole data,
“scanlines”, etc.) are much more common.

Many geological objects, processes, and phenomena appear in a large interval of
scales, from the scale of the crystal lattice to the regional scale (from microns to hundreds
of kilometers), so they are scale-independent. This property is called self-similarity; ob-
jects, processes, or phenomena characterized by this property are called fractals. Fractal
geometry is often applicable to describing geological objects and phenomena that exhibit
scale-independent behavior [14]. Fractals and fractal geometry have found great use in
various fields of geology, especially when “classical” geometry is not sufficient to describe
irregular objects in nature [42,43]. Many researchers have investigated the fractal behaviors
of different natural phenomena but also from fractures from outcrop observations and ex-
periments [8,12,14,21,43–62]. In fault/fracture characterization, fractal geometry is used to
describe fault/fracture patterns [11,13,21,43,57,63–74], fluid flow through fracture or double
porosity media [12,52,56,56,75–78] and discrete fracture networks (DFNs) [21,31,32,79–88].

This research systematically investigated the fractal characterization of fracture system
patterns of Upper Triassic dolomites in the Žumberak Mts. in northern Croatia. We
digitized 35 outcrop images from 14 outcrops (Figure 1) to measure fractures in multiple
scales. The box-counting method of fracture networks is the most popular fractal analysis
method [66]. These rocks are regionally the most widespread geological formation in the
Alpine–Carpathian–Dinarides region, with huge significance for the industry since they
represent a major geothermal aquifer. Furthermore, Upper Triassic dolomites are significant
groundwater aquifers and hydrocarbon reservoirs that can be used for crushed stone [89].
Due to intensive fracturing and/or recrystallization of these dolomites on the surface, there
are only a few papers dealing with the porosity description and quantification, so this
paper presents a significant contribution to the understanding of the porosity distribution
and quantification of these rocks.
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Figure 1. The geological map of the research area with outcrop locations [8,89,90]. Figure 1. The geological map of the research area with outcrop locations [8,89,90].
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2. Geological Setting

Upper Triassic dolomites are one of the most dominant and regionally widespread ge-
ological formations in the Alpine–Carpathian–Dinarides region. Most of this Upper Triassic
dolomite succession is presented by the Main Dolomite Formation (original name is Haupt-
dolomite [91]. The most important characteristics of the Upper Triassic dolomites are huge
lateral, widespread and large thicknesses from 300 m up to 3000 m [7,89,90,92–96]. These
geological settings and significant porosity result in large groundwater and geothermal
water aquifer potential.

The research area is located in the Žumberak Mts, in the northwest part of Croa-
tia, where the Upper Triassic dolomites are developed to a total thickness of 1590 m
(Figure 1) [89,90]. This area was selected because it is a nearly tectonically undisturbed area
required for pore size analysis. Three formations were singled out: Slapnica (with mem-
bers Vranjak and Drenovac), Main Dolomite (with member Kalje), and Posinak (Figure 1).
Within the formations and members, cyclically alternating microfacies were determined:
dolomicrite, fenestral dolomite, and stromatolitic dolomite [8,90]. Sedimentary environ-
ments have been interpreted as a dynamic shallow-water system from subtidal to shallow
intertidal [90]. Tectonic settings are relatively simple, with few major faults, but rocks are
not very tectonically disturbed (Figure 1). Layer inclination varies from horizontal up to
57◦ in the vicinity of the faults. Most of the area is tectonically not disturbed, which was
one of the main reasons for having preserved outcrops for fracture pattern analysis.

3. Theoretical Background

The concept of dimension in mathematics can be approached from different points
of view, and there are different definitions of dimension [97]. Euclidean and topological
dimensions are finite and integer (1,2,3) and roughly define space. Many objects and
phenomena in nature can be described with 0, 1, 2, or 3 dimensions (Figure 2A). However,
Mandelbrot (1983) [98] noticed that many irregular objects and phenomena appear in
nature that cannot be completely defined by topological dimensions. Examples are clouds
that are not spheres, flashes of lightning that are not straight lines, mountain belts that are
not cones, etc. [98]. Their dimension is described by the Hausdorff (some authors also call
it Hausdorff–Besicovich) dimension, which measures how much an object fills a metric
space. To understand fractals and fractal dimensions, it is necessary to define concepts such
as Hausdorff measure and dimension [99]:

The δ-cover of a set F is a countable or finite union of sets {Ui}with radii, 0 < |Ui| ≤ δ
that cover the set F. Let F ⊂ Rn and let s ∈ [0, ∞〉 , for each δ > 0, we define:

Hs
δ(F) = inf{∑∞

i=1|Ui|s: {Ui}} is a δ− cover of F (1)

Therefore, the quantity Hs
δ(F) presents the minimal sum of the s-th powers of the

diameters over all covers of F by sets of diameters not greater than δ.
As δ decreases, the set of permissible covers of F (in Equation (1)) is reduced [99], and

hence, the value of the infimum Hs
δ(F) does not decrease and approaches the limit value as

δ tends to zero [99] (Equation (2)):

Hs(F) = lim
δ→0

Hs
δ(F) (2)

This limit exists for every subset F of the set Rn, although the limit value is often
0 or ∞. Hs(F) is called the s-dimensional Hausdorff measure of a set F. The Hausdorff
measure is a measure that assigns some value from the interval [0, ∞] to each set in Rn. A
0-dimensional Hausdorff measure of a set is the number of points in this set (if the set is
finite) and ∞ if the set is infinite. The one-dimensional measure of a smooth curve or line
in Rn is equal to the length of that curve. This means the Hausdorff measure generalizes
count, length, area, and volume but does not necessarily have to attain positive integer
values [99]. According to Equation (1), for an arbitrary set F ⊂ Rn and if δ < 1, Hs

δ(F) does
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not increase with increasing s, and according to Equation (2), Hs(F) will not increase either.
Moreover, if t > s and {Ui} is a δ-cover of the set F, then it holds:

∑i|Ui|t ≤∑i |Ui|t−s|Ui|s ≤ δt−s∑i|Ui|s (3)

Calculating the infimum over all δ-coverings in Equation (3) results in Equation (4):

Ht
δ(F) ≤ δt−sHs

δ(F) (4)

By letting δ→ 0 in Equation (4), it follows that if Hs(F) < ∞, then Ht(F) = 0 for
every t > s. The graph shows that there is a critical value of s at which Hs(F) “jumps“ from
∞ to 0 (Figure 2B).

This critical value is called the Hausdorff dimension of the set F, denoted dimH F, and
is defined for each set F ⊂ Rn:

dimH F = D = in f {s ≥ 0 : Hs(F) = 0} = sup{s : Hs(F) = ∞} (5)

If the upper limit (supremum) of the empty set is stated value 0, then:

Hs(F) =

{
∞ i f 0 ≤ s < dimH F

0 i f s > dimH F
(6)

If s = dimH F, then Hs(F) can be 0, ∞, or it can satisfy:

0 < Hs(F) < ∞ (7)

The Hausdorff dimension is often used to describe the fractal dimension (Fdim) of
complex objects in nature. A point has Hausdorff dimension D = 0, a line D = 1, a surface
D = 2, and a cube D = 3 (Figure 2A). Mandelbrot defined a fractal as a set, an object, or a
phenomenon whose Hausdorff dimension (D) is greater than the topological one, where
the dimension D is defined by [58,98]:

Ni =
C
rD

i
(8)

where:
Ni—number of objects or fragments characterized by linear dimension ri; C—

proportionality constant; D—fractal (Hausdorff dimension) dimension that is calculated by
(from Equation (8)):

D =
ln
(

Ni+1
Ni

)
ln
(

ri
ri+1

) =
log
(

Ni+1
Ni

)
log( ri

ri+1

) (9)

where: ln is logarithm with base e, and log is logarithm with base 10.
Natural (statistical) fractals have the following properties [61]:

(1) The parts of the object have the same structure as the object as a whole, except that
they are slightly deformed in different scales (there are small fluctuations in the degree
of fractality between scales)—a property of self-similarity.

(2) Forms are often irregular and fragmented and remain so in all scales in which
they exist.

(3) They are created through an iterative process.
(4) They have a fractal dimension.

The basic property of fractal distribution is scale independence. Mathematically,
Equation (8) can be applied to an infinitely large-scale interval. However, natural frac-
tals appear on a scale limited by lower and upper limits, which also applies to fractal
distributions [100]. Fragmentation should be considered to understand how to apply the
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fractal distribution to real data sets. Fragmentation is crucial to many geological processes
and phenomena [61]. Rocks can be fragmented in various ways—by tectonic processes that
include faulting, the formation of fissures, and fracture systems through which the rock
can be further fragmented by tectonic processes or weathering [61,100]. The formation of
fractures is a non-linear process, so even the simplest distribution of fractures and fracture
systems is demanding and challenging to model. Fractal geometry allows quantifying
geometric shapes that repeat over a certain range of scales [66]. The fragmentation process
(Figure 3A) and an example photograph of an Upper Triassic dolomite sample (Figure 3B)
indicate that fractal geometry can quantify the scale range of the spatial distribution of
fracture systems in dolomites. Also, the fractal description of fracture systems can represent
a basis for analyzing fluid flow through rocks because the fluid flow that occurs through a
fractal medium should also have fractal properties [43,59,66].
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4. Materials and Methods

The Fdim of fracture patterns can be estimated from photographs of outcrops and
samples (Figure 4) [43,52,100,102–104]. Image processing of the outcrop photographs can
be a powerful tool for data acquisition, preparation, and analysis of fracture systems in
rocks [103]. As the photographs are characterized by two dimensions (length and width),
the Fdim of the fracture systems in the photographs is 1 < D < 2. The applicability of Fdim in
defining porosity features is that it theoretically allows the extrapolation of the estimated
dimensions to a higher order (from 1D to 2D, or from 2D to 3D) [14,43,98,100,104] by a
simple relationship:

D2−D = D1−D + 1 (10)

D3−D = D2−D + 1 (11)

whereby: D3−D = fractal dimension of the object observed in 3D space; D2−D = fractal
dimension of the object observed in 2D space; D1−D = fractal dimension of the object
observed in 1D space.
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Equations (10) and (11) are valid because the intersection of a 3D fractal with a plane
will result in a 2D fractal with the fractal dimension D = D3−D − 1. Both equations are valid
only for isotropic and deterministic fractals [105]. For real objects, in our case, dolomite
rocks, the more applicable relation is [43]:

D2−D = D1−D + 1.06 (12)

Fractal analysis using computer programs is most often performed with the Box-
counting and radius mass methods. In the box-counting method, the photograph of the
outcrop is covered with a square grid of different square dimensions. For each value of
square size, the cells containing the pixels covering the object in the photo are counted.
The Fdim is then calculated by Equation (9). The computer program iteratively covers the
given image with squares of different dimensions. The relationship between the size of
the square and the number of squares that cover the object results in a log–log line whose
slope represents the Fdim of the object. The second most used method is the “Radius mass”
method. With the “Radius mass” method, the algorithm arbitrarily determines specific
points and draws circles of different radii that grow iteratively around them. The ratio of
black (observed object) and white pixels (background) is counted at each iteration. Each
step counts the total number of occupied pixels inside the circle. The paper used both
methods for Fdim calculation to compare results.

For the research, 14 outcrops in the Upper Triassic dolomites were photographed
in detail, and 35 photographs were selected for further analysis (Figure 1, Table 1,
Supplementary File S1). Numerous automatic algorithms were tested to digitize the
fractures in the photographs. Still, the results were unsatisfactory due to large noise
(fracture aperture and infill, vegetation, crushed rock fragments etc.) in the photographs,
so software could not delineate fractures from the host rock. In other words, it was
not possible to satisfactorily delineate fractures from the rock by automatic algorithms.
Thus, all photographs were digitized manually (Figures 4 and 5). Photographs were
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adjusted in color, brightness, and hue to more easily distinguish fractures from the rock
(Figure 5A). The outcrop was then delineated from the surrounding vegetation, and the
region of interest (ROI) was defined. Fractures were then manually traced in the Adobe
Illustrator 2021 software (Figure 5B).

Table 1. Placemarks, photograph names (photographs are presented in Supplementary File S1), and
basic geological information.

Placemark Photograph
Name X (HTRS) Y (HTRS) Formation

(Member) Age Vegetation in
Image

FRA-1 IMG_1571 421,714.6204 5063852.169 Slapnica (Vranjak) Carnian YES

FRA-2

IMG_1683

421,714.6204 5,063,852.169 Slapnica (Vranjak) Norian-Rhaetian

YES

IMG_1705 NO

IMG_1710 NO

IMG_1712 NO

FRA-3

IMG_1766

421,650.0122 5,065,208.69 Slapnica (Vranjak) Carnian

YES

IMG_1769 NO

IMG_1774 NO

IMG_1779 NO

FRA-4 IMG_1796 421,632.2322 5,064,660.356 Main Dolomite Norian-Rhaetian YES

FRA-5

PAN_24

421,794.3962 5,065,208.69 Main Dolomite Norian-Rhaetian

YES

PAN_24_B YES

IMG_1870 YES

IMG_1887 NO

IMG_1887 (O) NO

FRA-6 PAN_1904-1911 421,689.2998 5,064,905.212 Main Dolomite Norian-Rhaetian YES

FRA-7
PAN_1935-1952

421,653.4046 5,066,561.463 Main Dolomite Norian-Rhaetian
YES

IMG_1964 NO

FRA-8

IMG_2012

421,372.0408 5,066,843.261 Main Dolomite Norian-Rhaetian

YES

IMG_2016 NO

IMG_2020 NO

FRA-9
PAN-51

421,280.3314 5,066,884.165 Main Dolomite Norian-Rhaetian
YES

IMG_2032 (O) YES

FRA-10

PAN_2056-2060

421,099.8951 5,067,986.247 Main Dolomite Norian-Rhaetian

YES

PAN_2062-2075 YES

IMG_2088 YES

IMG_2091 NO

FRA-11 IMG_2106 421,235.9503 5,067,584.525 Main Dolomite Norian-Rhaetian NO

FRA-12

IMG_2110

421,232.7753 5,067,460.7 Main Dolomite Norian-Rhaetian

YES

IMG_2117 NO

IMG_2121 YES

IMG_2119 NO

FRA-13 PAN_2188-2191 421,539.1634 5,067,416.25 Main Dolomite Norian-Rhaetian YES

FRA-14
PAN_1647-1653

416,393.1683 5,069,792.002 Main Dolomite Norian-Rhaetian
YES

IMG_1656 NO

After all fractures were digitized, images were converted from color photographs into
binary photographs (black and white) by ImageJ 1.53.c software to estimate the fractal
dimensions of the fracture patterns (Figure 5C). The purpose of the procedure was to
obtain binary photos that optimally showed the fractures in the rock, so that the software
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operated only with white and black pixels. Processing is the most demanding process
of photo preparation for fractal analysis. It includes all actions by which the image is
prepared for conversion into the binary form: removal of vegetation, manual digitization of
fractures, and conversion of the photograph into binary (Figure 5A–C). Binary photographs
consisted only of black and white pixels; in our case, black represented fractures, and white
represented rock (Figure 5C).
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Figure 5. (A) photograph of the outcrop; (B) digitized photo of the outcrop; (C) binary photograph
(FRA-2, photo IMG_1705).

In binary photos, if the fractures are represented by a value of 1, the rock is represented
by 0. The vegetation is also represented by a value of 0, which reduces the Fdim of the
fracture pattern in the photograph. To overcome the vegetation problem, it was necessary
to create boundaries within the binary photo region of interest (ROI) within which the Fdim
was evaluated (Figure 6). When the ROI was defined, the program calculated the Fdim only
within the ROI, eliminating vegetation’s influence on the calculation.
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Several programs with several algorithms were used to compare the results and evaluate
which program and algorithm gave the most reliable results. To estimate the Fdim of the
fracture systems, ImageJ 1.53c®, FracLac (supplement for ImageJ) [106], and Fractalyse 2.4. ®
http://www.fractalyse.org, accessed 20 April 2021) were used (Supplementary File S2). Of
the programs used, only FracLac could make an irregular ROI. An ROI could also be made
using Fractalyse, but only in a square shape, which is often unsatisfactory (Figure 6).

For every outcrop photo, we calculated 2D porosity as the ratio between white and
black pixels in ImageJ software.

5. Results

The calculated fractal dimensions differed between the software and methods used.
Overall, the Fdim of the fracture complex of the Upper Triassic dolomites of Žumberak
ranged from 1.465 to 1.802 (Figure 7, Supplementary File S3). The Fractalyse software
obtained the lowest and highest values. The Fractalyse box-counting method obtained the
lowest values and the highest by the Fractalyse radius mass method. Results of FracLac
box-counting analysis were usually in between the results from Fractalyse software.
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Figure 7. Fractal dimensions were obtained by Fractalyse box counting, Fractalyse radius mass, and
FracLac box-counting analysis on outcrop photographs.

The main reason for the relatively low values obtained by Fractalyse was that it was
impossible to select the ROI, so the fracture systems in the photographs with vegetation had
underestimated Fdim values (or we did not calculate Fdim at all). In Fractalyse, it is possible
to create only a square-shaped ROI, which for most photos was not enough to exclude areas
with vegetation from the calculation. The Fdim mainly depends on the number of iterations
the program performs and the sizes of the squares with which the image is covered at
each iterative step. So, we performed multiple calculations until the results of Fdim did not
change regarding box sizes and the number of iterations. Notably, the Fdim trends obtained
with all programs were largely consistent (Figure 7, Supplementary File S3). This confirmed
that all methods are valid and that fracture systems control the values of Fdim (Figure 7,
Supplementary File S3).

Fractalyse box-counting analysis resulted in an Fdim ranging from 1.465 to 1.670, with
an average of 1.568 and a median of 1.572. Photographs with large vegetation areas were
not analyzed. Fractalyse radius-mass analysis resulted in an Fdim ranging from 1.592 to
1.802, with an average of 1.678 and a median of 1.682. Again, photographs with large
vegetation areas were not analyzed.

FracLac analysis was conducted only with the box-counting method, and the results
were usually between the results obtained by Fractalyse. FracLac fractal dimensions for
Upper Triassic dolomites ranged from 1.492 to 1.725, with an average of 1.646 and a
median of 1.649 (Supplementary File S3). Even though there were differences between the
algorithms and software used, the differences were very consistent in all analyzed images,
indicating that differences resulted from different calculation parameters (Figure 8).

http://www.fractalyse.org
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Generally, the lowest values were related to fracture patterns of lower complexity,
and higher values corresponded to higher complexity (Figure 8). Small values of Fdim
indicated the dominance of a small number of large fractures or small number of small
fractures (Figure 8A). Many smaller fractures, together with a small number of large ones,
contributed to the complexity of the fracture system and, by that, to a higher value of Fdim
(Figure 8B). The values for fractal dimensions obtained with all software and algorithms
can be divided into three groups concerning the fracture system architecture:

(1) Small Fdim values (Fractalysebox-count: from 1.465 to 1.525; Fractalysermass: from 1.592
to 1.650; and FracLac: from 1.492 to 1.600). Small values of fractal dimensions were
obtained for outcrops with a relatively small number of fractures, i.e., less fragmented
outcrops, or where large fractures dominated (Figure 8A). These were outcrops where
not all sets of fractures had been developed or were not visible. In these parts of the
outcrop, the fracture system’s complexity was lower, resulting in lower Fdim values.

(2) Average Fdim values (Fractalysebox-count: from 1.525 to 1.625; Fractalysermass: from
1.650 to 1.700; and FracLac: from 1.600 to 1.675). Most of the analyzed photos of
outcrops belonged in this interval. This interval could be considered representative of
the Upper Triassic dolomites of Žumberak.

(3) Large Fdim values (Fractalysebox-count: from 1.625 to 1.670; Fractalysermass: from 1.700
to 1.802; and FracLac: from 1.675 to 1.725). The largest fractal dimensions were
obtained for the more fractured parts of the outcrops, which resulted in a more
complex fracture system (Figure 8B). Fractures filled large portions of the analyzed
space irregularly, so the fracture network’s complexity was high, resulting in high
fractal dimension values.
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Two-dimensional porosity (P22) was calculated for 35 outcrop photographs and ranged
from 2.84% up to 8.99%, with an average value of 5.7% (Figure 9). Since porosity is a three-
dimensional rock property, these values should be checked by some 3D method in the
future to see how representative they are of the rock mass. The fractures were digitized
as lines, and the aperture of the fractures was not considered, which could affect the
porosity values. A correlation diagram between 2D porosity and Fdim was prepared to
analyze the dependence between these two parameters (Figure 10). There was no visible
correlation between the two parameters, which indicated that more or less complex fracture
systems can result in higher and lower porosities. Furthermore, for better fracture network
description in 2D, it was necessary to analyze both parameters.
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The fractal dimension of fracture systems is a measure of the complexity of the fracture
system. It depends on the rock type and the tectonic history of the investigated area [43].
Two-dimensional (2D) fractal dimensions close to 1 indicate a small number of fractures,
i.e., a simple fracture architecture. Large values, close to 2, indicate an extremely complex
fracture system: the rock is extremely fractured or fragmented by a complex network of
fractures [101]. The calculated values for the fracture systems in the photographs and the
mean values of individual outcrops were mostly greater than 1.585 (Figures 7–10).

The mean value of Fdim for all outcrops was 1.646. Dolomites are among the most
fractured rocks in nature [6,43,107], and large values of the fractal dimension of fracture
systems are expected of them. As the fractal dimension measures complexity, different
fracture systems of different geometries but the same complexity will result in the same
value of fractal dimension. The results indicated that the fracture system of the Upper
Triassic dolomites could be approximated by fractal distribution and considered a natural
fractal. Because of this, the spatial and statistical geometric properties of the fracture
systems could be extrapolated to higher and lower scales by Equation (12).

The extrapolation of the fractal dimension from 2D to 3D by Equation (12) [43] resulted
in Fdim values for Upper Triassic dolomites, ranging from 2.53 to 2.86 (Table 2) depending on
the software and the algorithm. Average values were between 2.62 (Fractalyse box counting)
and 2.74 (Fractalyse Radius Mass) (Table 2). Generally, the results of this research were very
consistent with results from [43], who analyzed similar rocks with similar methodology
in Slovenia.

Table 2. Average, median, maximum, and minimum Fdim were calculated for individual images and
averaged for outcrops. Fdim ext is Fdim extrapolated from 2D to 3D by Equation (12).

Fractalyse (Radius Mass) Fractalyse Box Counting FracLac (Plugin for ImageJ)

Fdim
AVG

(per Outcrop) Fdim ext AVG ext
(per Outcrop) Fdim

AVG
(per Outcrop) Fdim ext AVG ext

(per Outcrop) Fdim
AVG
(per

Outcrop)
Fdim ext

AVG ext
(per

Outcrop)

AVG 1.68 1.68 2.74 2.74 1.57 1.56 2.63 2.62 1.65 1.65 2.71 2.71

MEDIAN 1.68 1.68 2.74 2.74 1.57 1.58 2.63 2.64 1.65 1.65 2.71 2.71

MAX 1.80 1.73 2.86 2.79 1.67 1.64 2.73 2.70 1.72 1.69 2.78 2.75

MIN 1.59 1.60 2.65 2.66 1.47 1.47 2.53 2.53 1.49 1.53 2.55 2.59

6. Discussion and Conclusions

The fractal dimension is a measure of the complexity of the analyzed pattern.
Different fracture systems of different geometry but of the same complexity will result
in the same fractal dimension. In this paper, we used manual fracture extraction from
photographs. There are many semi-automatic or automatic algorithms published in the
literature. Still, after trying a few of them, the results were not satisfactory due to several
issues: (i) dolomites are highly fractured by fractures of multiple orders (from larger to
smaller); (ii) fractures sometimes had an aperture that was filled with crushed dolomite
or clay that was problematic for the algorithms to overcome; (iii) due to high fracturing,
there were pieces of rock on the outcrop that were often considered as fracture traces,
so the postprocessing of the results could take a long time. Considering everything, we
found that only manual digitization (that could be biased) applied to this type of rock.

We analyzed the impact of fracture patterns in outcrop images on their fractal dimen-
sions. The results can be summarized as follows:

Fractal dimensions of fracture systems in outcrops can be subdivided into three categories:

(1) Small 2D Fdim values (Fractalysebox-count: from 1.465 to 1.525; Fractalysermass: from
1.592 to 1.650; and FracLac: from 1.492 to 1.600).

(2) Average 2D Fdim values (Fractalysebox-count: from 1.525 to 1.625; Fractalysermass: from
1.650 to 1.700; and FracLac: from 1.600 to 1.675). Most of the analyzed photos of
outcrops were in this category.

(3) Large 2D Fdim values (Fractalysebox-count: from 1,625 to 1.670; Fractalysermass: from
1.700 to 1.802; and FracLac: from 1.675 to 1.725).
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Simple Equation (12) could extrapolate from 2D Fdim to 3D, and the results for the ana-
lyzed outcrops ranged from 2.53 to 2.86, with average values between 2.62 (Fractalysebox-count)
and 2.74 (FractalyseRmass) (Table 2).

2D Porosity (P22) for Upper Triassic dolomites was in the interval from 2.84% up to
8.99%, with an average value of 5.7%.

Dolomites are among the most highly fractured rocks [6,43,107], and high values
of the fractal dimension of fracture systems are expected. As the fractal dimension is a
measure of complexity, different fracture systems with different geometries but of the same
complexity will result in the same fractal dimension. That is why the spatial and statistical
geometric properties of the fractal fracture network can be extrapolated to higher and lower
scales. Verbovšek, 2009 [43,108] analyzed the fractal dimensions of fracture systems on the
Middle and Upper Triassic dolomites of Slovenia using different measurement methods.
The values of the fractal dimensions for the “box-flex” and “box-rotate” methods were
1.78±0.02. The results of the “Box-counting-Full Method”, which are comparable to the
results in this research, were in the interval from 1.47 to 1.59 [43], which is, on average,
somewhat lower than the results of this research. The porosity of the T3 dolomite of the
Sella Group (Dolomites, northern Italy) [7] can be compared with the results of this study.
The fracture porosity of the Main Dolomites formation of the Sella group reached 2.4%.
Such a “small” value of fracture porosity can be attributed to only two sets of fractures in the
analyzed area [7]. Published dolomite porosity values range from 1 to 27%, where porosity
is not divided into fracture, sedimentary and diagenetic [6,7]. This study makes a significant
contribution to the analysis of fracture networks of dolomites (especially Upper Triassic
dolomites) since there are only a few papers dealing with the subject due to excessive
fragmentation and fracturing of dolomites, which make analysis almost impossible.

In carbonate reservoirs, the permeability is usually influenced by the fracture network [63].
Depending on the fracture network characteristics, fractures can behave as fluid flow conduits,
barriers, and combined conduit–barriers [63,109–111]. Detailed fracture description and pa-
rameter quantification then become crucial to analyze and predict the fluid flow behavior in
subsurface aquifers or reservoirs [63,112,113]. The results indicate that the fracture system of the
Upper Triassic dolomites can be approximated by fractal distribution and can be considered a
natural fractal. Because of this, the fracture system’s spatial and statistical geometric properties
can be extrapolated to higher and lower scales. Natural fracture networks in the subsurface are
three-dimensional phenomena. With current technology, such as outcrop mapping, borehole
logging, and 3D seismic surveys, performing a 3D fracture network survey is almost impossible.
Therefore, investigating fractal characteristics of 3D fracture networks is challenging but very
useful for fracture characterization and can be great input for DFN models that are used for 3D
fluid flow modeling.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fractalfract7090676/s1, Supplementary File S1—outcrop photographs
and digitized images of the outcrops. Supplementary File S2—Fractal dimension charts for each image
calculated by Fractalyse. Supplementary File S3—Table with all calculated parameters for all images
and outcrops.
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https://www.mdpi.com/article/10.3390/fractalfract7090676/s1
https://www.mdpi.com/article/10.3390/fractalfract7090676/s1


Fractal Fract. 2023, 7, 676 15 of 18

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Price, N.J. Fault and Joint Development in Brittle and Semibrittle Rock; Pergamon Press: Oxford, UK, 1966.
2. Ramsay, J.G. Folding and Fracturing of Rocks; McGraw-Hill: New York, NY, USA, 1967; ISBN 1-930665-89-X.
3. Hancock, P.L. Brittle Microtectonics: Principles and Practice. J. Struct. Geol. 1985, 7, 437–457. [CrossRef]
4. Ramsay, J.G.; Huber, M.I. The Techniques of Modern Structural Geology. Volume 2: Folds and Fractures. Geol. Mag. 1988, 125,

316–317.
5. McGinnis, R.N.; Ferrill, D.A.; Morris, A.P.; Smart, K.J.; Lehrmann, D. Mechanical Stratigraphic Controls on Natural Fracture

Spacing and Penetration. J. Struct. Geol. 2017, 95, 160–170. [CrossRef]
6. Aguilera, R. Naturally Fractured Reservoirs; PennWell Books: Tulsa, OK, USA, 1995; 521p.
7. Antonellini, M.; Mollema, P.N. A Natural Analog for a Fractured and Faulted Reservoir in Dolomite: Triassic Sella Group,

Northern Italy. Am. Assoc. Pet. Geol. Bull. 2000, 84, 314–344. [CrossRef]
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