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Abstract: This paper studies the finite-time synchronization problem of fractional-order stochastic
memristive bidirectional associative memory neural networks (MBAMNNs) with discontinuous
jumps. A novel criterion for finite-time synchronization is obtained by utilizing the properties
of quadratic fractional-order Gronwall inequality with time delay and the comparison principle.
This criterion provides a new approach to analyze the finite-time synchronization problem of neu-
ral networks with stochasticity. Finally, numerical simulations are provided to demonstrate the
effectiveness and superiority of the obtained results.

Keywords: stochastic; fractional order; memristive BAM neural networks; finite-time synchronization;
quadratic Gronwall inequality

MSC: 35B40; 35K57; 37C65; 92D25

1. Introduction

Artificial intelligence has been an active field of research, and neural networks have
emerged as a prominent branch due to their intelligence characteristics and potential
for real-world applications. Neural networks have revolutionized the field of artificial
intelligence by enabling computers to process and analyze large volumes of complex
data with remarkable accuracy. These models are based on the structure and processes
of the brain, where neurons are interconnected and communicated by using electrical
signals. Neural networks are characterized by their remarkable ability to learn from
data and improve their performance over time without being explicitly programmed.
Neural networks have evolved over time, with various models developed to address
different types of problems, for example, Cohen–Grossberg neural networks [1], Hopfield
neural networks [2], and cellular neural networks [3].

Kosko’s bidirectional associative memory neural networks (BAMNNs) are a note-
worthy extension of the traditional single-layer neural networks [4]. BAMNNs consist of
two layers of neurons that are not interconnected within their own layer. In contrast, the
neurons in different layers are fully connected, allowing for bidirectional information flow
between the two layers. This unique structure enables the BAMNNs to function as both
input and output layers, providing powerful information storage and associative memory
capabilities. In signal processing, the BAMNNs can be used to filter signals or extract
features; while in pattern recognition, they can classify images or recognize speech. In
optimization, the BAMNNs can be used to identify the optimal solution; while in automatic
control, they can be used to regulate or stabilize a system [5,6]. The progress of artificial
intelligence and the evolution of neural networks have created novel opportunities to
tackle intricate issues in diverse domains. In summary, these advancements have paved
the way for innovative problem-solving approaches that were previously unattainable. The
BAMNNs’ unique architecture and capabilities make it a powerful tool for engineering
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applications, and it is anticipated that this technology will maintain its importance in future
research and development and continue to make substantial contributions to various fields.

Due to the restriction of network size and synaptic elements, the functions of artificial
neural networks are greatly limited. If common connection weights and the self-feedback
connection weights of BAMNNs are established by memristor [7], then its model can be
built in a circuit. Memristors [8,9] are a circuit element in electronic circuit theory that be-
have nonlinearly and have two terminals. Their unique feature has led to their widespread
use and potential application in a variety of fields, including artificial intelligence, data
storage, and neuromorphic computing. Adding memristors to neural networks makes it
possible for artificial neural networks to simulate the human brain on the circuit, which
makes the research on memristor neural networks more meaningful. Therefore, the resis-
tance in the traditional neural networks is replaced by a memristor, and BAMNNs based on
memristor are formed (MBAMNNs). Compared with traditional neural networks, memris-
tor neural networks have stronger learning and associative memory abilities, allowing for
more efficient processing and storage of information, thereby improving the efficiency and
accuracy of artificial intelligence [10–12]. Additionally, due to the nonlinear characteristics
of memristors and their applications in circuits, memristor neural networks also have lower
energy consumption and higher speed. Therefore, the development of memristor neural
networks have broad application prospects in the field of artificial intelligence.

However, due to the limitation of amplifier conversion speed, the phenomenon of
time delay in neural network systems is inevitable. Research indicates that the presence of
time delay is a significant factor contributing to complex dynamic behaviors such as system
instability and chaos [13]. To enhance the versatility and efficiency of the BAMNNs, Ding
and Huang [14] developed a novel BAMNNs model in 2006. The focus of their investigation
was on analyzing the global exponential stability of the equilibrium point and studying its
characteristics in this model. The time-delay BAMNNs have been advanced by its positive
impact on their development [15–18].

Fractional calculus extends the traditional differentiation and integration operations
to non-integer orders [19] and has been introduced into neural networks to capture the
characteristics of memory and inheritance [20–22]. The emergence of fractional-order
calculus has spurred the development of neural networks [8,9,23,24], which have found
applications in diverse areas, including signal detection, fault diagnosis, optimization
analysis, associative memory, and risk assessment. The fractional-order memristive neural
networks (FMNN) are the specific type of fractional-order neural networks which have
been widely studied for their stability properties. For instance, scholars have investigated
the asymptotic stability of FMNNs with delay using Caputo fractional differentiation
and Filippov solution properties [25], and have also investigated the asymptotic stability
of FMNNs with delay by leveraging the properties of Filippov solutions and Leibniz
theorem [26].

As one of the significant research directions in the nonlinear systems field, synchro-
nization includes quasi-consistent synchronization [27], projective synchronization [28],
full synchronization [29], Mittag-Leffler synchronization [30], global synchronization [31],
and many other types. Additionally, it is widely used in cryptography [32], image en-
cryption [33], and secure communication [34]. In engineering applications, people want to
realize synchronization as soon as possible, so the concept of finite time synchronization
is proposed. Due to its ability to achieve faster convergence speed in network systems,
finite-time synchronization has become a crucial aspect in developing effective control
strategies for realizing system stability or synchronization [35,36].

This paper addresses the challenge of achieving finite-time synchronization.
The definition of finite-time synchronization used in this article is that the synchronization
error be kept within a certain range for a limited time interval. However, dealing with the
time delay term in this context is challenging. Previous studies have utilized the Hölder
inequality [37] and the generalized Gronwall inequality [38,39] to address the finite-time
synchronization problem of fractional-order time delay neural networks, providing valu-
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able insights into the problem. However, this paper proposes a new criterion based on
the quadratic fractional-order Gronwall inequality with the time delay and comparison
principle, offering a fresh perspective on the problem.

This paper presents significant contributions towards the study of finite-time synchro-
nization in fractional-order stochastic MBAMNNs with time delay. The key contributions
are as follows:

(1) We improved Lemma 2 in [39] by deriving a quadratic fractional-order Gronwall
inequality with time delay, which is a crucial tool for analyzing the finite-time syn-
chronization problem in stochastic neural networks.

(2) A novel criterion for achieving finite-time synchronization is proposed, which allows
for the computation of the required synchronization time T. This criterion provides
a new approach to analyze finite-time synchronization and has the potential to be
widely applicable in the field of neural networks research.

The paper is structured as follows: Section 2 introduces relevant concepts and presents
the neural networks model used in this study. Section 3 proposes a novel quadratic
fractional-order Gronwall inequality that takes time delay into account. This inequality is
useful for studying the finite-time synchronization problem in fractional-order stochastic
MBAMNNs with time delay, and by utilizing differential inclusion and set-valued mapping
theory, a new criterion for determining the required time T for finite-time synchronization
is derived. Section 4 provides a numerical example that demonstrates the effectiveness of
the proposed results. Finally, suggestions for future research are presented.

2. Preliminaries and Model

This section provides an overview of the necessary preliminaries related to fractional-
order derivatives and the model of fractional-order stochastic MBAMNNs. We begin by
introducing the fundamental concepts related to fractional-order derivatives and then
move on to describe the fractional-order stochastic MBAMNNs model. Additionally, the
definition of finite-time synchronization is provided.

2.1. Preliminaries

Notations: The norm and absolute value of vectors and matrices are defined as follows.
Let N and R denote the sets of positive integers and real numbers, respectively.

The norm of a vector ex(t) = (ex,1(t), ex,2(t), · · · , ex,n(t)) ∈ C([0,+∞),Rn) is given
by ‖ ex(t) ‖= ∑n

κ=1 | ex,κ(t) |. Similarly, the norm of a vector ey(t) = (ey,1(t), ey,2(t), · · · ,
ey,m(t)) ∈ C([0,+∞),Rm) is defined as ‖ ey(t) ‖= ∑m

ι=1 | ey,ι(t) |, n,m ∈ N.The induced
norm of a matrix A is denoted by ‖ A ‖= max

1≤ι≤n
∑n

κ=1 | aκι |. The absolute value of a vector

x(t) ∈ Rn is defined as | x(t) |= (| x1(t) |, | x2(t) |, · · · , | xn(t) |)T .
Following that, we provide a review and introduction of several definitions and

lemmas related to fractional calculus.

Definition 1 ([40]). A fractional-order integral of a function κ(t) with order α can be defined as:

Iα
t0

κ(t) =
1

Γ(α)

∫ t

t0

(t− θ)α−1κ(θ)dθ,

where 0 < α < 1, t ≥ t0 and Γ(α) =
∫ ∞

0 tα−1e−tdt.
Especially, Iα

t0
κ(t) = κ(t)− κ(t0) for 0 < α < 1.

Definition 2 ([40]). Suppose κ(t) ∈ Cι([0,+∞),R), where ι is a positive integer. The Caputo
derivative of order α of the function κ(t) can be expressed as:

cDα
0 κ(t) =

∫ t

t0

(t− θ)−α

Γ(ι− α)
κ(ι)(θ)dθ,

where κ − 1 < α < κ, κ ∈ N.
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For the convenience, we use Dα to represent cDα
0 .

2.2. Model

We investigate a kind of fractional-order differential equation that captures the dynam-
ics of fractional-order stochastic MBAMNNs with time delays. These equations are viewed
as the driving system (1) that models the interactions between neurons in MBAMNNs and
accounts for the influence of discontinuous jumps and time delays. Through examining
the stability and analytical solutions of these equations, this study aims to enhance the
comprehension of the behavior of MBAMNNs, ultimately leading to more comprehensive
analysis for practical applications of this model.

Dαxκ(t) = −uκ(xκ(t))xκ(t) +
m

∑
ι=1

aικ(xκ(t))fι(yι(t)) +
m

∑
ι=1

bικ(xκ(t− τ1))fι(yι(t− τ2))

+
m

∑
ι=1

rι(yι(t− τ2))dB(t) + Iκ , κ = 1, 2, . . . , n,

Dαyι(t) = −vι(yι(t))yι(t) +
n

∑
κ=1

cκι(yι(t))gκ(xκ(t)) +
n

∑
κ=1

dκι(yι(t− τ2))gκ(xκ(t− τ1))

+
n

∑
κ=1

sκ(xκ(t− τ1))dB(t) + Jι, ι = 1, 2, . . . ,m,

(1)

where 0 < α < 1, t ∈ [0,+∞).
In this system, the positive parameters uκ(xκ(t)) and vι(yι(t)) represent the rates

of neuron self-inhibition, whereas xκ(t) and yι(t) denote the state variables of the κ-th
and ι-th neuron, respectively. The activation functions without time delay are denoted
by fι(yι(t)) and gκ(xκ(t)), and those with time delay are denoted by fι(yι(t − τ2)) and
gκ(xκ(t− τ1)). The neural connection memristive weights matrices are represented by
aικ(xκ(t)), bικ(xκ(t − τ1)), cκι(yι(t)), and dκι(yι(t − τ2)). Stochastic terms representing
Brownian motion are denoted by rι(yι(t− τ2))dB(t) and sκ(xκ(t− τ1))dB(t). The constant
input vectors are represented by Iκ and Jι. The time delay parameters τ1 and τ2 satisfy
0 ≤ τ1 ≤ τ and 0 ≤ τ2 ≤ τ, where τ is a constant.

The initial conditions of fractional-order stochastic MBAMNNs (1) are given by
x(t) = (x1(t), x2(t), · · · , xn(t))T , y(t) = (y1(t), y2(t), · · · , ym(t))T , where xκ(r) = φκ(r) ∈
C([−τ1, 0], Rn) and yι(r) = ψι(r) ∈ C([−τ2, 0],Rm). Here, φκ(r) and ψι(r) are continuous
functions on [−τ1, 0] and [−τ2, 0].

Then, the corresponding system of drive system (1) is given by:

Dα x̆κ(t) = −uκ(x̆κ(t))x̆κ(t) +
m

∑
ι=1

aικ(x̆κ(t))fι(y̆ι(t)) +
m

∑
ι=1

bικ(x̆κ(t− τ1))fι(y̆ι(t− τ2))

+
m

∑
ι=1

rι(y̆ι(t− τ2))dB(t) + Iκ + γκ , κ = 1, 2, . . . , n,

Dαy̆ι(t) = −vj(y̆ι(t))y̆ι(t) +
n

∑
κ=1

cκι(y̆ι(t))gκ(x̆κ(t)) +
n

∑
κ=1

dκι(y̆ι(t− τ2))gκ(x̆κ(t− τ1))

+
n

∑
κ=1

sκ(x̆κ(t− τ1))dB(t) + Jι + ηι, ι = 1, 2, . . . ,m.

(2)

The initial conditions of the corresponding system (2) are x̆κ(r) = φ̆κ(r) ∈ C([−τ1, 0],Rn),
y̆ι(r) = ψ̆ι(r) ∈ C([−τ2, 0],Rm); γκ and ηι are the following controllers:{

γκ = −ζκ(x̆κ(t)− xκ(t)),
ηι = −ζι(y̆ι(t)− yι(t)),

where ζκ and ζι are both positive numbers called the control gain.
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The synchronization error, as defined by systems (1) and (2), can be expressed as:
ex,κ(t) = x̆κ(t)− xκ(t), t ∈ [t0, T],
ey,ι(t) = y̆ι(t)− yι(t), t ∈ [t0, T],
ϕx,κ(r) = φ̆κ(r)− φκ(r), r ∈ [t0 − τ1, t0],
ϕ̆y,ι(r) = ψ̆ι(r)− ψι(r), r ∈ [t0 − τ2, t0].

Then, we obtain the synchronization error, which is ‖ ex(t) ‖ + ‖ ey(t) ‖, and denote
ϕ = sup

s∈[−τ1,0]
‖ ϕx,κ(r) ‖, ϕ̆ = sup

s∈[−τ2,0]
‖ ϕ̆y,ι(r) ‖ .

Definition 3. If there is a real number T > 0 such that for any t > T and ε > 0, the synchroniza-
tion error satisfies:

‖ ex(t) ‖ + ‖ ey(t) ‖≤ ε, T < t < +∞,

then, it can be inferred that the drive system (1) and the response system (2) achieve finite-time
synchronization at T.

Remark 1. To obtain a sufficient condition for achieving finite-time synchronization between
systems (1) and (2), it is necessary to identify an appropriate evaluation function χ(t). This function
should satisfy ‖ ex(t) ‖ + ‖ ey(t) ‖≤ χ(t) ≤ ε.

3. Main Results

This section presents a novel approach to obtain the evaluation function χ1(t) by
improving quadratic fractional Gronwall inequality with time delay. We then utilize
Theorem 1 to convert this inequality into a format that is consistent with Lemma 2, en-
abling us to derive a synchronization criterion for the drive system (1) and corresponding
system (2) in finite time. Specifically, the application of Lemma 2 leads to the novel criterion
for finite-time synchronization.

Quadratic fractional Gronwall inequality with time delay is given below.

Lemma 1 ([41]). Let t ∈ [t0, T], u(t), v(t) ∈ R, κ(t) ∈ C1([t0, T],R) satisfying:{
κ
′
(t) ≤ u(t)κ(t) + v(t), t ∈ [t0, T],

κ(t0) ≤ κ0, κ0 ∈ R.

Then, we have:

κ(t) ≤ κ0 exp(
∫ t

t0

u(θ)dθ) +
∫ t

t0

exp(
∫ t

θ
u(s)ds)v(θ)dθ.

Lemma 2. Let T ∈ (0,+∞) and ω(t), a(t), b(t), σ(t) and υ(t) be continuous functions that
are nonnegative and defined on [t0, T]. Let φ(t) be a nonnegative continuous function defined on
[t0 −Ω, t0] and suppose:ω2(t) ≤ υ2(t)

{∫ T
t0
[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]pdθ

} 1
p
+ 2σ2(t), t ∈ [t0, T],

ω(t) ≤ φ(t), t ∈ [t0 −Ω, t0].
(3)

Assume σ(t) and υ(t) are nondecreasing on [t0, T], φ(t) is nondecreasing on [t0 −Ω, t0], and
φ(t0) = σ(t0). Then, the following hold:

(1) If σ(t) > υ(t), then:

ω2(t) ≤σ2(t)

{
2 + [exp(

∫ t

t0

2p−1σ2p(t)[2a(θ) + b(θ)]pdθ)− 1]
} 1

p
.
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(2) If σ(t) ≤ υ(t), then:

ω2(t) ≤υ2(t)

{
2 + [exp(

∫ t

t0

2p−1υ2p(t)[2a(θ) + b(θ)]pdθ)− 1]
} 1

p
,

where t ∈ [t0, T], Ω > 0, p ≥ 1 are all constants.

Proof. See the Appendix A.

Theorem 1. Assume T ∈ (0,+∞) and non-negative continuous functions ω(t), σ(t), υ(t), a(t),
and b(t) are defined on [t0, T] and φ(t) is a non-negative continuous function defined on [t0−Ω, t0],
which satisfy:ω2(t) ≤ 2σ2(t) +

υ(t)

Γ2(α)

∫ t
t0
(t− θ)2(α−1)[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]dθ, t ∈ [t0, T],

ω(t) ≤ φ(t), t ∈ [t0 −Ω, t0].

Let σ(t) and υ(t) be nondecreasing functions on [t0, T], and φ(t) be a nondecreasing function
on [t0 −Ω, t0] with φ(t0) = σ(t0). We have the following results:

(1) If σ(t) > H(t), then:

ω2(t) ≤σ2(t)

{
2 + [exp(

∫ t

t0

2p−1σ2p(t)[2a(θ) + b(θ)]pdθ)− 1]
} 1

p
.

(2) If σ(t) ≤ H(t), then:

ω2(t) ≤H2(t)

{
2 + [exp(

∫ t

t0

2p−1υ2p(t)[2a(θ) + b(θ)]pdθ)− 1]
} 1

p
.

where t ∈ [t0, T] and p, q > 0 such that 1
q +

1
p = 1, α > 1+p

2p and H2(t) = υ(t)(t−t0)
2(α−1)+ 1

q

Γ2(α)(2q(α−1)+1)
1
q

.

Proof. By using the Hölder inequality, it follows that:

ω2(t) ≤2σ2(t) +
υ(t)

Γ2(α)

∫ t

t0

(t− θ)2(α−1)[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]dθ

≤2σ2(t) +
υ(t)

Γ2(α)
(
∫ t

t0

(t− θ)2q(α−1)dθ)
1
q (
∫ t

t0

[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]pdθ)
1
p

≤2σ2(t) +
υ(t)

Γ2(α)

(t− t0)
2(α−1)+ 1

q

[2q(α− 1) + 1]
1
q
(
∫ t

t0

[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]pdθ)
1
p .

Since α > 1+p
2p and H2(t) = υ(t)(t−t0)

2(α−1)+ 1
q

Γ2(α)(2q(α−1)+1)
1
q

, the above inequality can be simplified

as follows:

ω2(t) ≤ 2σ2(t)+H2(t){
∫ t

t0

[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]pdθ}
1
p .

Then, using Lemma 2, the proof is completed.

To analyze the solutions of the discontinuous systems represented by Equations (1)
and (2), Filippov regularization is used. This involves transforming the equations into
differential inclusions and set-valued maps.

The drive system represented by Equation (1) can be expressed in terms of a differential
inclusion, which is a powerful tool in the theory of differential inclusions. By using this
approach, we can study the behavior of the system even when it experiences discontinuities
or impulses.
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Overall, Filippov regularization allows us to analyze the solutions of discontinuous
systems such as Equations (1) and (2) in a rigorous and systematic way, providing in-
sights into their behavior and enabling us to make informed decisions about their design
and operation.

According to the definition of set-valued maps, let:

co[uκ(ς)] =


u̇κ , | ς |< T̊,

üκ , | ς |> T̊,

co{u̇κ , üκ}, | ς |= T̊,

co[aικ(ς)] =


ȧικ , | ς |< T̊,

äικ , | ς |> T̊,

co{ȧικ , äικ}, | ς |= T̊,

co[bικ(ς)] =


ḃικ , | ς |< T̊,

b̈ικ , | ς |> T̊,

co
{
ḃικ , b̈ικ

}
, | ς |= T̊,

co[vι(ς)] =


v̇ι, | ς |< T̊,

v̈ι, | ς |> T̊,

co{v̇ι, v̈ι}, | ς |= T̊,

co[cκι(ς)] =


ċκι, | ς |< T̊,

c̈κι, | ς |> T̊,

co{ċκι, c̈κι}, | ς |= T̊,

co[dκι(ς)] =


ḋκι, | ς |< T̊,

d̈κι, | ς |> T̊,

co{ḋκι, d̈κι}, | ς |= T̊,

where ς ∈ R; the switching jumps T̊κ is a positive constant; and u̇i, üi, ȧικ , äικ , ḃικ , b̈ικ , v̇j,
v̈j, ċκι, c̈κι, ḋκι, and d̈κι are all constant numbers. co[uκ(ς)], co[aικ(ς)], co[bικ(ς)], co[vj(ς)],
co[cκι(ς)], and co[dκι(ς)] are all compact, closed, and convex.

According to the theory of differential inclusions, we have:

Dαxκ(t) ∈ −co[uκ(xκ(t))]xκ(t) +
m

∑
ι=1

co[aικ(xκ(t))]fι(yι(t)) +
m

∑
ι=1

co[bικ(xκ(t− τ1))]

×fι(yι(t− τ2)) +
m

∑
ι=1

rι(yι(t− τ2))dB(t) + Iκ ,

Dαyι(t) ∈ −co[vι(yι(t))]yι(t) +
n

∑
κ=1

co[cκι(yι(t))]gκ(xκ(t)) +
n

∑
κ=1

co[dκι(yι(t− τ2))]

×gκ(xκ(t− τ1)) +
n

∑
κ=1

sκ(xκ(t− τ1))dB(t) + Jι.

Then, let:

úκ(ς) ∈ co[uκ(ς)], áικ(ς) ∈ co[aικ(ς)], b́ικ(ς) ∈ co[bικ(ς)],

v́ι(ς) ∈ co[vι(ς)], ćκι(ς) ∈ co[cκι(ς)], d́κι(ς) ∈ co[dκι(ς)].

By modifying the drive system (1), we can achieve:

Dαxκ(t) = −úκ(xκ(t))xκ(t) +
m

∑
ι=1

áικ(xκ(t))fι(yι(t)) +
m

∑
ι=1

b́ικ(xκ(t− τ1))fι(yι(t− τ2))

+
m

∑
ι=1

rι(yι(t− τ2))dB(t) + Iκ ,

Dαyι(t) = −v́ι(yι(t))yι(t) +
n

∑
κ=1

ćκι(yι(t))gκ(xκ(t)) +
n

∑
κ=1

d́κι(yι(t− τ2))gκ(xκ(t− τ1))

+
n

∑
κ=1

sκ(xκ(t− τ1))dB(t) + Jι.

(4)

Similarly, let:

ùκ(ς) ∈ co[uκ(ς)], àικ(ς) ∈ co[aικ(ς)], b̀ικ(ς) ∈ co[bικ(ς)],

v̀ι(ς) ∈ co[vι(ς)], c̀κι(ς) ∈ co[cκι(ς)], d̀κι(ς) ∈ co[dκι(ς)],

by employing the similar method, we can modify the corresponding system (2) as follows:
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

Dα x̆κ(t) = −ùκ(x̆κ(t))x̆κ(t) +
m

∑
ι=1

àικ(x̆κ(t))fι(y̆ι(t)) +
m

∑
ι=1

b̀ικ(x̆κ(t− τ1))fι(y̆ι(t− τ2))

+
m

∑
ι=1

rι(y̆ι(t− τ2))dB(t) + Iκ + γκ ,

Dαy̆ι(t) = −v̀ι(y̆ι(t))y̆ι(t) +
n

∑
κ=1

c̀κι(y̆ι(t))gκ(x̆κ(t)) +
n

∑
κ=1

d̀κι(y̆ι(t− τ2))gκ(x̆κ(t− τ1))

+
n

∑
κ=1

sκ(x̆κ(t− τ1))dB(t) + Jι + ηι.

(5)

Assumption 1. Let the function fι satisfy the Lipschitz condition, namely, there exists a positive
constant f∗ι such that:

| fι(t1)− fι(t2) |≤ f∗ι | t1 − t2 |

where t1, t2 ∈ R. Assume functions gκ , sκ , and rι satisfy the Lipschitz condition equally.

Assumption 2. fι(±T̊) = gκ(±T̊) = 0.

Lemma 3 ([30]). Under Assumptions 1 and 2, we know for any àκι, áκι ∈ co[aκι($)],

| àκι(t2)fκ(t2)− áκι(t1)fκ(t1) |≤ a∗κιf
∗
κ | t2 − t1 |,

where a∗κι = max{| äκι |, | ȧκι |}.

The synchronization error system, by Assumption 1 and Lemma 3, can be expressed as:

Dαex,κ(t) ≤ −(u∗κ + ζκ) | ex,κ(t) | +
m

∑
ι=1

a∗ικ f ∗ι | ey,ι(t) | +
m

∑
ι=1

b∗ικ f ∗ι | ẽy,ι(t) |

+
m

∑
ι=1

r∗ι | ẽy,ι(t) | dB(t),

Dαey,ι(t) ≤ −(v∗ι + ζι) | ey,ι(t) | +
n

∑
κ=1

c∗κιg∗κ | ex,κ(t) | +
n

∑
κ=1

d∗κιg∗κ | ẽx,κ(t) |

+
n

∑
κ=1

s∗κ | ẽx,κ(t) | dB(t),

(6)

where u∗κ = max{| üκ |, | u̇κ |}, a∗ικ = max{| äικ |, | ȧικ |}, b∗ικ = max
{
| b̈ικ |, | ḃικ |

}
, v∗ι =

max{| v̈ι |, | v̇ι |}, c∗κι = max{| c̈κι |, | ċκι |} d∗κι = max{| d̈κι |, | ḋκι |}, and ẽy,ι(t) = ey,ι(t−
τ2), ẽx,κ(t) = ex,κ(t− τ1).

For the sake of convenience, we can express inequality (6) as:{
Dαex(t) ≤ −U | ex(t) | +AF | ey(t) | +BF | ẽy(t) | +R | ẽy(t) | dB(t),
Dαey(t) ≤ −V | ey(t) | +CG | ex(t) | +DG | ẽx(t) | +S | ẽx(t) | dB(t),

(7)

where U = diag{u∗1 + ζ1, u∗2 + ζ2, · · · , u∗n + ζn}, V = diag{v∗1 + ζ1, v∗2 + ζ2, · · · , v∗m +
ζm}, A = (a∗ικ)m×n, B = (b∗ικ)m×n,C = (c∗κι)n×m,D = (d∗κι)n×m, F = max

1≤l≤m
{f∗ι }, G =

max
1≤κ≤n

{g∗κ}, R = max
1≤ι≤m

{r∗ι }, and S = max
1≤κ≤n

{s∗κ}.

Remark 2. To ensure that ‖ ex(t) ‖ + ‖ ey(t) ‖≤ χ(t) ≤ ε, we can simply find an evaluation
function χ1(t) that satisfies max

{
‖ ex(t) ‖, ‖ ey(t) ‖

}
≤ χ1(t) with χ1(t) ≤ ε

2 . This will guar-
antee that ‖ ex(t) ‖ + ‖ ey(t) ‖ remains below ε and it will also ensure that χ(t) is never less than
max

{
‖ ex(t) ‖, ‖ ey(t) ‖

}
.

Lemma 4 ([42]). (Burkholder–Davis–Gundy inequality) For any Φ ∈ Lp
Ft([−τ, 0]; H), then:

E
[

sup
t0≤t≤T

|
∫ t

t0

Φ(u)dω(u) |p
]
≤ cp

[∫ T

t0

E | Φ(u) |2 du
] p

2

,
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where cp =
(

pp+1

2(p−1)p−1

) p
2
(p ≥ 2).

Theorem 2. Suppose Assumption 1, Assumption 2, and the following conditions are satisfied.

(1) If φ > H(t), then:

φ2
{

2 +
(

exp(2p−1φ2p[4(‖ U ‖ + ‖ A ‖ F)2 + 2 ‖ B ‖2 F2 ‖ +R2]pt)− 1
) 1

p
}
≤ ε2

4
.

(2) If φ ≤ H(t), then:

H2(t)

{
2 +

(
exp(2p−1H2p(t)[4(‖ U ‖ + ‖ A ‖ F)2 + 2 ‖ B ‖2 F2 ‖ +R2]pt)− 1

) 1
p
}
≤ ε2

4
.

where t ∈ [0, T], H2(t) =
4t2α−1− 1

p

Γ2(α)(2q(α− 1) + 1)
1
q

, 0 < ε, 1+p
2p < α < 1, and 1

p + 1
q = 1

(p, q ∈ N).
Then, the drive system (1) and the corresponding system (2) are finite-time synchronized.

Proof. By Definition 1, for 0 < α < 1, we can obtain the following integral inequalities:
ex(t) ≤ ex(0) + 1

Γ(α)

∫ t
t0
(t− θ)α−1R | ẽy(θ) | dB(θ) + 1

Γ(α)

∫ t
t0
(t− θ)α−1(−U | ex(θ) |

+AF | ey(θ) | +BF | ẽy(θ) |
)
dθ,

ey(t) ≤ ey(0) + 1
Γ(α)

∫ t
t0
(t− θ)α−1S | ẽx(θ) | dB(θ) + 1

Γ(α)

∫ t
t0
(t− θ)α−1(−V | ey(θ) |

+CG | ex(θ) | +DG | ẽx(θ) |)dθ.

(8)

By taking the norm on both sides of inequality (8) simultaneously, we obtain:

‖ ex(t) ‖≤ ‖ ex(0) ‖ + ‖
1

Γ(α)

∫ t

t0

(t− θ)α−1R | ẽy(θ) | dB(θ) ‖

+ ‖ 1
Γ(α)

∫ t

t0

(t− θ)α−1(−U | ex(θ) | +AF | ey(θ) | +BF | ẽy(θ) |
)
dθ ‖,

‖ ey(t) ‖≤ ‖ ey(0) ‖ + ‖
1

Γ(α)

∫ t

t0

(t− θ)α−1S | ẽx(θ) | dB(θ) ‖

+ ‖ 1
Γ(α)

∫ t

t0

(t− θ)α−1(−V | ey(θ) | +CG | ex(θ) | +DG | ẽx(θ) |
)
dθ ‖ .

Without loss of generality, we assume ‖ ex(t) ‖>‖ ey(t) ‖; by using Lemma 4, we get:

‖ ex(t) ‖2≤(‖ ex(0) ‖ + ‖
1

Γ(α)

∫ t

t0

(t− θ)α−1R× | ẽy(θ) | dB(θ) ‖

+ ‖ 1
Γ(α)

∫ t

t0

(t− θ)α−1(−U | ex(θ) | +AF | ey(θ) | +BF | ẽy(θ) |
)
dθ ‖)2

≤2 ‖ ex(0) ‖2 +2(‖ 1
Γ(α)

∫ t

t0

(t− θ)α−1R | ẽy(θ) | dB(θ) ‖

+ ‖ 1
Γ(α)

∫ t

t0

(t− θ)α−1(−U | ex(θ) | +AF | ey(θ) | +BF | ẽy(θ) |
)
dθ ‖)2

≤2 ‖ ex(0) ‖2 +
16

Γ2(α)

∫ t

t0

(t− θ)2(α−1)R2 ‖ ẽx(θ) ‖2 dθ

+
8

Γ2(α)

∫ t

t0

(t− θ)2(α−1)[(‖ U ‖ + ‖ A ‖ F)2 ‖ ex(θ) ‖2 + ‖ B ‖2 F2 ‖ ẽx(θ) ‖2]dθ

≤2 ‖ ex(0) ‖2 +
8

Γ2(α)

∫ t

t0

(t− θ)2(α−1)[(‖ U ‖ + ‖ A ‖ F)2 ‖ ex(θ) ‖2

+ (‖ B ‖2 F2 + 2R2) ‖ ẽx(θ) ‖2]dθ.
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Let ω(t) =‖ ex(t) ‖, σ(t) =‖ ex(0) ‖= φ, υ(t) = 8, a(t) = (‖ U ‖ + ‖ A ‖ F)2 and
b(t) =‖ B ‖2 F2 + 2R2. The initial value t0 = 0 and Ω = τ. It is easy to see that all of these
functions are non-negative and continuous. Additionally, σ(t) and υ(t) are non-decreasing
on [t0, T] and φ(t) is non-decreasing on [t0 −Ω, t0] and σ(t0) = φ(t0).

By using Theorem 1, we can obtain the following results:

(1) If φ > H(t), then:

‖ ex(t) ‖2≤φ2
{

2 +
(

exp(2p−1φ2p[2(‖ U ‖ + ‖ A ‖ F)2+ ‖ B ‖2 F2 + 2R2]pt)− 1
) 1

p
}

.

(2) If φ ≤ H(t), then:

‖ ex(t) ‖2≤H2(t)

{
2 +

(
exp(2p−1H2p(t)[2(‖ U ‖ + ‖ A ‖ F)2+ ‖ B ‖2 F2 + 2R2]pt)− 1

) 1
p
}

,

where H2(t) =
4t2α−1− 1

p

Γ2(α)(2q(α− 1) + 1)
1
q

.

Therefore, based on the hypothesis conditions, it can be concluded that systems (1)
and (2) can achieve synchronization.

When ‖ ex(t) ‖= max
{
‖ ex(t) ‖, ‖ ey(t) ‖

}
, Remark 2 indicates that the evaluation

function χ1(t) can be determined as follows:

(1) If φ > H(t), then:

χ2
1(t) =φ2

{
2 +

(
exp(2p−1φ2p[2(‖ U ‖ + ‖ A ‖ F)2+ ‖ B ‖2 F2 + 2R2]pt)− 1

) 1
p
}

.

(2) If φ ≤ H(t), then:

χ2
1(t) =H2(t)

{
2 +

(
exp(2p−1H2p(t)[2(‖ U ‖ + ‖ A ‖ F)2+ ‖ B ‖2 F2 + 2R2]pt)− 1

) 1
p
}

.

In Section 4, we will present numerical examples to provide a more visual demonstra-
tion of the finite-time synchronization achieved between systems (1) and (2).

4. Numerical Examples

Compared to conventional neural networks, neural networks incorporating stochas-
ticity possess greater adaptability and robustness in achieving finite-time synchroniza-
tion [43,44]. This is because stochasticity can increase the complexity of the system, en-
dowing it with enhanced fault-tolerance and adaptability, thus facilitating more efficient
adaptation to diverse environments and application scenarios. Moreover, neural networks
with stochasticity exhibit advantageous characteristics in handling nonlinear and com-
plex problems. In practical applications, the parameters and states of the neural network
systems are often uncertain, owing to the presence of uncertainty. Stochasticity can more
effectively model such uncertainty and bolster the reliability of the neural network systems,
thereby elevating its performance in practical applications. Therefore, investigating neural
networks with stochasticity may contribute to enhancing the application capabilities and
performance of neural networks.

We illustrate the practical application of Theorem 2 in achieving finite-time synchro-
nization between the systems (1) and (2) through a numerical example. By showing
this example, we can validate the effectiveness of the proposed synchronization method.
Specifically, the example involves simulating the behavior of the systems with varying
initial conditions and analyzing the resulting trajectories. The insights gained from this
example are used to serve as evidence to show the practical relevance of the finite-time
synchronization approach presented in this paper.
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Example 1. Consider the fractional-order stochastic MBAMNNs with time delay:

Dαxκ(t) = −uκ(xκ(t))xκ(t) +
m

∑
ι=1

aικ(xκ(t))fι(yι(t)) +
m

∑
ι=1

bικ(xκ(t− τ1))fι(yι(t− τ2))

+
m

∑
ι=1

rj(yι(t− τ2)dB(t) + Iκ ,

Dαyι(t) = −vι(yι(t))yι(t) +
n

∑
κ=1

cκι(yι(t))gκ(xκ(t)) +
n

∑
κ=1

dκι(yι(t− τ2))gκ(xκ(t− τ1))

+
n

∑
κ=1

sκ(xκ(t− τ1))dB(t) + Jι.

where:

u1(x1) =

{
0.03, | x1 |≤ 3/4,

− 0.03, | x1 |> 3/4,
v1(y1) =

{
0.05, | y1 |≤ 3/4,

− 0.05, | y1 |> 3/4,

a11(x1) =

{
0.1, | x1 |≤ 3/4,

− 0.1, | x1 |> 3/4,
b11(x̃1) =

{
0.2, | x1 |≤ 3/4,

− 0.2, | x1 |> 3/4,

c11(y1) =

{
0.2, | y1 |≤ 3/4,

− 0.2, | y1 |> 3/4,
d11(ỹ1) =

{
0.3, | y1 |≤ 3/4,

− 0.3, | y1 |> 3/4.

Let n = m = 1, τ1 = τ2 = 0.1, gκ(xκ) = sinh(| xκ | − 3
4 ), fι(yι) = sinh(| yι |

− 3
4 ), rι(yι) =

1
10 sinh(| rι | − 3

4 ), sκ(xκ) =
1

10 sinh(| sκ | − 3
4 ), I1 = J1 = 1, x(0) = 0.3, y(0) =

0.5. Let ζκ = −0.01, ζι = −0.02, x̆(0) = 0.2 and y̆(0) = 0.6 in the corresponding system (2).

Let p = 2, q = 2, α = 0.8 >
1 + p

2p
, ε = 4 such that

ε

2
= 2. It is easy to calculate

that ϕ = 0.1, ϕ̆ = 0.1, ‖ U ‖= 0.02, ‖ V ‖= 0.03, F = G = 1, S = R = 1
10 , ‖ A ‖=

0.1, ‖ B ‖= 0.2, ‖ C ‖= 0.2, and ‖ D ‖= 0.3. The norms of the synchronization error ‖
ex(t) ‖ and ‖ ey(t) ‖, as well as the state trajectories of their squared values, are illustrated in
Figures 1 and 2 for systems (1) and (2). The state trajectories of ‖ ex(t) ‖ + ‖ ey(t) ‖ are depicted
in Figure 3. Finally, based on Figure 4 and Theorem 2, we can deduce the finite-time synchronization
time T ≈ 0.5062.
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Figure 1. The errors ‖ ex(t) ‖ and ‖ ey(t) ‖ are computed for α = 0.8.
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Figure 2. The errors ‖ ex(t) ‖ + ‖ ey(t) ‖ are computed for α = 0.8.
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Figure 3. The errors ‖ ex(t) ‖2 and ‖ ey(t) ‖2 are computed for α = 0.8.
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Figure 4. The evaluation function χ1(t) with α = 0.8.

Example 2. Consider the fractional-order stochastic MBAMNNs with time delay:
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

Dαxκ(t) = −uκ(xκ(t))xκ(t) +
m

∑
ι=1

aικ(xκ(t))fι(yι(t)) +
m

∑
ι=1

bικ(xκ(t− τ1))fι(yι(t− τ2))

+
m

∑
ι=1

rj(yι(t− τ2)dB(t) + Iκ ,

Dαyι(t) = −vι(yι(t))yι(t) +
n

∑
κ=1

cκι(yι(t))gκ(xκ(t)) +
n

∑
κ=1

dκι(yι(t− τ2))gκ(xκ(t− τ1))

+
n

∑
κ=1

sκ(xκ(t− τ1))dB(t) + Jι.

where:

u1(x1) =

{
0.6, | x1 |≤ 7/10,

− 0.6, | x1 |> 7/10,
u2(x2) =

{
0.4, | x2 |≤ 7/10,

− 0.4, | x2 |> 7/10,

v1(y1) =

{
0.2, | y1 |≤ 7/10,

− 0.2, | y1 |> 7/10,
v2(y2) =

{
0.3, | y2 |≤ 7/10,

− 0.3, | y2 |> 7/10,

a11(x1) =

{
0.1, | x1 |≤ 7/10,

− 0.1, | x1 |> 7/10,
a12(x2) =

{
0.1, | x2 |≤ 7/10,

− 0.1, | x2 |> 7/10,

a21(x1) =

{
0.2, | x1 |≤ 7/10,

− 0.2, | x1 |> 7/10,
a22(x2) =

{
0.2, | x2 |≤ 7/10,

− 0.2, | x2 |> 7/10,

b11(x̃1) =

{
0.2, | x1 |≤ 7/10,

− 0.2, | x1 |> 7/10,
b12(x̃2) =

{
0.2, | x2 |≤ 7/10,

− 0.2, | x2 |> 7/10,

b21(x̃1) =

{
0.3, | x1 |≤ 7/10,

− 0.3, | x1 |> 7/10,
b22(x̃2) =

{
0.3, | x2 |≤ 7/10,

− 0.3, | x2 |> 7/10,

c11(y1) =

{
0.2, | y1 |≤ 7/10,

− 0.2, | y1 |> 7/10,
c12(y2) =

{
0.2, | y2 |≤ 7/10,

− 0.2, | y2 |> 7/10,

c21(y1) =

{
0.1, | y1 |≤ 7/10,

− 0.1, | y1 |> 7/10,
c22(y2) =

{
0.2, | y2 |≤ 7/10,

− 0.2, | y2 |> 7/10,

d11(ỹ1) =

{
0.3, | y1 |≤ 7/10,

− 0.3, | y1 |> 7/10,
d12(ỹ2) =

{
0.3, | y2 |≤ 7/10,

− 0.3, | y2 |> 7/10,

d21(ỹ1) =

{
0.2, | y1 |≤ 7/10,

− 0.2, | y1 |> 7/10,
d22(ỹ2) =

{
0.3, | y2 |≤ 7/10,

− 0.3, | y2 |> 7/10.

Let n = m = 2, τ1 = τ2 = 0.2, gκ(xκ) = tanh(| xκ | − 7
10 ), fι(yι) = tanh(| yι |

− 7
10 ), rι(yι) = 1

10 tanh(| rι | − 7
10 ), sκ(xκ) = 1

10 tanh(| sκ | − 7
10 ), I1 = I2 = J1 = J2 =

2, x(0) = (0.1, 0.2)T , y(0) = (0.1, 0.2)T .
Then, let ζκ = (−0.5,−0.5)T , ζι = (−0.1,−0.2)T , x̆(0) = (0.2, 0.3)T and y̆(0) = (0.2, 0.3)T

in the corresponding system (2).

Let p = 2, q = 2, α = 0.8 >
1 + p

2p
, ε = 4 such that

ε

2
= 2. It is easy to calculate that

ϕ = 0.2, ϕ̆ = 0.2, ‖ U ‖= 0.1, ‖ V ‖= 0.1, F = G = 1, S = R = 1
10 , ‖ A ‖= 0.3, ‖ B ‖= 0.5, ‖

C ‖= 0.4, and ‖ D ‖= 0.6. The trajectories of ‖ ex,1(t) ‖, ‖ ey,1(t) ‖, ‖ ex,2(t) ‖, and ‖ ey,2(t) ‖
are shown in Figures 5 and 6. Figures 7 and 8 depict the time evolution of synchronization errors
‖ ex(t) ‖ and ‖ ey(t) ‖, as well as the squares of their magnitudes. Finally, based on Figure 9 and
Theorem 2, we can deduce the finite-time synchronization time T ≈ 0.3177.
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Figure 5. The errors ex,κ(t) and ey,ι(t) are computed for κ, ι = 1 and with α = 0.8.
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Figure 6. The errors ex,κ(t) and ey,ι(t) are computed for κ, ι = 2 and with α = 0.8.
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Figure 7. Both systems (1) and (2) have errors that can be quantified by the magnitudes of ‖ ex(t) ‖
and ‖ ey(t) ‖.
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Figure 8. The square of the errors in both systems (1) and (2) can be measured by ‖ ex(t) ‖2 and
‖ ey(t) ‖2.
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Figure 9. The evaluation function χ1(t) with α = 0.8.

5. Conclusions

We have enhanced the fractional-order Gronwall inequality for studying finite-time
synchronization in fractional-order stochastic MBAMNNs systems, based on the work orig-
inally proposed in [39]. Then, we presented illustrative examples to show the effectiveness
of our proposed approach. However, it should be noted that we have only analyzed the
finite-time synchronization of continuous neural network systems, and have not provided
a detailed description of discontinuous neural networks with impulses. Hence, we will
investigate the dynamic behaviors of fractional-order neural networks with impulses in
the future.
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Appendix A. Proof of Lemma 2

Proof. Define a function d(t) by:

d(t) =
∫ t

t0

[a(θ)ω2(θ) + b(θ)ω2(θ −Ω)]pdθ, t ∈ [t0, T].

As shown in inequality (3), we get:

ω2(t) ≤ 2σ2(t) + υ2(t)d
1
p (t), t ∈ [t0, T]. (A1)

Subsequently, we proceed with a segmented analysis of the variable t.

(I) For t ∈ [t0, t0 + Ω], d(t0) = 0, then:

d
′
(t) = [a(t)ω2(t) + b(t)ω2(t−Ω)]p

≤ {a(t)[2σ2(t) + υ2(t)d
1
p (t)] + b(t)φ2(t−Ω)}p

≤ 2p−1
{
[2a(t)σ2(t) + b(t)φ2(t−Ω)]p + ap(t)υ2p(t)d(t)

}
= 2p−1[2a(t)σ2(t) + b(t)φ2(t−Ω)]p + 2p−1ap(t)υ2p(t)d(t).

Since d(t0) = 0, from Lemma 1 it follows that:

d(t) ≤
∫ t

t0

2p−1[2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)]p exp(
∫ t

θ
2p−1ap(s)υ2p(s)ds)dθ. (A2)

Substituting inequality (A2) into inequality (A1), we can obtain:

ω2(t) ≤ υ2(t)

{∫ t

t0

2p−1[2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)]p exp(
∫ t

θ
2p−1ap(s)υ2p(s)ds)dθ

} 1
p

+ 2σ2(t).

As we know, σ(t), υ(t) are nondecreasing on [t0, T] and φ(t) is nondecreasing on
[t0 −Ω, t0] and σ(t0) = φ(t0). Hence, it can be observed that φ(t−Ω) ≤ σ(t) on the
[t0, t0 + Ω]. Now, we discuss the following cases.

(1) If σ(t) > υ(t), then:

ω2(t) ≤ υ2(t)

{∫ t

t0

2p−1[2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)]p exp(
∫ t

θ
2p−1ap(s)υ2p(s)ds)dθ

} 1
p

+ 2σ2(t)

≤ σ2(t)

{∫ t

t0

2p−1σ2p(t)[2a(θ) + b(θ)]p exp(
∫ t

θ
2p−1[2a(s) + b(s)]pσ2p(t)ds)dθ

} 1
p

+ 2σ2(t)

≤ σ2(t)

{
2 + [exp(

∫ t

t0

2p−1σ2p(t)[b(θ) + 2a(θ)]pdθ)− 1]
} 1

p
.

(2) If σ(t) ≤ υ(t), similar to case (1), we obtain:

ω2(t) ≤υ2(t)

{
2 + [exp(

∫ t

t0

2p−1υ2p(t)[b(θ) + 2a(θ)]pdθ)− 1]
} 1

p
.

(II) For t ∈ [t0 + Ω, T], we get:
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d′(t) = [a(t)ω2(t) + b(t)ω2(t−Ω)]p

≤
{
a(t)[2σ2(t) + d

1
p (t)υ2(t)] + b(t)[2σ2(t−Ω) + d

1
p (t−Ω)σ2(t−Ω)]

}p

≤
{
[υ2(t)a(t) + σ2(t−Ω)b(t)]d

1
p (t) + 2σ2(t)a(t) + 2σ2(t−Ω)b(t)

}p

≤ 2p−1[υ2(t)a(t) + σ2(t−Ω)b(t)]pd(t) + 2p[σ2(t)a(t) + σ2(t−Ω)b(t)]p.

(A3)

From inequality (A2), we arrive at:

d(t0 + Ω) ≤
∫ t0+Ω

t0

2p−1[2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)]p exp(
∫ t0+Ω

θ
2p−1ap(s)υ2p(s)ds)dθ. (A4)

Thus, by utilizing inequalities (A3) and (A4), along with Lemma 1, we obtain:

d(t) ≤d(t0 + Ω) exp
(∫ t

t0+Ω
2p−1

[
a(θ)υ2(θ) + b(θ)σ2(θ −Ω)

]p

dθ

)
+
∫ t

t0+Ω
2p
[
a(θ)σ2(θ) + b(θ)σ2(θ −Ω)

]p

× exp
(∫ t

θ
2p−1

[
a(s)υ2(s) + b(s)υ2(s−Ω)

]p

ds
)

dθ.

≤
{∫ t0+Ω

t0

2p−1
[

2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)

]p

× exp
(∫ t0+Ω

θ
2p−1ap(s)υ2p(s)ds

)
dθ

}
× exp

(∫ t

t0+Ω
2p−1

[
a(θ)υ2(θ) + b(θ)σ2(θ −Ω)

]p

dθ

)
+
∫ t

t0+Ω
2p
[
a(θ)σ2(θ) + b(θ)σ2(θ −Ω)

]p

× exp
(∫ t

θ
2p−1

[
a(s)υ2(s) + b(s)υ2(s−Ω)

]p

ds
)

dθ.

Substituting the above inequality into (A1), we have:

ω2(t) ≤2σ2(t) + υ2(t)

{∫ t0+Ω

t0

2p−1
[

2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)

]p

× exp
(∫ t0+Ω

θ
2p−1ap(s)υ2p(s)ds

)
dθ

× exp
(∫ t

t0+Ω
2p−1

[
a(θ)υ2(θ) + b(θ)σ2(θ −Ω)

]p

dθ

)
+
∫ t

t0+Ω
2p
[
a(θ)σ2(θ) + b(θ)σ2(θ −Ω)

]p

× exp
(∫ t

θ
2p−1

[
a(s)υ2(s) + b(s)υ2(s−Ω)

]p

ds
)

dθ

} 1
p

.

Similarly, we notice that σ(t), υ(t) are nondecreasing on [t0, T] and φ(t) is nondecreas-
ing on t ∈ [t0 −Ω, t0] and σ(t0) = φ(t0). Hence, it can be observed that φ(t−Ω) ≤ σ(t) on
the [t0, t0 + Ω]. We discuss the following two cases.

(1) If σ(t) > υ(t), then:
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ω2(t) ≤ υ2(t)

{∫ t0+Ω

t0

2p−1[2a(θ)σ2(θ) + b(θ)φ2(θ −Ω)]p exp
(∫ t0+Ω

θ
2p−1ap(s)υ2p(s)ds

)
dθ

× exp
(∫ t

t0+Ω
2p−1[a(θ)υ2(θ) + b(θ)σ2(θ −Ω)]pdθ

)
+
∫ t

t0+Ω
2p[a(θ)σ2(θ) + b(θ)σ2(θ −Ω)]p

× exp
(∫ t

θ
2p−1[a(s)υ2(s) + b(s)υ2(s−Ω)]pds

)
dθ

} 1
p
+ 2σ2(t)

≤ 2σ2(t) + σ2(t)

{
exp

[(∫ t0+Ω

t0

2p−1σ2p(t)[2b(θ) + a(θ)]pdθ

)
− 1
]

× exp
(∫ t

t0+Ω
2p−1σ2p(t)[b(θ) + a(θ)]pdθ

)
+ exp

(∫ t

t0+Ω
2p−1σ2p(t)[b(θ) + a(θ)]pdθ

)
− 1
} 1

p

≤ σ2(t)

{
exp

(∫ t

t0

2p−1σ2p(t)[b(θ) + 2a(θ)]pdθ

)
− 1
} 1

p
+ 2σ2(t).

(2) If σ(t) ≤ υ(t), then:

ω2(t) ≤υ2(t)

{
2 +

[
exp

(∫ t

t0

2p−1υ2p(t)[b(θ) + 2a(θ)]pdθ

)
− 1
]} 1

p
.

Based on the above analysis, we get the following results:

(1) If σ(t) > υ(t), then:

ω2(t) ≤σ2(t)

{
2 +

[
exp
(∫ t

t0

2p−1σ2p(t)[2a(θ) + b(θ)]pdθ

)
− 1
]} 1

p
, t ∈ [t0, T].

(2) If σ(t) ≤ υ(t), then:

ω2(t) ≤υ2(t)

{
2 +

[
exp
(∫ t

t0

2p−1υ2p(t)[2a(θ) + b(θ)]pdθ

)
− 1
]} 1

p
, t ∈ [t0, T].
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