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Abstract: Empirical studies suggest that asset price fluctuations exhibit “long memory”, “volatility
smile”, “volatility clustering” and asset prices present “jump”. To fit the above empirical character-
istics of the market, this paper proposes a fractional stochastic volatility jump-diffusion model by
combining two fractional stochastic volatilities with mixed-exponential jumps. The characteristic
function of the log-return is expressed in terms of the solution of two-dimensional fractional Riccati
equations of which closed-form solution does not exist. To obtain the explicit characteristic function,
we approximate the pricing model by a semimartingale and convert fractional Riccati equations
into a classic PDE. By the multi-dimensional Feynman-Kac theorem and the affine structure of the
approximate model, we obtain the solution of the PDE with which the explicit characteristic function
and its cumulants are derived. Based on the derived characteristic function and Fourier cosine series
expansion, we obtain approximate European options prices. By differential evolution algorithm, we
calibrate our approximate model and its two nested models to S&P 500 index options and obtain
optimal parameter estimates of these models. Numerical results demonstrate the pricing method is
fast and accurate. Empirical results demonstrate our approximate model fits the market best among
the three models.

Keywords: fractional stochastic volatility; fractional Riccati equation; fractional Brownian motion;
jump; option pricing

1. Introduction

Many studies [1–5] suggest that asset price fluctuations exhibit “long memory”. In
addition, recent empirical studies [6–9] show that the roughness of the volatility process is
observed. Fractional stochastic volatility models driven by fractional Brownian motions
with a Hurst index H (0 < H < 1/2, H 6= 1/2) have flourished in the financial field,
which can fit “long memory” (H > 1/2) and “the roughness of volatility” (H < 1/2) well.
However, almost all these works ignore jumps in asset prices. In fact, in a setting driven
by standard Brownian motions, the studies in [10–12] by real data suggest the real asset
price is not a continuous process but jumps occasionally. Moreover, extensive empirical
studies [13–15] show that jumps and stochastic volatilities exist in the asset price. On the
one hand, compared to the other jump distribution, the mixed-exponential jump [12] is
more general in approximating asset return distributions; on the other hand, the double
Heston model [16] exhibits good performance in fitting the long-term “volatility smile”
and “volatility clustering”. Therefore, this paper considers a fractional adaptation of the
double Heston mixed-exponential jump-diffusion model by replacing standard Brownian
motions with fractional Brownian motions in two volatility processes.

Due to the introduction of fractional Brownian motions, the model is no longer Marko-
vian, and the PDE discretization schemes are not easily applied to the fractional setting [17].
Monte Carlo simulation is usually used. By discretizing the stochastic integral represen-
tation of the process, Bennedsen et al. [18] developed a hybrid scheme for the fractional
Bergomi model. Fukasawa and Hirano [19] refined the hybrid scheme in reference [20] by
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reducing and reusing random numbers. Mehrdoust et al. [20] developed an Euler scheme
for the fractional Heston model in which asset price and volatility process are both driven
by mixed fractional Brownian motions. Chronopoulou and Spiliopoulos [21] proposed a
sequential Monte Carlo simulation for fractional stochastic volatility models. More Monte
Carlo methods for fractional stochastic volatility models can be found in [22]. However, an
enormous amount of simulation time makes the above methods time-consuming and are
not suitable for practical use.

Given the characteristic function, the Fourier transform method is an effective method
for pricing European-type options [23,24]. Carr and Madan [25] first applied fast Fourier
transform algorithms to evaluate call options. Jackson et al. [26] proposed a Fourier space
time-stepping method for pricing options with jump risk by representing the pricing
problem as the solution of a PIDE. Lord et al. [27] introduced a novel convolution method
for pricing options by taking the probability density as a function of the difference between
two variables. Fang and Oosterlee [28] proposed an efficient Fourier-cosine series expansion
for a class of stochastic volatility (jump-diffusion) model. More Fourier transform methods
can be found in [29]. For the affine model within the semimartingale framework [30,31], the
characteristic function of the log-return can be obtained by solving a Riccati equation. For a
fractional stochastic volatility model with affine structure [32], the characteristic function is
still associated with the solution of a Riccati equation, but the Riccati equation is replaced
by a fractional Riccati equation [33].

Unlike the standard Riccati equation, there is no closed-form solution for the fractional
Riccati equation. The Adams discretization scheme [34–36] is the classical numerical
method to deal with fractional ODEs. However, the high complexity of the scheme makes
the computation of option prices not feasible for most practitioners [37]. Furthermore, some
analytical approximation methods [38–40] are employed to approximate the solution of
the fractional Riccati equation. For example, Cang et al. [38] approximated the solution of
the fractional Riccati equation by the homotopy analysis method. Based on the Laplace-
Adomian-decomposition method, Jeng and Kilicman [40] provided a Padé approximation
method to solve the fractional Riccati equation. Callegaro et al. [41] proposed a hybrid
scheme to solve the fractional Riccati equation by combining power series expansion with
Richardson Romberg extrapolation. Due to the fact that the obtained solution is usually a
semi-analytical expression, analytical approximation methods are more efficient compared
to the Adams discretization scheme.

However, by introducing jumps and two fractional Brownian motions into the double
Heston model, the aforementioned Riccati equation will become more complex, and the
model distributions may no longer be stable [42]. Recently, Wang and Guo [43] evaluated
variance and volatility swaps under a similar model. Under the approximative fractional
Brownian motion framework, they obtained pricing formulas of variance and volatility
swaps by the forward characteristic function which was derived by the property of condi-
tional expectation and governing PIDE. Different from the technology in [43], we evaluate
options based on Fourier-cosine series expansion. We first approximate the pricing model
by a semimartingale and then convert corresponding fractional Riccati equations into a
classic PDE with which we obtain the characteristic function of the log-return.

The main goal of this paper is to provide an efficient method for solving the frac-
tional Riccati equation in the characteristic function of the fractional stochastic volatility
jump-diffusion model. Since long-memory models are capable of capturing long-range
dependence in time series data, which is helpful in future predictions [44,45], this work
focuses on the case with H > 1/2. The main contributions of this paper are threefold.
First, this paper proposes a fractional stochastic volatility jump-diffusion model with two
fractional stochastic volatilities and mixed-exponential jumps in asset prices. Secondly, this
paper provides a method for solving the fractional Riccati equation in the characteristic
function of the log-return. Thirdly, this paper provides the calibration of the pricing model.
The rest of the paper is organized as follows. Section 2 presents the pricing model and
related fractional Riccati equations. Section 3 provides the model approximation and the
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derivation of the characteristic function. Section 4 dilates the pricing method for European
options. Section 5 presents some numerical experiments. Section 6 provides the calibration
of the pricing model and some empirical experiments. Section 7 concludes.

2. The Pricing Model and Fractional Riccati Equations

Assume that
{

Ω, F, {Ft}0≤t≤T , P
}

is a complete probability space, where the filtration
{Ft}0≤t≤T is continuous on the right, F0 contains all P-null sets, and P is a risk-neutral
probability measure. Assume that the asset price St follows the stochastic partial differential
system 

dSt
St−

= (r− λδ)dt + ∑2
j=1
√

VjtdWS
jt + d

(
∑Nt

k=1 (ζk − 1)
)

,

dV1t = k1(θ1 −V1t)dt + σ1
√

V1tdBH1
1t ,

dV2t = k2(θ2 −V2t)dt + σ2
√

V2tdBH2
2t ,

(1)

where k j, θj, σj (j = 1, 2) denote the mean reversion speed, mean reversion level, and
volatility of variance processes Vjt(j = 1, 2), respectively. Assume 2k jθj ≥ σ2

j (j = 1, 2)

to guarantee processes Vjt(j = 1, 2) positive. For j = 1, 2, WS
jt are standard Brownian

motions and B
Hj
jt are fractional Brownian motions with Hurst parameters Hj ∈ (1/2, 1).

The fractional Brownian motions B
Hj
jt (j = 1, 2) are both centered Gaussian processes

with the covariance function E
(

B
Hj
jt B

Hj
js

)
= 1

2

(
t2Hj + s2Hj − (t− s)2Hj

)
(j = 1, 2). Suppose

S0 = S, V10 = V1,V20 = V2.
Nt is a Poisson process with constant intensity λ > 0. Let δ = E[ζ − 1], where

ζ = (ζk)k≥1 is a sequence of i.i.d. nonnegative random variables, such that Y = ln ζ has a
mixed-exponential distribution with the following probability density

fY(y) = pu

m

∑
k=1

pkηke−ηky Iy≥0 + qd

n

∑
l=1

ql θ̂leθ̂ly Iy<0, (2)

where ηk > 1 (k = 1, . . . , m), θ̂l > 0 (l = 1, . . . , n), pu ≥ 0, qd = 1− pu ≥ 0, ∑m
k=1 pk = 1,

∑n
l=1 ql = 1, pk, ql ∈ (−∞, ∞). To make fY(y) be a probability density, a necessary

condition is p1 > 0, q1 > 0,∑m
k=1 pkηk ≥ 0,∑n

l=1 ql θ̂l ≥ 0, and a sufficient condition is
∑m

k=1 pkηk ≥ 0,∑n
l=1 ql θ̂l ≥ 0. By Formula (2), one has

δ = pu

m

∑
k=1

pkηk
1

ηk − 1
+ qd

n

∑
l=1

ql θ̂l
1

θ̂l + 1
− 1. (3)

For j = 1, 2, suppose the process WS
jt and B

Hj
jt are independent of ζ and Nt, while WS

jt

and B
Hj
jt are correlated such that Cov

(
dWS

1t, dBH1
1t

)
= ρ1dt, Cov

(
dWS

2t, dBH2
2t

)
= ρ2dt.

According to Mandelbrot and Van Ness [46], B
Hj
jt (j = 1, 2) can be decomposed as

follows

B
Hj
jt =

1
Γ(H + 1/2)

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dWv

js +
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWv

js, j = 1, 2, (4)

where Γ(·) is the gamma function, Wv
js are both standard Brownian motions. Since the

processes ∫ 0

−∞
(t− s)H−1/2dWv

js, j = 1, 2 (5)

are key for fitting long memory. We introduce these processes in the model (1) and have
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
dSt
St−

= (r− λδ)dt + ∑2
j=1
√

VjtdWS
jt + d

(
∑Nt

k=1 (ζk − 1)
)

,

dV1t =
1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2k1(θ1 −V1s)ds + 1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2σ1

√
V1sdWv

1s,

dV2t =
1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2k2(θ2 −V2s)ds + 1

Γ(H+1/2)

∫ t
0 (t− s)H−1/2σ2

√
V2sdWv

2s.

(6)

Let x(t) = ln(St/S). Since the process WS
jt (j = 1, 2) and B

Hj
jt (j = 1, 2) are indepen-

dent of ζ and Nt, based on the affine structure of the model (6), the characteristic function
φ(u, τ) can be written as

φ(u, τ) = E

[
exp

(
−iuλτδ + iu

Nτ

∑
k=1

Yk

)]
exp

[
g1(u, τ) + g2(u, τ) +

2

∑
j=1

hj(u, τ)Vj

]
, (7)

where i denotes the imaginary unit, hj(u, τ) = 1
Γ(H+1/2)

∫ τ
0 (τ − s)H−1/2lj(u, s)ds(j = 1, 2),

gj(u, τ) = k jθj
∫ τ

0 hj(u, s)ds (j = 1, 2),lj(u, τ) (j = 1, 2) are the solutions of the following
two-dimensional fractional Riccati equations

DH+1/2l1(u, τ) = 1/2(−u2 − iu) + (iuρ1σ1 − k1)l1(u, τ) + 1/2σ1
2l12(u, τ),

DH+1/2l2(u, τ) = 1/2(−u2 − iu) + (iuρ2σ2 − k2)l2(u, τ) + 1/2σ2
2l22(u, τ),

I1/2−H l1(u, 0) = I1/2−H l2(u, 0) = 0,
(8)

where

DH+1/2lj(u, τ) =
1

Γ(1/2− H)

d
dτ

∫ τ

0
(τ − s)−H−1/2lj(u, s)ds, j = 1, 2,

I1/2−H lj(u, τ) =
1

Γ(1/2− H)

∫ τ

0
(τ − s)−H−1/2lj(u, s)ds, j = 1, 2.

3. Model Approximation and the Derivation of the Characteristic Function

By introducing two perturbed parameters ε1, ε2 (0 < ε1, ε2 ≤ 1), B
Hj
jt (j = 1, 2) can be

approximated as

B
ε j ,Hj
jt =

∫ t

0
(t− s + ε j)

Hj−1/2dWv
js, j = 1, 2. (9)

According to Thao [47], B
ε j ,Hj
jt (j = 1, 2) is a semimartingale and B

ε j ,Hj
jt → B

Hj
jt (j = 1, 2)

in L2(Ω) as ε1 → 0 , ε2 → 0. Differentiate Formula (9), one has

dB
ε j ,Hj
jt = (Hj − 1/2)ψjtdt + ε

Hj−1/2
j dW̃v

jt, j = 1, 2, (10)

where

ψjt =
∫ t

0
(t− s + ε j)

Hj−3/2d
_
W

v

js, j = 1, 2. (11)

Substituting Formula (10) into model (1) and rearranging the terms, model (6) can be
approximated as follows

dSt
ε1,ε2

St−ε1,ε2 = (r− λδ)dt + ∑2
j=1

√
V

ε j
jt dWS

jt + d
(

∑Nt
k=1 (ζk − 1)

)
,

dVε1
1t =

[
(H1 − 1/2)ψ1tσ1

√
Vε1

1t + k1
(
θ1 −Vε1

1t
)]

dt + εH1−1/2
1 σ1

√
Vε1

1t dW̃v
1t,

dVε2
2t =

[
(H2 − 1/2)ψ2tσ2

√
Vε2

2t + k2
(
θ2 −Vε2

2t
)]

dt + εH2−1/2
2 σ2

√
Vε2

2t dW̃v
2t.

(12)

For convenience, we call model (12) as the FDHestonMEM. Different from the model
(6), the FDHestonMEM is a semimartingale, and Itô calculus can be applied to the stochastic
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differential equation in the FDHestonMEM, and thus the corresponding Riccati equations
have the closed-form solution.

Remark. The model contains most existing models as special cases. For example, (1) the
double Heston mixed-exponential jump-diffusion model driven by standard Brownian
motions (DHestonMEM) by setting H1 = H2 = 1/2; (2) the double Heston model (DHeston)
by setting H1 = H2 = 1/2, λ = 0.

Theorem 1. The characteristic function of x(t) is given by

φ(u, τ) = exp

(
iu ln(S/K) + A(u, τ) +

2

∑
j=1

Bj(u, τ)Vj

)
, (13)

where forj = 1, 2,

A(u, τ) =iurτ + λτΛ +
2

∑
j=1

k jθj

∆2
j

[
−(Dj + γj)τ − 2 ln

1− Gje
−Djτ

1− Gj

]
,

Bj(u, τ) =
2

∑
j=1

1
∆2

j

[
−(Dj + γj)

(
1− e−Djτ

1− Gje
−Djτ

)]
,

Dj =
√

γ2
j − 4ajbj, γj = iuρj∆j − k j,

aj =
1
2

∆2
j , bj = −

1
2

u(i + u), τ = T − t,∆j = ε
Hj−1/2
j σj,

Λ = pu

m

∑
k=1

pkηk
1

ηk − iu
+ qd

n

∑
l=1

ql θ̂l
1

θ̂l + iu
− 1− iuδ.

Proof of Theorem 1. By Formulas (2) and (3), direct calculation yields

E

[
exp

(
−iuλτδ + iu

Nτ

∑
j=1

Yj

)]
= λτ

(
pu

m

∑
k=1

pkηk
1

ηk − iu
+ qd

n

∑
l=1

ql θ̂l
1

θ̂l + iu
− 1− iuδ

)
, (14)

Let φ̃(·) be the characteristic function of the continuous part of the log-return in the
FDHestonMEM. Applying the multi-dimensional Feynman-Kac theorem, we have the
following PDE

0 = −φ̃τ +
[
r− 1

2 (V1 + V2)
]
φ̃x +

1
2 (V1 + V2)φ̃xx

+∑2
j=1

{[
k j(θj −Vj) + (Hj − 1

2 )σjψj
√

Vj

]
φ̃Vj +

1
2 σ2

j ε j
2Hj−1Vjφ̃VjVj ++ρjσjVjε j

2Hj−1φ̃xVj

}
,

φ̃(u, 0) = eiu ln(S/K).

(15)

According to the affine structure of the FDHestonMEM, we have

φ̃(u, τ) = exp

(
iu ln(S/K) + Ã(u, τ) +

2

∑
j=1

Bj(u, τ)Vj

)
(16)

with initial conditions Ã(u, 0) = 0, Bj(u, 0) = 0 (j = 1, 2).
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Substituting Formula (16) into PDE (15) yields

0 = −Ãτ − B1τV1 − B2τV2 +
[
r− 1

2 (V1 + V2)
]
iu− 1

2 (V1 + V2)u2

+
2
∑

j=1

{[
k j(θj −Vj) + (Hj − 1

2 )σjψj
√

Vj

]
Bj +

1
2 σ2

j ε j
2Hj−1VjBj

2 + ρjσjVjε j
Hj−1/2Bjiu

}
.

Since ψj = ψjt (j = 1, 2) is a martingale, one has ψj0= E(ψjt) = 0 (j = 1, 2). From the
above equation, one can obtain a system of ODEs as follows

Ãτ = iur + k1θ1B1 + k2θ2B2,
B1τ = 1

2 σ2
1 ε1

2Hj−1B2
1 + (ρ1σ1ε1

H1−1/2 − k1)B1 +
1
2 iu(iu− 1),

B2τ = 1
2 σ2

2 ε2
2Hj−1B2

2 + (ρ2σ2ε2
H2−1/2 − k2)B2 +

1
2 iu(iu− 1).

(17)

By solving ODEs (17), we can obtain

Ã(u , τ) =iurτ +
2

∑
j=1

k jθj

∆2
j

[
−(Dj + γj)τ − 2 ln

1− Gje
−Djτ

1− Gj

]
,

Bj(u , τ) =
2

∑
j=1

1
∆2

j

[
−(Dj + γj)

(
1− e−Djτ

1− Gje
−Djτ

)]
, j = 1, 2,

Dj =
√

γ2
j − 4ajbj, γj = iuρj∆j − k j, j = 1, 2,

aj =
1
2

∆2
j , bj = −

1
2

u(i + u), τ = T − t,∆j = ε
Hj−1/2
j σj, j = 1, 2.

Combining Formulas (7), (14), and (16), Theorem 1 follows. �

Theorem 2. Assume that the asset price St is governed by the FDHestonMEM and

cn = ∂n ln φ
∂un

∣∣∣∣u = 0
denotes the n-th cumulant of x(t), one has

c1 = ln(S/K) +
2
∑

j=1

θj−Vj
2kj

(
1− e−kjτ

)
+ τ

{
r− θ1+θ2

2 + λ

[
pu

m
∑

k=1

pk
ηk
− qd

n
∑

l=1

ql
θ̂l

−
(

pu
m
∑

k=1
pkηk

1
ηk−1 + qd

n
∑

l=1
ql θ̂l

1
θ̂l+1
− 1
)
]}

c2 = λτ

(
pu

m
∑

k=1

2pk
η2

k
+ qd

n
∑

l=1

2ql
θ̂2

l

)
+

2
∑

j=1
(Π0j + Π1je

−kjτ + Π2je
−2kjτ),

(18)

where for j = 1, 2,

Π0j = θjτ + 1
kj
(−θj + Vj − θj∆jρjτ) +

1
k2

j

[
∆jρj(2θj −Vj) +

1
4 θj∆2

j τ
]
−

∆2
j

8kj
3(5θj−2Vj)

,

Π1j =
∆jρj

k2
j
(Vj − 2θj) +

1
kj
(1− ∆jρjτ)(θj −Vj) +

θj∆2
j

2kj
3 +

τ∆2
j (θj−Vj)

2kj
2 ,

Π2j =
∆2

j
8kj

3(θj−2Vj)
,

∆j = ε
Hj−1/2
j σj.
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4. The Pricing Method

Let ξ = ln ST − ln K, z = ln(St/K), a European option price can be written by

V(z, t) = e−r(T−t)E[α(eξ − 1)
+
] = e−r(T−t)K

∫ +∞

−∞
α(eξ − 1)

+
f (ξ|z )dξ (19)

with strike price K and maturity T, where r is the risk-neutral interest rate, f (ξ|z ) denotes
the probability density of ξ conditional on z, α = 1 for calls and α = −1 for puts.

According to the cosine expansion, one has

f (ξ|z ) =
∞

∑
k=0

Fk(z) cos
(

kπ
ξ −m
n−m

)
, (20)

where Fk(z) = 2
n−m

∫ n
m(ξ|z ) cos

(
kπ ξ−m

n−m

)
dξ. By choosing appropriate m, n, Fk(z) can be

approximated by F̃k(z) as follows

F̃k(z) =
2

n−m

∫ +∞

−∞
f (ξ|z ) cos

(
kπ

ξ −m
n−m

)
dξ =

2
n−m

<
[

φ

(
kπ

n−m

)
e−i kπm

n−m

]
, (21)

where <(·) denotes real part. By replacing Fk(z) by F̃k(z) in (20), one has

f (ξ|z ) ≈ 2
n−m

∞

∑
k=0
<
[

φ

(
kπ

n−m

)
e−i kπm

n−m

]
cos
[

kπ(ξ −m)

n−m

]
. (22)

By choosing appropriate N, one can truncate the series (22) and approximate f (ξ|z )
by the following Fourier cosine series expansion (COS)

f (ξ|z ) ≈ 2
n−m

N−1

∑
k=0
<
[

φ

(
kπ

n−m

)
e−i kπm

n−m

]
cos
[

kπ(ξ −m)

n−m

]
, (23)

where φ(·) denotes the characteristic function of the log-return, and the characteristic
function can be obtained by Theorem 1 for the FDHestonMEM.

Inserting Formula (23) in Formula (19) and interchanging integration and summation,
one has

V(z, t) ≈ 2
n−m

e−r(T−t)K
N−1

∑
k=0
<
[

φ

(
kπ

n−m

)
eikπ z−m

n−m

]
Uk, (24)

where Uk =
∫ n

m α(eξ − 1)+ cos
[

kπ(ξ−m)
n−m

]
dξ. For put options, basic calculus gives the fol-

lowing analytical solutions

Uk =


1

1+
(

kπ
(n−m)

)2

[
kπ

n−m sin
(

mkπ
n−m

)
− cos

(
mkπ
n−m

)
+ em

]
+ m−n

kπ sin
(

mkπ
n−m

)
k 6= 0,

em −m− 1 k = 0.

According to [28], one can choose the integration interval [m, n] as follows

[m, n] =
[

c1 − L
√
|c2|, c1 + L

√
|c2|
]

, (25)

where L is a constant, c1 = ∂ ln φ
∂u

∣∣∣∣u = 0
, c2 = ∂2 ln φ

∂u2

∣∣∣∣u = 0
. For the FDHestonMEM, c1, c2

can be obtained by Theorem 2.
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5. Numerical Experiments

We use the FDHestonMEM, the characteristic function (13), and Formula (24) (COS-
based method) to evaluate European puts. To test the effectiveness of the pricing method,
we take the numerical integration method as a benchmark and set 64 points in Formula (24)
and L = 10 in Formula (25). According to [12] and [16], model parameters are set as follows:

k1 = 12, θ1 = 0.05, σ1 = 0.9, ρ1 = −0.5, V1 = 0.05, k2 = 16, θ2 = 0.03, σ2 = 0.9, ρ2 = −0.5, V2 = 0.02,

λ = 1, m = 2, n = 2, pu = 0.4, p1 = 1.3, q1 = 1.2, θ̂1 = 20, η1 = 50, θ̂2 = 20, η2 = 50, ε1 = 0.02, ε2 = 0.02,

H1 = 0.8,H2 = 0.7. For option parameters, we set r = 0.0165, S = 100 and specify
three maturities T = 1/6(short-term), T = 1/3(medium-term), T = 1 (long-term) and set
K = 80, 90, 100, 110, 120 for each maturity. We compare the two methods for evaluating
European puts under the FDHestonMEM. Table 1 reports the main results.

Table 1. Comparison of the COS-based method and numerical integration for evaluating European
put options under the FDHestonMEM.

T K COS-Based Numerical Integration Relative Error (%)

1/6

80 0.1549 0.1552 0.1932
90 1.1364 1.1372 0.0703

100 4.4949 4.4955 0.0133
110 11.0961 11.0977 0.0144
120 19.9605 19.9611 0.0030

1/3

80 0.6740 0.6740 0.0000
90 2.4705 2.4705 0.0000

100 6.3438 6.3441 0.0047
110 12.5395 12.5403 0.0063
120 20.5791 20.5803 0.0058

1

80 3.0690 3.0694 0.0130
90 6.1746 6.1748 0.0032

100 10.6786 10.6789 0.0028
110 16.5152 16.5158 0.0036
120 23.4920 23.4927 0.0029

CPU(s) 0.0203 0.0590

From Table 1, we can see that the option prices calculated by the two methods are very
close. The maximum relative error of the COS-based method under T = 1/6, T = 1/3,
and T = 1 is 0.1932%, 0.0063%, and 0.0130%, respectively, and all the relative error of
the COS-based method is not more than 0.1932%. The COS-based method presents high
accuracy for pricing medium-term and long-term options. In terms of computational speed,
the COS-based method is faster than numerical integration. To calculate an option price,
the COS-based method needs 0.0203 s, while numerical integration almost needs three
times that of the COS-based method. Table 1 shows that the COS-based method proposed
in the paper is fast and accurate.

6. Calibration

We explore the calibration of the FDHestonMEM in this section. We use the implied
volatility mean error sum of squares (IVMSE) as the loss function

IVMSE =
1

NT × NK

NT

∑
t=1

NK

∑
k=1

(IVtk − IVΘ
tk )

2
, (26)

where IVΘ
tk and IVtk are the implied volatilities from the model and market, respectively.

We calibrate the FDHestonMEM by solving the following optimization problem

Θ∗ = argmin IVMSE, (27)
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where Θ∗ is the optimal parameter vector.
We used S&P 500 index options on March 2, 2020, as market data. We filter market

data according to the criteria in [48]. The filtered options have strike prices ranging from
2975 to 3150 and maturities ranging from 45 days to 377 days. The price of the underlying is
3060.725. According to the T-Bill interest rate in 2020 in the United States, we set 3.1% as the
risk-free interest rate. We calculate model prices by the COS-based method. We calculate
the market and model implied volatilities by putting the obtained market and model prices
into the BS Formula [49], respectively. By the differential evolution algorithm, we solve
the optimization problem (23). We also calibrate the DHestonMEM and the DHeston for
comparison. Table 2 lists calibrated results and associated IVMSE for the three models.

Table 2. Calibration results for the FDHestonMEM, the DHestonMEM, and the DHeston.

Model Calibrated Parameters IVMSE

FDHestonMEM

k1 θ1 σ1 V1 ρ1

1.871 × 10−7

2.2996 0.0030 1.9964 0.1362 −0.8256
k2 θ2 σ2 V2 ρ2

6.5578 0.0525 0.3669 0.0003 −0.8398
λ pu p1 q1 H1

0.0835 0.0613 1.3330 −0.2727 0.5010
η1 η2 θ̂1 θ̂2 H2

19.5024 5.4490 3.7212 44.2041 0.5615

DHestonMEM

k1 θ1 σ1 V1 ρ1

4.611 × 10−6

9.7200 0.0563 0.9344 0.1268 −0.9990
k2 θ2 σ2 V2 ρ2

0.0483 0.0001 1.9998 0.0218 −0.8584
λ pu p1 q1

0.0340 0.0001 −1.4998 −1.4999
η1 η2 θ̂1 θ̂2

49.9987 36.6669 0.0007 2.0791

DHeston

k1 θ1 σ1 V1 ρ1

1.354 × 10−55.5884 0.0001 2.0000 0.1296 −0.5705
k2 θ2 σ2 V2 ρ2

49.9998 0.0545 0.7846 0.0001 −0.9990

Table 2 shows that the FDHestonMEM, the DHestonMEM, and the DHeston are all well
calibrated. The IVMSE of these models are 1.871 × 10−7, 4.611 × 10−6, and 1.354 × 10−5,
respectively. It suggests that the FDHestonMEM fits market data best among the three
models; the second best is the DHestonMEM and the worst is the DHeston.

Furthermore, we set r = 0.031, S = 3060.725 and specify four maturities T =45, 107,
258, and 377 days, and set K = 2975, 3000, 3025, 3050, 3075, 3100, 3125, and 3150 for each
maturity. Based on the parameters estimated in Table 2, we calculate European puts prices
under the FDHestonMEM, the DHestonMEM, and the DHeston, respectively. With the
obtained prices, we calculate the implied volatilities of these models and plot the implied
volatility curves on strike prices under maturity T = 45, 107, 258, and 377 days. Figure 1
compares implied volatilities generated from these models and the market.
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Figure 1. Comparison of the implied volatilities generated from the FDHestonMEM, the DHeston-
MEM, the DHeston, and the market.

Figure 1 shows that the implied volatility curve of the FDHestonMEM is closest to
that of the market in all maturities cases; the second closest is the DHestonMEM, and the
farthest is the DHeston. The results are consistent with that in Table 2. Figure 1 further
confirms that the FDHestonMEM fits the market best among the three models.

Let moneyness = S/K. We divide put options into three categories according to
moneyness: out-of-the-money (OTM) if S/K ≥ 1.03, at-the-money (ATM) if S/K∈ (0.97,
1.03), and in-the-money (ITM) if S/K≤ 0.97. We set S = 100, r = 0.031, ε1 = 0.01, ε2 = 0.01
and specify three maturities T = 1/12, 1/2, 1 years and set K = 90, 95, 100, 105, 110 for each
maturity. With calibrated parameters in Table 2, we examine the influence of two Hurst
parameters on OTM, ATM, and ITM prices under T = 1/12, 1/2, 1 years, respectively.
Tables 3–5 report main results.

Table 3. The influence of Hurst parameters on short-term European puts prices under the FDHeston-
MEM with T = 1/12 years.

H1 H2 K = 90 K = 95 K = 100 K = 105 K = 110

0.5
0.5 11.5108 7.4557 3.9959 1.5274 0.3555
0.7 11.5076 7.4498 3.9847 1.5336 0.3752
0.9 11.5087 7.4475 3.9802 1.5338 0.3829

0.7
0.5 11.3069 7.4416 4.3262 2.1219 0.8242
0.7 11.3157 7.4375 4.3241 2.1248 0.8319
0.9 11.3142 7.4359 4.3231 2.1257 0.8349

0.9
0.5 11.2427 7.3702 4.3785 2.2998 1.0494
0.7 11.2370 7.3670 4.3786 2.3042 1.0556
0.9 11.2351 7.3656 4.3783 2.3052 1.0581
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Table 4. The influence of Hurst parameters on medium-term European puts prices under the
FDHestonMEM with T = 1/2 years.

H1 H2 K = 90 K = 95 K = 100 K = 105 K = 110

0.5
0.5 15.3978 11.8241 8.6928 6.0735 4.0090
0.7 15.2890 11.7394 8.6628 6.1228 4.1395
0.9 15.2387 11.6951 8.6399 6.1317 4.1787

0.7
0.5 16.1668 12.8459 9.9003 7.3818 5.2935
0.7 16.1008 12.7909 9.8729 7.3945 5.3530
0.9 16.0737 12.7620 9.8544 7.3878 5.3707

0.9
0.5 16.2248 13.1038 10.3685 8.0256 6.0706
0.7 16.1893 13.0825 10.3689 8.0524 6.1243
0.9 16.1719 13.0697 10.3638 8.0577 6.1404

Table 5. The influence of Hurst parameters on long-term European puts prices under the FDHeston-
MEM with T = 1 years.

H1 H2 K = 90 K = 95 K = 100 K = 105 K = 110

0.5
0.5 18.2460 14.9885 12.0797 9.5364 7.3693
0.7 18.1232 14.9111 12.0650 9.5987 7.5113
0.9 18.0631 14.8668 12.0457 9.6101 7.5555

0.7
0.5 19.1446 16.0248 13.2149 10.7264 8.5628
0.7 19.0513 15.9598 13.1917 10.7563 8.6512
0.9 19.0054 15.9238 13.1716 10.7572 8.6756

0.9
0.5 19.4468 16.4862 13.8282 11.4717 9.4085
0.7 19.3918 16.4585 13.8324 11.5107 9.4860
0.9 19.3636 16.4392 13.8257 11.5175 9.5084

From Tables 3, 4 and 5we can see that for all maturities cases, increasing H2 lowers
OTM and ATM prices but raises ITM prices when fixing H1 = 0.5 and H1 = 0.7. When
fixing H1 = 0.9, increasing H2 presents the same influence on OTM and ITM as fixing
H1 = 0.5 and H1 = 0.7. However, for ATMs, increasing H2 first raises option prices and
then lowers option prices, which exhibits an inverted “smile” shape. This phenomenon is
more obvious for long-term options. For short-term options, increasing H1 lowers OTM
prices but raises ATM and ITM prices when fixing H2. For medium-term options and
long-term options, increasing H1 raises option prices in all strike price cases when fixing
H2. Tables 3–5 show that the influence of two Hurst parameters on options prices depends
on maturity and moneyness.

7. Conclusions

This paper proposes a fractional stochastic volatility jump-diffusion model driven by
two fractional Brownian motions. The characteristic function of the log-return is expressed
in terms of the solution of two-dimensional fractional Riccati equations. By introducing
two perturbed parameters, we approximate our pricing model by a semi-martingale and
convert the fractional Riccati equations into a classic PDE. By the affine structure of the ap-
proximate model, we obtain the solution of the PDE with which we derive the characteristic
function and its two cumulants. Based on the derived characteristic function and Fourier
cosine series expansion, we obtain European option prices under the approximate model.
Numerical results show that the proposed pricing method is fast and accurate. Our pricing
method can be extended to stochastic rate models, such as the fractional stochastic volatility
stochastic rate (jump-diffusion) model. Based on the differential evolution algorithm and
S&P 500 index data, we calibrate the approximate model and its two nested models. Em-
pirical analysis shows that our model is better than the double Heston mixed-exponential
jump-diffusion model and the double Heston model in fitting the market. We also examine
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the influence of two Hurst parameters on option prices. Results show that the influence of
Hurst parameters on options prices depends on maturity and moneyness.

The evaluation of path-dependent options under the fractional stochastic volatility
jump-diffusion model is not trivial because the payoff of the type of option depends
on the changing process of the asset price during the option’s lifetime. This is left for
further research.
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