Highly Efficient Numerical Algorithm for Nonlinear Space Variable-Order Fractional Reaction–Diffusion Models
Abstract
:1. Introduction
2. Spatial Discretization
- , for
3. The Reaction–Diffusion System and Time-Stepping Method
3.1. Time-Stepping Method
Development of the Time-Stepping Method
- Step1:
- Assume to be constant over each sub-interval ; that is, for . Then the exact computation of Equation (20) results in
- Step2:
- Now, using , we approximateand evaluate the formula (20) to obtain
- Step3:
- Finally, using and , we approximate the nonlinear function as
3.2. Modified Time-Stepping Method
3.3. Split Version of the New Method
3.4. Algorithm
- Solve for W.
- Solve for X.
- Compute .
- Solve for W.
- Solve for X.
- Compute .
- Solve for W.
- Solve for X.
- Compute .
4. Stability Regions and Linear Error Analysis
Linear Error Analysis
5. Numerical Experiments
5.1. Space Variable-Order Fractional Enzyme Kinetics Equation in One Dimension
5.2. Space Variable-Order Fractional Enzyme Kinetics Equation in Two Dimensions
5.3. Space Variable-Order Fractional Fisher Equation in One Dimension
5.4. Space Variable-Order Fractional Fisher Equation in Two Dimensions
5.5. Allen–Cahn Equation in Two Dimensions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waurick, M. Homogenization in fractional elasticity. SIAM J. Math. Anal. 2014, 46, 1551–1576. [Google Scholar] [CrossRef]
- Luchko, Y.; Punzi, A. Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM-Int. J. Geomath. 2011, 1, 257–276. [Google Scholar] [CrossRef]
- Rida, S.Z.; Yahya, A.A.; Zidan, N.A.; Bakry, H.M. Fractional order of mathematical systems for some bio-chemical application. Fract. Calc. Appl. Anal. 2014, 5, 25. [Google Scholar]
- Maji, S.; Natesan, S. Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation. Appl. Numer. Math. 2023, 185, 549–570. [Google Scholar] [CrossRef]
- Singh, J. Analysis of fractional blood alcohol model with composite fractional derivative. Chaos Solitons Fractals 2020, 140, 110–127. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M. Fractional diffusion in inhomogeneous media. J. Phys. Gen. Phys. 2005, 38, 679–684. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Chen, Y. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Diaz, G.; Coimbra, C.F.M. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynamics 2009, 56, 145–157. [Google Scholar] [CrossRef]
- Kumar, P.; Chaudhary, S.K. Analysis of fractional order control system with performance and stability. International J. Eng. Sci. Technol. 2017, 9, 408–416. [Google Scholar]
- Obembe, A.D.; Hossain, M.E.; Abu-Khamsin, S.A. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operator—A review. Proc. R. Soc. 2020, 476, 20190498. [Google Scholar] [CrossRef] [PubMed]
- Li, C.P.; Zeng, F.H. Numerical Methods for Fractional Differential Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Li, C.P.; Cai, M. Theory and Numerical Approximations of Fractional Integrals and Derivatives; SIAM Philadelphia: Philadelphia, PA, USA, 2019. [Google Scholar]
- Glockle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Klass, D.L.; Martinek, T.W. Electroviscous fluids. I. Rheological Properties. J. Appl. Phys. 1967, 38, 67–74. [Google Scholar] [CrossRef]
- Shiga, T. Deformation and viscoelastic behavior of polymer gel in electric fields. Proc. Jpn. Acad. Ser. Phys. Biol. Sci. 1998, 74, 6–11. [Google Scholar] [CrossRef]
- Davis, L.C. Model of Magnetorheological Elastomers. J. Appl. Phys. 1999, 85, 3342–3351. [Google Scholar] [CrossRef]
- Samko, S.G.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Lin, R.; Liu, F.; Anh, V.; Turner, I. Stability and convergence of a new explicit finite difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 2009, 2, 435–445. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Li, C.P.; Chen, Y. Finite difference schemes for variable order time fractional diffusion equation. Int. J. Bifurc. Chaos 2012, 22, 1250085. [Google Scholar] [CrossRef]
- Kheirkhah, F.; Hajipour, M.; Baleanu, D. The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations. Appl. Numer. Math. 2022, 178, 25–40. [Google Scholar] [CrossRef]
- Heydari, M.H.; Avazzadeh, Z.; Razzaghi, M. Vieta-Lucas polynomials for the coupled nonlinear variable-order fractional Ginzburg-Landau equations. Appl. Numer. Math. 2021, 165, 442–458. [Google Scholar] [CrossRef]
- Yan, R.; Ma, Q.; Ding, X. Convergence analysis of the hp-version spectral collocation method for a class of nonlinear variable-order fractional differential equations. Appl. Numer. Math. 2021, 170, 269–297. [Google Scholar] [CrossRef]
- Darve, E.; Delia, M.; Garrappa, R.; Giusti, A.; Rubio, N.L. On the fractional Laplacian of variable order. Fract. Calc. Appl. Anal. 2022, 25, 15–28. [Google Scholar] [CrossRef]
- Garrappa, R.; Giusti, A.; Mainardi, F. Variable-order fractional calculu. A change of perspective. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105904. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, H.; Zhang, Y.; Sun, H.W. A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems Image. Comput. Math. Appl. 2023, 142, 107–120. [Google Scholar] [CrossRef]
- Li, X.Y.; Wu, B.Y. Iterative reproducing kernel method for nonlinear variable-order space fractional diffusion equations. Int. J. Comput. Math. 2018, 95, 1210–1221. [Google Scholar]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equation. Mathematical foundations, physical models, and its applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Khaliq, A.Q.M.; Liang, X.; Furati, K.M. A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations. Numer. Algorithms 2017, 75, 147–172. [Google Scholar] [CrossRef]
- Ngo, H.T.B.; Razzaghi, M.; Vo, T.N. Fractional order Chelyshkov wavelet method for solving variable order fractional differential equations and an application in variable order fractional relaxation system. Numer. Algor. 2023, 92, 1571–1588. [Google Scholar] [CrossRef]
- Ding, H.F. The construction of an optimal fourth-order fractional-compact-type numerical differential formula of the Riesz derivative and its application. Commun. Nonlinear Sci. Numer. Simul. 2023, 23, 107272. [Google Scholar] [CrossRef]
- Ding, H.F.; Li, C.P. High order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg-Landau equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 120, 107160. [Google Scholar] [CrossRef]
- Furati, K.M.; Yousuf, M.; Khaliq, A.Q.M. Fourth-order methods for space fractional reaction-diffusion equations with non-smooth data. Int. J. Comput. Math. 2018, 95, 1240–1256. [Google Scholar] [CrossRef]
- Yousuf, M.; Furati, K.M.; Khaliq, A.Q.M. High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations. Comput. Math. Appl. 2020, 80, 204–226. [Google Scholar] [CrossRef]
- Wang, Q.Y.; She, Z.H.; Lao, C.X.; Lin, F.R. Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations. Numer. Algor. 2023. [Google Scholar] [CrossRef]
- Thomee, V. Galerkin Finite Element Methods for Parabolic Problems; Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ortigueira, M.D. Riesz potential operators and inverses via fractional centered derivatives. Int. J. Math. Math. Sci. 2006, 2006, 48391. [Google Scholar] [CrossRef]
- Celik, C.; Duman, M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231, 1743–1750. [Google Scholar] [CrossRef]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Norsett, S.P.; Wolfbrandt, A. Attainable order of rational approximations to the exponential function with only real poles. Bit Numer. Math. 1977, 17, 200–208. [Google Scholar] [CrossRef]
- Cox, S.M.; Matthews, P.C. Exponential Time Differencing for Stiff Systems. J. Comput. Phys. 2002, 176, 430–455. [Google Scholar] [CrossRef]
- Kleefeld, B.; Khaliq, A.Q.M.; Wade, B.A. An ETD Crank-Nicolson method for reaction-diffusion systems. Numer. Methods Partial. Differ. Eq. 2012, 28, 1309–1335. [Google Scholar] [CrossRef]
- Pooley, D.M.; Vetzal, K.R.; Forsyth, P.A. Convergence Remedies for Non- Smooth Payoffs in Option Pricing. J. Comput. Financ. 2003, 6, 25–40. [Google Scholar] [CrossRef]
Time Steps | CPU Time | ||||
---|---|---|---|---|---|
20 | 1.0439 | 8.6572 | 0.0015 | ||
40 | 2.7328 | 1.2955 | 2.6555 | 2.6623 | 0.0016 |
80 | 3.9789 | 1.8861 | 2.7799 | 2.7800 | 0.0019 |
160 | 5.4031 | 2.5612 | 2.8805 | 2.8805 | 0.0022 |
320 | 7.0630 | 3.3480 | 2.9354 | 2.9354 | 0.0042 |
Time Steps | CPU Time | ||||
---|---|---|---|---|---|
40 | 8.1702 | 3.8398 | 0.0000 | 0.0000 | 0.0015 |
80 | 2.0658 | 9.7932 | 1.9837 | 1.9712 | 0.0018 |
160 | 5.1855 | 2.4583 | 1.9941 | 1.9941 | 0.0019 |
320 | 1.2972 | 6.1495 | 1.9991 | 1.9991 | 0.0012 |
640 | 3.2428 | 1.5373 | 2.0001 | 2.0001 | 0.0063 |
Time Steps | CPU Time | ||||
---|---|---|---|---|---|
20 | 2.3984 | 9.7746 | 0.0015 | ||
40 | 3.7514 | 1.5335 | 2.6766 | 2.6722 | 0.0025 |
80 | 5.3142 | 2.1845 | 2.8195 | 2.8115 | 0.0032 |
160 | 7.0947 | 2.9247 | 2.9050 | 2.9010 | 0.0043 |
320 | 9.2693 | 3.8234 | 2.9362 | 2.9353 | 0.0084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousuf, M.; Sarwar, S. Highly Efficient Numerical Algorithm for Nonlinear Space Variable-Order Fractional Reaction–Diffusion Models. Fractal Fract. 2023, 7, 688. https://doi.org/10.3390/fractalfract7090688
Yousuf M, Sarwar S. Highly Efficient Numerical Algorithm for Nonlinear Space Variable-Order Fractional Reaction–Diffusion Models. Fractal and Fractional. 2023; 7(9):688. https://doi.org/10.3390/fractalfract7090688
Chicago/Turabian StyleYousuf, Muhammad, and Shahzad Sarwar. 2023. "Highly Efficient Numerical Algorithm for Nonlinear Space Variable-Order Fractional Reaction–Diffusion Models" Fractal and Fractional 7, no. 9: 688. https://doi.org/10.3390/fractalfract7090688
APA StyleYousuf, M., & Sarwar, S. (2023). Highly Efficient Numerical Algorithm for Nonlinear Space Variable-Order Fractional Reaction–Diffusion Models. Fractal and Fractional, 7(9), 688. https://doi.org/10.3390/fractalfract7090688