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Abstract: The main idea of the current investigation is to explore some new aspects of Ostrowski’s
type integral inequalities implementing the generalized Jensen—Mercer inequality established for
generalized s-convexity in fractal space. To proceed further with this task, we construct a new
generalized integral equality for first-order local differentiable functions, which will serve as an
auxiliary result to restore some new bounds for Ostrowski inequality. We establish our desired
results by employing the equality, some renowned generalized integral inequalities like Holder’s,
power mean, Yang-Holder’s, bounded characteristics of the functions and considering generalized
s-convexity characteristics of functions. Also, in support of our main findings, we deliver specific
applications to means, and numerical integration and graphical visualization are also presented here.
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1. Introduction

Fractals have been used in many different scientific disciplines since it first came into
existence over a hundred years ago. But in the last four decades, its influence has increased
many times in mathematics. Mandelbrot has published many books on this topic and
introduced the notion of a fractal set, whose Hausdroff dimensions strictly increase the
topological dimensions. After this major development, numerous studies have been done
regarding this issue. In [1], Yang computed some @*-level sets assuming that @' is the
dimension of the fractal set.

The theory of convexity has its own very crucial character in the growth of inequalities,
and several integral inequalities are restored by considering the notion of convex functions
and its generalized forms. Recently, various kinds of novel and innovative convexity
have been established. One of them is the generalized convexity defined over the fractal
set. After this, many notable and fruitful extensions over fractal sets have been made
essentially by making use of non-negative mapping / and parameter s € (0, 1] and some
strong convexities.

Fractional calculus, which deals with non-integer order derivatives and integrals, is
one of the key calculus modifications devised recently for a better understanding and
depiction of real-world issues. The fractional calculus over the fractal set, frequently
referred to as the local fractal calculus, was first developed in 2012 by Yang [1]. The creation
of photographs, small-angle scattering theory, the music industry, soil mechanics, etc., are
all fields where fractals are beneficial. In non-differentiable problems pertaining to science
and engineering nowadays, fractal calculus outperforms wholly and practically. For more
details, see [2-4]. Inspired by the pre-mentioned facts, Mo et al. [5] introduced the concept
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of generalized convexity over R®" and have discussed some algebraic properties of this
new class and developed the fractal version of well-known integral inequalities.

In 2017 Sarikaya and Budak et al. [6] formulated the Ostrowski-type integral inequali-
ties by considering the class of generalized convexity and local fractional approach. In [7],
the authors have explored the notion of generalized s-convexity and established some new
integral inequalities. In [8], the authors explored the Simpson’s like inequalities through
a novel class of convexity named (s, p)-convex functions in the frame of local fractional
calculus. Kilicman and Saleh [9] studied some new aspects of generalized convexity and
developed some applications for integral inequalities. Chu et al. [10] introduced the con-
ception of exponential convex functions over the fractal set and by implementing this
notion developed some new unified bounds of integral inequalities. In 2020, Sanchez and

Sanabria [11] reported the new class of strongly convex functions defined over R®" and
discussed some algebraic properties. By using this notion, some strong fractal versions of
fundamental inequalities of Jensen’s type have been obtained. Luo et al. [12] have reported
some weighted Hermite-Hadamard type inequalities associated with h-convexity defined

over R?" and have discussed some special cases to enhance the study with previous results
in the literature. In 2020, Sun et al. [13] focused on generalized harmonic convexity to
prove some new estimates of trapezium-type inequalities with the help of local identities.
Sun et al. [14] have examined the Hermite-Hadamard type inequalities involving the class
of generalized harmonic convex mappings defined over the fractal set in association with
local fractional calculus. In 2021, Weibing Sun [15] focused on Ostrowski-type inequalities
implementing the generalized convex functions through fractal concepts. Razzak et al. [16]
have introduced the notion of generalized F convex mapping to explore some new integral
inequalities with the help of local fractal calculus. In [17], Kian and Moslehian derived
the Jensen—Mercer inequality for operator convexity and some other related inequalities.
After this series of work has been done, for further investigation see [18-22]. The first
time, Butt and colleagues [23] examined the local fractional variants of Jensen—-Mercer
inequality and some other inequalities of trapezoidal type in association with the newly
proved Jensen—-Mercer inequality. In [24], authors investigated the well-known Jensen-—
Mercer inequality through generalized convexity defined by non-negative mapping / in
the context of the fractal domain. In 2017, the authors of [25] studied the Jensen—Mercer
inequality from the perspective of harmonic convexity over the fractal domain. In [26],
Kalsoom and her colleagues studied Hermite-Hadamard-Fejer-type inequalities involving
h-harmonically convex mappings. In [27], the authors developed new counterparts of
Simpson’s schemes involving generalized p convexity. Erden and Sarikaya [28] investi-
gated the new error estimates for Bullen-type inequalities along with applications. In [29],
Wenbing Sun implemented the s-preinvex mappings to acquire new local fractional analogs
of Hermite-Hadamard-type inequalities and applications. Du et al. [30] explored certain
integral inequalities based on m-convexity convexity over the fractal set and discussed
their applications as well. In [31], Yu and his colleagues derived a new variant of improved
power-mean inequality in the fractal domain and established new fractional mid-point
inequalities and some interesting applications.

2. Preliminaries

Here, N, Z,Q and R donate the set of natural numbers, set of integers, set of rational
numbers, and set of real numbers, respectively. Through the idea of Yang [1], we recall
basic concepts and known results regarding local fractional calculus.

Let us start by the notion of @' type set of element sets: In the following sequel, Mo
and Sui [5] introduced a new class of convex functions over the fractal domain, which is
defined as

1. 29 = {£09", 419", £29", } =: @' type set of irrational number.

w‘l‘
2. Q9 :={v? = (%) :p1,q1 € Z,q2 # 0} =: @ type set of irrational number.
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/(D+ - w‘f p1 (17+ . _. + . .
3. Q ={7 #(5 1P, q1 € Z,q2 # 0}=:@" type set of irrational number.
4. RO :=Q° UQ — type set of real number.
We also consider two binary operations, the addition ‘4’ and multiplication ‘*" on the
@'-type set R®" of real numbers as follows.

@ 4o = (c+ d)‘i’Jr & @ xd? =@ = (cd)‘i’+.

and both ¢®" + 4", c®'d°" € R?".
e Further more one can observe that (R‘D+, +) forms commutative group. For any
e ++dw e e j_cw t + +
(c® +d?)+e? =P + (d? +e9).
09" is the additive identity of R‘”+, 00" 4o — @ 4 O‘U+, V@' € R
For any @' then there exist (—c)“fr € R?" such that @' + (—c)‘”+ S
e Also, (R‘Df, ) {0} forms a commutative group. For any @', @' @' ¢ RO,
@ got _ got o
(C(fﬂ 4ot )eaff — ot (dw* ew*)
ot ot ot ot ot ot ot 1ot ot
19" € R then for each ¢® € R® such that 19 ¢® = ¢? 19 =@ .

of of of
For each ¢ € R?' {0} then there exist (%) such that ¢®' (%) = (c%) =19",

Remark 1. o (R‘D+, +, %) forms field.

o Ifthe order < relation is defined on R®" is defined as follows: c®' < d®' & ¢ < d inR. Then,
(R‘”Jr, +, %) is an ordered field.

Now, we have local fractional continuity, which is described as

Definition 1. A non-differentiable mapping Y : R — R®', 0o — Y(v) is named as local
fractional continuous at vy, if for any € > 0 then there exist 6 > 0 such that

[Y(v) — Y(vg)| < e, |lv —vg| < 6.
If Y (v) is local continuous at (wq, wy), then Y(v) € Ct(wq, wy).
Now, we have a look at local differentiability, which is given as
Definition 2. The local fractional derivative of Y (v) of order @ at v = vy is stated as

d®Y (v)

Y7'(0) = 00D§Y(0) = | T

0=0g

where A" (Y(v) = Y(v0)) =T(1+ @) (Y(v) — Y(vp)).
(I4+1)times

Let YO' (0) = D2'Y (v). If there exists YU+D@' () = D?fY(v).Dz‘fﬁY(v) e Dz‘f’fY(v)for any
v € [wy, wy], then it is denoted by Y € D(l+1)w+f wherek =1,2,3,....

Now, we describe the local integration of Y (v) € C+ (w1, wy).
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Definition 3. Let A = {ro,r1,52,...,5n} where n € N is a partition of [wy, wy] such that
ro <11 <12 < --- <rn Then, the local fractional integral of Y on [wy, wy] is defined as

- I‘DfY(;) = lim ZY 2 A;)

1
(1 + o) /wl fOE™ = Faom Am

where Ay =v;i —vi_q fori=1,2,3,...,n
From the above expression, it is clear that , 1;32 Y(r) =0if w1 = wy and , I, Y(x) =
— wp Iggl Y( ) when wy < wy. For any ¢ € [wy, ws), if there exist o, I‘D Y (x), then it is denoted by

Y(v) € If’ [w1, wy].

Lemma 1. The following equalities hold:
1. (Local fractional integration is anti-differentiation) If Y (x) = r®' (¢) € Cot (w1, 2], then

@

w L, §(¥) = 1(w2) — r(wy).

2. Local fractional derivative of t'®" is

dw+§lw+ B F(1+lw+) (l_l)w‘r
()" TA+(-Dah)'

3. Local fractional integration of t@" s

1 “2 ot ot I(1+ l@Jr) I+t _ . (+1)ot
I(1+ oY) /w] T =t nen @ “ )

In 2014, Mo et al. [5] introduced the concept of generalized convexity over fractal set
R‘D+, which is stated as

Definition 4. Any mappingY : [wy, wy] — R®" is said to be a generalized convexity on fractal
set, if

+

Y(vw; + (1 —v)wz) < v® + (1- )@ Y(wy), ey

v € [wy,wy] and 0 < @t < 1.
Also, Y is said to be a generalized concave < —Y is a generalized convex function.

If the inequality (2) holds strictly, then it is known as a strictly generalized convex function.

Now, we give the second local derivative test for generalized convexity proved by
Mo et al. [5].

Theorem 1. Let Y € D, +(wy, wy). Then Y is said to be a generalized convex (generalized
concave) function, if and only if,

Y2 (1) >0 (Y2 <0), 1€ (w,w)

In [7], Mo and Sui explored the notion generalized s-convexity mappings, which are
stated as

Definition 5. Any mapping Y : [wq, wa] — R®" is said to be generalized s-convexity on a fractal
set, if

Y(vwy + (1 - v)wy) < v5° Yoy + (1 - 1)@ Y (wy), ©)



Fractal Fract. 2023, 7, 689

50f22

ve[0,1], se€(0,1]and0 < @t <1.

Our first concerned inequality regarding generalized convex functions is generalized
Jensen inequality, which is stated as

Theorem 2. Let Y : [wy,wy] — R?' (0 < @' < 1) be a generalized convex function. Then, for
any y; € [wy, wy) and v; € [0,1) with Y' ; v; = 1, then

n n
:
Y (2 Vi?i) <Y v (),
i=1 i=1
Now, we revisit another consequence of Jensen’s inequality for two points, which is

described as follows:

Theorem 3. Let Y : [wy, wp] — R’ (0 < @ < 1) be a generalized convex function, then

Y(w1 + Z{Jz) < F(l -+ (,Z)Jr)+ o IZ“;)JFY(I) < Y(ZU1) ++Y(ZU2)/ 3)
2 (wz — ZU1)‘D 2 2@

where 0 < @ < 1. For more details, see [5].

Recently, in 2022, Xu and colleagues [24] established a new variant of Jensen—-Mercer
inequality involving h-convex functions over the fractal set, which is followed as

Theorem 4. Lethh : ] — R be non-negative supermultiplicative mapping, h # 0. Let vy, vy,. .., vy
be a positive real numbers (n > 2) such that Wy, = Y v and Y 4 h(%—’;) IfY : I =

[wy, wy] — R®" is g generalized h-convex mapping, then for any positive finite sequence {r;} € I,
then

n

1
Y<wl +wy — —

Vka) < Y(wy) +Y(w2) — i‘, he' (;\ZI)Y(&)-

k=1

Remark 2 ([24]). 1. Ifh®' (v) = v®', then it reduces to a Jensen—Mercer inequality for gener-
alized convex mappings, which is proved in [23].

2. If he' (v) = vs®' | then it reduces to Jensen—Mercer inequality for generalized s-convex mappings.

Motivated by the research work going on, we have organized the current study to in-
vestigate Ostrowski’s type inequalities via generalized s-convexity in the second sense over
fractal space. The novelty of our research is that we will propose some new upper bounds
for the remainder in the well-known Ostrowski quadrature rule. We have distributed
our study in several parts. Initially, we give a brief introduction of the current research
and some essential facts, which are required for further proceedings. In the next part, we
will propose new local fractional counterparts of Osrowski-Mercer inequality involving
s-convexity of the functions along with Holder’s type inequalities. Later, applications and
numerical and graphical illustrations of our primary findings will be discussed in detail.
We hope the problem’s idea and technique will attract interested readers” attention.

3. Main Results

The current portion of the study is specified for the detailed investigation of Os-
trowski’s type inequalities over fractal settings. The substantial part of this study is to
formulate a new identity involving local differentiable mappings.
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Lemma2. Let Y : I = [wy,w,] - R? (0 <ot <1) be function, such that Y € D 4+ (I°)
where I° is the interior of I and Yo' ¢ Cot (w1, w2), where [uy, up] C [wy, wy] and ¢ € [ug, up],
then

t + 1 t
—u)® Y(w +r—u)+ (w—1)° Y(wr +1—u) —T(1+ @) [a151+;—u1Y(u) + (wy+1—12) ooy Y(u)}

= m /01 L@yt (w1 +1— (vug + (1 — V)F))(dt)w+ “
Uy — )20 . +
_ (1"(2@1‘21) /01 V2 Y? (wy +1— (vup + (1 —v)x))(dt)?

Proof. Consider the right hand side of (4), we have

I=(—w)*L—(1—-1)%D, ®)
where,
L= F(cD*l-H) /01 v Y (wy 41— (vug + (1—v)p)) (d)D
= e e~ url(;w?r((ofl i Y@
= Bl YO0, ®

similarly, we obtain

1 1o .
Iz_m/o VYO (wa + = (vug + (1 - v)r)) (i)
Y(wy+1r—1up) T(1+eh) .
ST 0T (a g e e Y, )

Substituting (6) and (7) in (5), we obtain (4). O
Remark 3. If we set u; = wy and uy = wy in Lemma 2, then we obtain Lemma 3 of [15].

Theorem 5. Under the assumptions of Lemma 2, If \Y“’Jr\ be a generalized s-convex function in
second sense, then

’(F — )Y (w5 —w) + (2 — 1) Y(wy 1 — 1) —T(1+ @) |:ﬂI£1++I—u1Y(u) + (wz-&-x—uz)lb(g;Y(u)} ‘
. " . +

< (e w ) [ F e ol + | o

T(1+ (s+ 1wt I(1+ ")

A+ 42 (”1)|] + (w2 =) [r(l +20)
T(1+(s+ 1))

Ir(1+wh)
[F(l—i—Zw*) [(1+ (s+2)@")

— B+(2,5 + 1)} 1Y ()|

Y (wy)]

B (2,5 + 1)] ve' ()] - ' <uz>] ®)

Bt (.,.) is the well-known local beta function and is defined as

1
I'(l1+w")

+

! t_ myt — V)@
| @y = vy @,

Bt (m1, mz) =

Proof. Applying the modulus property and Jensen-Mercer inequality for generalized
s-convex function in equality Lemma 2, we have
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(r =)™ Y (w1 + 5 =) + (w2 = )7 Y (w3 + 5~ 112) = D1+ @) [aL5) g, Y1) + (s L Y |

f(ﬂ;ﬁl/ VY oy +p (v + (1= 0)0) | (@)
*%/ oY (wr 45 — (v + (1= v))) (@)

—u 20t + + N . . . . .
< S [ [ o) ) = )| = (1= ) )

sl fe 10 [1¥9 () 4+ Y9 ()] — v ()] — (1= )75 ()] )

(ot +1)
< (- )2 { 11:‘2“2; IY®' (wy)] + {m — Bot(2,5+ 1)} Y ()]
812213@% v u1)|] + ()2 [MI Y ()]
{m — Bot(2,5 + 1)] Y (1) - ?8 i Ezigc@:; | wf(“z)}'

which gives the inequality (8). O

Corollary 1. If we take s = 1in (8), then

(= w)® Y (w1 41 =) + (2 = )7 V(w2 + 1~ 12) = T(1+ @) [aL] ey Y(0) + sy 10 Y (W)
t ¥ + * + t
< - [FEEZL e )+ [FEEE) )] v )] - T2 v )

I(1+ ") I(1+ ") I(1+20%)

+ (112 - F)2w+ [W|Yw+(w2)| {1“(14—2(0*) — Byt (2/2)] |Y(DJr (I)| - m| o' (uz)@

Corollary 2. If we set u; = wy and uy = woy in (8), then we obtain

+ + +
(= w)® Y (w1 + 1 =) + (2= )7 V(w2 + 1 = 12) = T(1+ @) [o L] ey Y(0) + sy 10 Y0

(
ot [ T(1+ @) I'(1+a") I'(1420%) ot
< | e T+2a") e ]
+ t + t + +
(=0 [ L )+ [FEEE) — B 2,2) v 0] - FE 22 v ) .

Corollary 3. Ifwe set u; = wy,up = wy and r = Y52 in (8), then we obtain

(wz — wl)wa(W)
r(1+ot) CT(1+ o) /wlf(u)(du)

1 (wz _wl>2‘”+ K 1+ o) ra+ (Si;)"fﬁ)) |Y‘D+(w1)|

Y o)+ | Bor (2:2)| )Y (9] -

STa+an)\ 2 T 1207 T+ (s t2)@h)
ot [ T(1+ @) ot (W1 +w FrM+o") TO+6E+1D)e")\ et
2 [r(wzco*)_B‘D*(z’SH)}Y < B 2) +<F(1+2w*)_F(1+(S+2)w+)>|Y (wz)@'

Theorem 6. Under the assumptions of Lemma 2, if |Y‘D+ |7 be a generalized s-convex function in
second sense, then

[ =)™ Y (g 1= ) + (2 = )7 Y (03 48 = 12) = D1+ @) [aL5] e Y1) + (s By Y0 |
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I(1+@p) G it 1 .
S<r(1+(p+1)w+)> [@_“1)2 (r(wul)'Y (w1)|?

1 I(1+w's) of I'(1+a's) o
+(r<w++1>‘r<1+<s+1>w+)>|Y OF = Fay s Den ¥ (ulw)
+(up — X)2w+ (@IY‘“(wz)Iq

1 I(1+4 @'s) ot I'(1+a@'s) of i
+<T(@++1)_F(1+(S+1)w*)>|Y ©F = i ernen (u2)|‘f) ] ©)

where p~' +q71 = 1.

Proof. Applying the modulus property, Holder’s inequality, and generalized convexity
property of |Y®' |9, then

(r =) Y(wr +1—w) + (1 — 1) Y(wr + 1~ 1) —T(1+ @) { e Y(0) + (wp+e— u2)1‘9+Y(u)} ’

S(ﬂwm/’” Y (w1 45 = (v + (1 - v)e) | (@)
*%fﬂ/ Y @ + 1 (v + (1= v)0)) | (@)

1
q

< - wl (ot v @) (g [ o s u s = np] @)

+ (up — I)Z‘Zﬁ <r(w+1+1) /01 Vw*p(,j,g)w‘f) [ <r(w+1+l) /Ol‘Yw*r(wz br— (o4 (1— v);))‘(dt)‘m>
< (r—w)* <1“(a7+1+1) /01 vw*p(dt)w) ’
X <r(@+1+1) /01 [|Y‘D+(w1)\q Y9 (1)]9 = @'Y ()7 — (1 — 1) @5y (F)|q] (dt)w+> q

+ (1 — )% (1’(a7+l+1) /01 y@*p(dt)w*> ’

(o [ 2l + Y @ = ¥ ) - (1= s ) )’ )

F(1+(D+p) v ot 1 ot
S(r(1+(p+1)a>+)> {(F—"l)z (r(<z>++1)|Y (wy)[?

1
q

1 1"(1—!-({)*5) ot F(1+(D+s) " i
+<r(@++1) _F(1+(S+1>w*)>|Y W= i s nen (ul)q>
+(uy — )2 (1‘(a>+1+1)|Yw+(w2)|q

1 r(1 +L’U+s) o [\ 1g r(1 +(D+s) ot , i
+<F(w*+1) - r(1+(s+1)@+)>|Y O = s mrnen ¥ @) |
which completes the proof. [

Corollary 4. If we take s = 1in (9), then

(r— “l)w+Y(w1 +r—ug) + (w— ?)w+Y(w2 +r—w)-T(1+ah) [ szﬁzc wy Y1) + (y - uz)IerY(u)} ‘
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r(1+o'p) \? " , .
: <F(1+(p+1)w+)> [@_“1)2 (r(wul)'Y (w1)|?

1 1+ ") of T(1+@t) ot i
+(F(w*+1) _r(1+2@+)>|Y OF = 3 20m) ¥ (ul)Iq)
+( — )2 (r(aﬁ1+1)|yw+(w2)|q

1 F(l—i—a)*) o F(1+CD+) o %
(@ mraon) M @ - frs 5y M 1) ]

Corollary 5. If we set up = wq,up = wp and ¢ = % in (9), then we obtain

(wp — )@Y (52
r(11+w§) : >_r(1+¢o+) /wlf du

1 I(1+wtp) Z
= T+ aoh (F(l Ny 1)a>+)>

" sz ; W1>m+ ((r(co+1+ 1) r(lr(l(jfszoﬂ) Y (el

+ <T((D+l_|_ - r(lrj_l(:f;;zw)) <w1 + w2> >
20"
+<7«UZZZU1> ((r(w+1+1) 1“<1+1 :»f; - ) Yw+ ()|

1 I(1+w's)
+<r(w+ 1) T+ (s+1)c0’f)>

() Q>q]~

Remark 4. If we set uy = wq and upy = wy in inequality , then we obtain special case of inequality

(3.16), as proved in [15].

Theorem 7. Under the assumptions of Lemma 2, if |Y£D+ |7 be a generalized s-convex function in

second sense, then

[ = )™ Y (1 + 1= 1) + (w2 = ) Y (w2 + ¥ = 1) = T+ @) [0 s Y + (a5 12 Y] |

t 1_% + t + t .
(Firraen) (™ | Fi agn ¥ @0+ | oty ~ Bar @+ 1] X" 0
T+ (s+1Da") ot G ot [T+ @) | ot
_1"(1+(s+2)a)‘r)|Y (u1)|q] + (12 —p)? [W'Y (w2)|?

t . . l
[FED) 254 1)| v @ - DOy ] ) w0

where p~t + g1 = 1 and Bt (wy, wy) = m fol W1%(1 — v)®2% §s g well known beta

function over the fractal set.
Proof. Applying the power mean inequality and generalized convexity property of the

1Y@"|9, then
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(= 1)@ Y(w; +1—w) + (1 — 1) Y(wy 1 — up)
T
_r(l +@ ) [ I;gl-i-wz ulY(u) + (wy+r— u)Ing(u)} ‘

(r—
= F((D’f + 1)
(u2

/ oY (w45 = (v + (1= v)0)) (@)

+

F(@++1 /’v vy (wy+r— (v + (1 —v)zx ))‘(dt)“ﬁ

1-1

<ol (g [ @)
g (r<a>*1+1> /01\”‘”“””+ (wy +1— (vag + (1— v)x))\(dt)‘“*)
Ty— (r(w+1+1) /01 ot (dt)@+>1é
: <r<a>+1 1) /J’”“’Ww* (w3 41— (g + (1 - u>x>)\<dt>w*)‘l’
< <;—u1>2w+<r(w}+1) /01 Vw+<dt)w+)1—%
(s [ [ o) 1Y (1 = Syt — 1 =Sy’ ] )
o (b [ @)
x (r(@fﬂ) | L (1Y (@2) 1+ [Y2 (1)1 = v Y2 ()| = (1 = )@Y (1)) 7] dtw);

ra+aeh \' o [T+ @) Lot I'(1+ao") .

1
q

(
L1+ (s+D)a") ot o [T+t ot
Tt r2en ¥ (”1)|”’] + (2 —1)? [F(1+2@+)| ()|

_,_{W —B@+(2,s+1)} Y ()7 - e )‘Yw (uZ)@ )’

[(1+20%) I'(1+ (s+2)o")
which completes the proof. [
Corollary 6. If we take s = 1in (10), then

[ =)™ Y (o1 41— ) + (2 = )7 Y (03 + 5 = 12) = D1+ @) [aL 4 Y(8) + (s B Y |

r(1+ot) \' ot [T+ @) ot I(1+a") of
= <F(1+2w+)) ((’_ul)z [ (2o ¥ @I [r(1+2co+) _BW*(Z'Z)} Y= @)l
L1+ 20" (1+ )

“Fr o 7 0|+ 0 [

! ' T(1+20") ot g
+[Fr((11j2‘fo+>)—3w+(z,2)} Y@ (;)w—mw (uz)@ )
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(w2 — wl)‘NY(W) B

Corollary 7. If we set uy = wy,up = wy and p = w in (10), then we obtain

b +
r(l-fl-C’D+) /wl flu))®

T(1+ (s+1)at)

I(l1+ot)
1
<
~I(1+ o)
(14 ot)
N +
[ ['(1+20%)
Wy — W
+( D — Wy
1+ o)
N +
[r(1+2w+

)

F(gljz(ig*))) l<<wz—wl> Kr(fiﬁi r(1+(s+2)w*)>|yw+(wl)|q

(252
¥ )l

T(1+(s+1)at
)
q] q)

[(1+(s+2)of
-+ W»
Y(D’r w1
(5
Theorem 8. Assume that all the conditions of Lemma 2 are satisfied, if 1Y@ |7 is generalized
s-convex on the interval [wy,ws] for p,q > 0 with % + % =1, then

==

- Bar(2s+1)]

Bor (25 +1)

’(zc — 1) Y(w +r—w) + (2 — 1) Y(wy 41 —1w) —T(1+ @) [aI$f+wz_u1Y( )+ (wtr— u)I‘O*Y(u)} ’

< =) Borlp +1,2)F (i e
A 1) v @ - TR e )
s ) (Fpeon

[y - poern ] - )|

+ (up — )% { (B

Mot +1)

+ (2ot +1)

(@t +1)

o120 (g 3y ¥ )l

ot (5 + 1,2)] YO (1)1 — Tt ES

\ra+r (120

rco

+ r(2 co’f+1

e
<r (1+(p+De
e

)\ 7 [ T(@ +1) oot
)) (r(2w++1)|y (w)]1

+ t t %
= B 25+ 1) X 011~ [ e Y ()l }
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Proof. Employing Lemma 2 and the Holder-Yang’s inequality, we find that

+ + + +
(r—uw)? Yo )+ (- DY (w2 + 1 = 112) = T+ @") [ L) g YO + () 1 Y(0) |

<x(w;ﬂ+ : / Y (w4 x = (v + (1= 0)) (@)
R L a0

(dr)®"

< (- ul)zw*{ <r(1iw+) /1(1 ) () )é
" <F<1iw*> /01(1 — ) Y (w1 + 1 = (v + (1 - m))ﬁ(d(v))“’*)
+ (F(liw*) /01 Lo ot (d(v))“’*) v (F(lJlr(D*) ./0.1 v 1Y (w7 + 1 — (g + (1 — U)I))W(d(v))w’r) %}
e g)w{ (m iww [ a-ve (d(v))@*) %

(e [ A=Y watx - (i + (1= )W) )

- (1—‘(1"1'(01-) /Ol Vm+va+ (d(V))w+> ! (1—'(141-(,@1.) ‘/01 V¢D+|Y(D+ (w2 +zr— (VUZ + (1 _ U)x))lq(d(v))aﬁ) q }

Owing to the generalized s-convexity of the mapping |Y®'|7, we find that

1
q

1
q

t + t +
‘(zc —u)® Y(w +r—up) + (= 1)® Y(wr +1r—w) —T(1+ o) { Ly g Y1) + (gt r—100) iy Y(u)} ‘

< (- u1>2w*{ (mjaﬁ) [t <d<v>>@*):’

By

“\Faran [ = Y ol + 1Y 0l = v [ )1 = (1= 0¥ 1))

(fsa
+<r 1+a7+)/ v (d MW)
(

(reram v @+ v vs‘”*|Y@*<u1>|ﬂ—<1—v)S@WY@*(x)m(d(v))‘”*)q}

?

4 (up — x)z‘”*{ (M /0 (1 =)@ et (d(v))aﬂ)’l]

1
q
X

1 1 + + t iyt oot +
Fr o = I G Y @ - v Y )~ (10 Y () )

(7
+<r 1+w+)/ v P’ (4 (v))‘ﬂ+)p
X<1“ 1+ / ve' |Yw wz)|q+|Yw (r)]1 1/5‘”+|Y‘9+(u2)|q_ (1—V)S‘D+|Y‘D+(;)|ﬂ(d(v))w+)q}

1 t t
< G- { B r+1,2) (1 mr iy Y ()l
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I(@"+1)
(2ot +1
r

AT ) E (rr<(zww++111)> Y (1)

—Bw+(5+1,2)]|Y(D+(?)|q_ F(1+(S+

~—

e B s )| Y @ - LS e ) }

)
+ 1 i ¥
+ (up — 1)*® {(Bw+(P+1,2>)p <rr((2(?o+ill)) Y (wa)]7

+ . . *
| o ~ Bar(s 41,2 ¥ 0 = 1 e ol
CA+(p+Do")\ 7 [ T@ +1) o
+<F(1+(p+2)@+)> (T(2w++1)|Y (w2) |1
+ . ) %
Ry~ Bar s 0| 1 - FEHEE T e ) }

In this way, we concluded our required result. O
Corollary 8. If we take s = 1 in Theorem 8, then we have the following inequality:

’(F — )Y (w5 —w) + (2 — 1) Y(wy 1 —1w) —T(1+ @) [ Irfﬁzc w Y() + oy e uz)IdﬁY(u)} ‘

t ¥ +
< (r—w)* {( ot(p+1,2))7 (F((ztfwill) [Y? (wy) |1

)
t + + %
ot 5 2)| v 0 - T2 v i)

+[F(2a)’f+1) 1+37)
T+ (p+ 10"\ 7 ( T +1) o

+(r<1+<p+2>w+>> <r<2w*+1>Y ot

e )| v @l - 2 ) }

)
+ 1 ¥ *
+ (up — )% {(Bw+(p +1,2))r (I?((z‘;ill)) Y (wy) |7

1
I'(@f+1) ot g TA+20%) Cor o\
+[r(2co++1)_B *(Z’Z)MY (®)] —WIY (12)]
1
+<r(1 +(p+ 1)@*)) g < Mot +1) Y (1)1
1+ (p+2)f) 2ot +1)
1
I'(@"+1) ot g TA+20%) Cor o\
+[F(2@*+1)_B‘”+(2’2)} Y’ (¢)] —mw (u2)] :
Corollary 9. If we set uy = wy,up = wp and ¢ = @ in (8), then we obtain
(ws — wl)“’“(@) 1

f()( w)®’

[(1+ o' T+ oh) S

1 W — w1\ 29" 1 F@t+1) TA+(G+1D)o")) Lot
SF(ler*)< B 1) (B“’“L(’JH’Z))p{((r(zwwl)r(1+(s+2)w+)>Y (wn)l?
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yo'

wq —i—wz)

)
q>}

1 Wy — Wy 2 I(1+(p+1)o') v
1+a>+)( 2 ) (F(1+(p+2>w*>>

Fot+1) TA+(+1)0")\ Jot
X{(( 207 +1) r(1+(s+2)a>+)>|Y ()l
I'(@'+1) N
Tat 1)  Dar(2s +1)} )

ey w (25m)
(R - Hae e b v
p= )l

2
(2ot + 1 F(1+ (s+2)o)
vo' <w1 + w2)

Theorem 9. Assume that all the assumptions of Lemma 2 are satisfied, if |[Y? | < M‘D+, where
M® € R®', o € (0,1], then

I(@'+1)
{I’(2c@++1) —B,t(s+1, 2}

(( [o'+1) T(+(s+1l)@ <>Y@*
f (

20t +1) T+ (s+2)@

(@F +1)

(DJF
[r(zaﬁ +1) Y

w1 —|—wz)

Bw+s+12}

_|_

_|_

(@' +1)
(2ot +1)

2

+ — B+ (2, s—i—l)}

t t 1‘ +
’(zc —1)? Y(wi+r—w)+ (- Y(w+r—w) -Tl+@ )[ Ly ey Y() + (g1 ) Loy Y(u)] ‘
MOT(1+ ot + +
< P =) + (= 1) a
Proof. By taking the absolute value in Lemma 2 and using Yo' < M?',0 < @ <1,
we have

t—w) Y(w +r—w)+ (12— 1) Y(wy +r—1w) —T(1+ @) [ Irfﬁ; w Y (W) + (011w Ly Y(u)} ‘

= %/ Y (= (v (L= v)e)) | (@)

(
+<2i/ oY (wr 45— (v + (1= v))) (@)

It +1)
me" (;—u1)2w 1 of Mo (up —;)Z‘D+ T4 +
< - - ar)® —/ D (d)®
- T(ot+1) /ov (@)™ + @t +1) oV (at)

MO'T(1+ ')

< Fagaen w0+ @ -0

which gives the inequality (11). O

Corollary 10. If we set u; = wy,up = wp and ¢ = % in (11), then we obtain

e v(og)
1+ ot) T+ o) Jo

<
— I'(1+2wt)

f<><>* >

2@+ ]\/Ia)1L (sz —w ) 20"
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Theorem 10. Under the assumption of Lemma 2, if |Y‘”+| satisfies the generalized s-convexity
defined on the interval [wy, w;], and Y®' is bounded, i.e., ||Y"°'Jr oo = SUPye 5] |Y‘D+| < oo, then

[ = w)®"Y (w01 41— 1) + (w2 = 1) Y (w2 + 5 = ) = T+ @) [0 s Y) + (a5 12 Y] |

20'T(@t +1) T(1+ (s+ 1ot
r2ot+1) T+ (s+2)o)

— Bt (2,5 4+ 1) [[Y ool (r = 11)*" + (12 — 1)27'],

Proof. Considering the integral identity derived in Lemma 2 and taking advantage of the
property of the modulus, we have

’(X — )Y (w5 —w) + (2 — 1) Y(wy 1 — 1) —T(1+ @) [ Iw1++zc wy Y (W) + (y - u2)1w+Y(u)] ‘

= (ﬁ@m/ VY oy + 1 (v + (1= 0)0) | (@)

(up — 1)@

* It +1)

/ [N (w5 + 1 = (v + (1= v)0)) | (1)

We employ the generalized s-convexity of the mapping IY®'| defined on [wy, ws], then

wo

(= w)® Y (w1 + 1 =) + (2= )7 V(w2 + 1 = 112) = T(1+ @) [o L5 e emuy Y(0) + sy 10 Y (W)

— )2 t + t t t * ' !
< <1§(w+1+> - /1 LY )]+ Y ()] = v Y ()] = (L= )Y )] (1)
(

+ ;‘fwiﬁ 5 / [ o)+ 1Y ()] Y )] — (1) Y ()] )
(@t +1) TA+(s+1)at)
[1‘(2@* +1) T+ (s+2)a")

—Bt(2,5+ 1)] 1Y ool (x — 122" + (w2 — 1)2'],
which is the desired the result asserted in Theorem 10. [

Corollary 11. If we take s = 1 in Theorem 10, then

[ =)™ Y (g 41 =) + (2= )7 Y (03 45 = 2) = D1+ @) [aL5] e Y(8) + (s By Y0 |

(@t +1) T(1+20%)
[F(Za)’f +1) TI(1+30%

— Bt (2,2) | 1Y oo (x — 11)2®" + (w2 — 1))

4. Applications

In this section, we are going to present some applications of our main findings. First,
we develop some relation between generalized means by considering some results obtained
in the previous section. Further, we examine more applications to numerical integration.

4.1. Generalized Special Means
Here, we recapture the renowned generalized means between two numbers
ot . ot ot
WY, wr? € RY .
1.  The generalized arithmetic mean:

+ t ot
w® +w® <w1+w2)
- 7

Agr(wy,w2) = —— 5 >




Fractal Fract. 2023, 7, 689 16 of 22

2. The generalized Weighted arithmetic mean:

t t + +
@ @ @ [
ml w1 -+ m2 w2

(w1 + wy)@'

wA gt (W1, wo;my, my) =
3. The generalized log-p-mean:

I'(1+ po’) wz(p+l)w+ _ wl(erl)oo+
T(1+1+p)@") (p+1) (w2 —wy)®

L(D*,p(wl/ w2) =

]p; p e R\ {-1,0}.

Proposition 1. All the assumptions of Theorem 5 are satisfied, then the following relation holds:

+
(w2 —u1)? WA ((r —w), (w2 =), (w1 +r—w)’, (W2 +1r—wp)°)
“T(1 4 @") [ (2 — )L gy (01 + 1 — w1, 1) + (12 = £)LS 1 (03,02 + 5 = 1) |

29'T(1+ @hT(1 + sot)
T(1+20N)T(1+ (s— 1))
I(1+so") + 1+ (s+1)wh) u(slwn

_ (s—1)w
T+ (s— 1)) {B‘D* (2541 +

+ _ _
S (x_ul)Z(D Aw+(w15 1/IS 1)

29'T(1+ @"T(1 + s@?)
I(1+20MH)r(1+(s—1)oh)
I'(1+so")

_ (1)
T+ (s— 1)) {B‘”* (2541 +

s—1 sfl)

.
+ (up — :C)zw w1t (W2° 7 x

Proof. The assertion follows directly by substituting Y (u) = u®'s with 0 < @t,s < 1in
inequality (8). O
Proposition 2. All the assumptions of Theorem 6 are satisfied, then the following relation holds:

)@

’(uz —1)? WALt ((r —u1), (w2 — 1), (w1 + 1 —u1)’, (w2 +1—w2)°)

-T(1+a") {(? —up) L] i (w1 +r—w,wr) + (w2 —x)L] i (wo, w2 + 1 — uz)} ’

I(1+otp) 7 o 1 T(1+sot) q .~ .
<(r<1+<p+1>w+>> l(*‘“l)z (r<@++1>(r(1+<5_1>@+>) A (wy 5711, 5710)

1

I(1+ots) ( I(1+sa") )qA (s=1)q , (s=1)q ) !
_ (Df (X qrul )
I'( )

[(1+(s+1)w") 14+ (s—1)t

ot 1 F(1+S(D+) 1 . .
+(up —1)? (F(w*+1) (F(1+(s—1)w’f)) A (w511, (=10

IF(1+o's) I(1+sof) 7 s (s—1) i
- (F( )) Aw+(;( l)q'uZ 11) .

I(1+(s+1D)@") \I'(1+(s—1)of

Proof. The assertion follows directly by substituting Y(u) = u®'s with 0 < @,
s < 1ininequality (9). O

Proposition 3. All the assumptions of Theorem 9 are satisfied, then the following relation holds:

(ug = 1) WA ((x—w), (w2 — 1), (w1 41— w)%, (w2 + 1 — wp)°)
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—I“(l—i—co*)[(;—uﬂ :,a)*(wl +r—up,wy)+( 2—;)st+(w2,w2+x—u2)”

29'T1+0") T+ (+1)e)
r(1+20%) T+ (s+2)@f)

< me — Bor (2,5 1) [[(e = 11> + (2 — ")

Proof. The assertion follows directly by substituting Y (u) = 1@ with 0 < @',s < 1in
Theorem 9. [

4.2. The Quadrature Formula

Here, we present some applications to generalized midpoint rules. If we divide the
interval [wq, w,] into | subintervals r;, ;11 withi =0,1,...,] — 1, then one finds a partition
P:rwy =1 <n < - <rj1 <rj = wy Furthermore, we take into account the
undermentioned quadrature formula

+

YW = rrar [ Y@

I(1+o") Ju
= Ts(Y,7) + Es(Y,7),

where

t w1 +w
T(Y,7) = (wy — wy)® Y< 12 2).

Proposition 4. If all the assumptions of Theorem 8 are held, then

% 1 -6\ 1
1 1 -
X;F(l—i-c@*)( 5 ) (Bot(p+1,2))7

|ES ’)/r
1
rw++1 CT(1+(s+Dat) ‘7@ N S CC e I A(5+1,2) ||yt (Bt '
r 2ot +1) T(1+(s+2)wf 2ot+1) ¢ ’ 2
1
t t t 1
(@ +1 T(1+ (s+1D@t) | ot 9 | T(@"+1) NIRRT
_ , —~— '~/ _p 1,2
1
" zclﬂ—xl C(1+(p+Da’) )’
+Zr1 D) 1 2)@
Sr(l+e +(p+2)@")
1
@' +1) T+ s+t ‘7 @) [(@"+1) CBL(2s+1)| [ it ")’
r2ot+1) T(1+(s+2)wf ' reot+1) “«7 2

A
{l

w'+1) T+ (s+Da’ 7 [T(wh+1)
2w*+1 CT(1+ (s+2)@f) )‘7 ’l“)’ +[1W_|_D_Bw*(215+1)

1
s Pi+pis [T\
sy

Proof. The assertion follows directly by taking the sum from n = 0 to n — 1 over subinterval
[ti,¥is1) in Theorem 8. O

Proposition 5. If all the assumptions of Theorem 10 are held, then

Es(Y,7)| < — Boi(2,5+1)].

- T(1+ oY)

+
29 |Y oo (11— 1 )7 [2T(@" +1)  T(1+ (s+1)at)
2 rot+1) T(1+(s+2)@t)

Proof. The assertion follows directly by taking the sum from n = 0 to n — 1 over sub-
interval [g;, r;41] in Theorem 10. O
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5. Examples

The following section is organized to increase the impact and visibility of main out-
comes by establishing some numerical and graphical simulations.

Example 1. If all the assumptions of Theorem 5 are satisfied, and we one consider the mapping
of of

Y(u) = IF“SEZI% (g) on RY the generalized convex functions and also 'Y‘”Jr (u)‘ = (%2)

is a generalized convex mapping. By specifying the values of w1 = 0,u; = 1,up = 3, w, = 4,

s =0.8, then

9 9 36
132 5 8 13 15

<E-12(XE_2 S Sy B 2,

s @-1) (138 4:2>+(3 ¥) (3+ 138 14

We regard ¢ € [1,3] as a variable to plot a graph between the left and right-hand side of inequality (8).

‘(zc—l)‘1 L B0+ (-1*4+4' - (1+4p*

Figure 1 depicts the comparative analysis between the left and right sides of Theorem 5.
Here red and green colors reflect the left and right-hand sides respectively.

Figure 1. Comparative analysis between both sides of Theorem 5.

Example 2. If all the assumptions of Theorem 6 are satisfied, and we one consider the mapping

Y(u) = K200 (2N g lized tions and also | Y ()] = ()
U) = Firs0h) | 3 ) on e generalized convex functions and also u)l = (45

is a generalized convex mapping. By specifying the values of w1 = 0,u; = Lup = 3, wr = 4,

s=1, then

’(x—l)“ LB=00+y) -1 +4 - (140

9 9 36

1 1
4 2 4 2

-1 25 1t 3
<(r—1)2(% EAVY e
<(x 1)(54) +(3 ;)(27+54 2)

We regard ¢ € [1,3] as a variable to plot a graph between the left and right-hand side of inequality 9).

Figure 2 depicts the comparative analysis between the left and right sides of Theorem 5.
Here red and green colors reflect the left and right-hand sides respectively.

L L Loy
15 20 25 3.0

Figure 2. Comparative analysis between the left and right sides of Theorem 6.
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Example 3. If all the assumptions of Theorem 7 are satisfied, and we one consider the mapping

_ T(1+20h) (3 @' + . . ot (2 @f
Y(u) = ¢ (11307 (7> on R the generalized convex functions and also |Y® (u)| = (7>
be a generalized convex mapping. By specifying the values of w1 = 0,u; = 1,up = 3, wp = 4,

s=1, then

9 9 36

1 1

4_1\?2 256 1t 3)\?2

<(—12(E=2 (2242
< (r )< =1 ) +@3 zc)(36+54 2>

We regard ¢ € [1,3] as a variable to plot a graph between the left and right-hand side of inequality (10).

’(zc—l)‘1 L B=n0+y) —1*+4'—(1+4p)*

Figure 3 depicts the comparative analysis between the left and right sides of Theorem 7.
Here red and green colors reflect the left and right-hand sides respectively.

L L Loy
15 20 25 3.0

Figure 3. Comparative analysis between the left and right sides of Theorem 7.

Example 4. If all the assumptions of Theorem 8 are satisfied, and we consider the mapping

@ ot
Y(u) = ?81?23 (%3) on R™ the generalized convex functions and also ’Y‘”+ (u)‘ = (%2)
is a generalized convex mapping. By specifying the values of w1 = 0,u; = Lup = 3, w, = 4,

s=1, then

9 9 36

‘(zc—l)‘L L B-p0+y (-1 +4'—(1+p)*

1
4 126 x4 2
27 9 27 '

_ 2
< 0.7886(x — 1)2<I 1) +0.7886(3 — x)2< +-3

We regard ¢ € [1,3] as a variable to plot a graph between the left- and right-hand side of Theorem 8.

Figure 4 depicts the comparative analysis between the left and right sides of Theorem 7.
Here red and green colors reflect the left and right-hand sides respectively.

Figure 4. Comparative analysis between the left and right sides of Theorem 8.
Example 5. If all the assumptions of Theorem 10 are satisfied, and we consider the mapping

_ras2at) (@) oy : : ot (] — (12\°
Y(u) = (307 (7) on R the generalized convex functions and also |Y® (u)| = (7)
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be a generalized convex mapping. By specifying the values of wq = 0,u; = 1,up = 3, wp = 4,
s=1, then

9 9 36

’(r—1)4 R Ch) (r—D*+4*— (1+0)*

8 2 2
< = _ _
<3(e-12+06-1?).
We regard ¢ € [1,3] as a variable to plot the graph between the left- and right-hand side of Theorem 10.

Figure 5 depicts the comparative analysis between the left and right sides of Theorem 7.
Here red and green colors reflect the left and right-hand sides respectively.

Figure 5. Comparative analysis between the left and right sides of Theorem 10.

6. Conclusions

Numerous techniques have been utilized to formulate the precise upper bounds of
quadrature or cubature rules. In this regard, various well-known inequalities have been
generalized and modified via different approaches like quantum calculus, fractional cal-
culus, interval analysis, and fractal domains. The current study contains several integral
inequalities of Ostrowski’s type which have been explored here invoking the local differen-
tiable functions and some classical concepts of inequalities as well. Furthermore, we have
supported our primary findings with interesting applications and numerical examples with
figures. In the future, we will conclude some new variants of other related inequalities
through the implementation of majorization concepts and some generalized local frac-
tional operators in association with generalized Mittag-Leffler functions. Also, this work
can be explored by utilizing other classes of convexity. I hope this study will be a major
development in the literature and bring curiosity to interested readers.
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