Study on Abundant Dust-Ion-Acoustic Solitary Wave Solutions of a (3+1)-Dimensional Extended Zakharov–Kuznetsov Dynamical Model in a Magnetized Plasma and Its Linear Stability
Abstract
:1. Introduction
2. Proposed Methods
2.1. Two-Variable -Expansion Technique
2.2. Generalized Exp()-Expansion Scheme
3. Formation of Soliton Solutions of (3+1)-Dimensional Extended Zakharov–Kuznetsov Dynamical Model
3.1. Two-Variable -Expansion Technique
3.2. Generalized Exp()-Expansion Method
4. Stability Analysis
5. Physical Interpretation and Discussion of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, X.; Lu, D.; Arshad, M.; Shehzad, K. Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications. Chin. Phys. B 2021, 30, 020201. [Google Scholar] [CrossRef]
- Shehzad, K.; Seadawy, A.R.; Wang, J.; Arshad, M. Multi peak solitons and btreather types wave solutions of unstable NLSEs with stability and applications in optics. Opt. Quantum Electron. 2023, 55, 1–18. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Arshad, M.; Wang, J. New solitary wave solutions of (3+1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications. Results Phys. 2017, 7, 899–909. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Kuznetsov, E.A. On three dimensional solitons. Zhurnal Eksp. Teoret. Fiz 1974, 66, 594–597. [Google Scholar]
- Biswas, A.; Zerrad, E. Solitary wave solution of the Zakharov–Kuznetsov equation in plasmas with power law nonlinearity. Nonlinear Anal. Real World Appl. 2010, 11, 3272–3274. [Google Scholar] [CrossRef]
- Krishnan, E.V.; Biswas, A. Solutions to the Zakharov-Kuznetsov equation with higher order nonlinearity by mapping and ansatz methods. Phys. Wave Phenom. 2010, 18, 256–261. [Google Scholar] [CrossRef]
- Suarez, P.; Biswas, A. Exact 1-soliton solution of the Zakharov equation in plasmas withpower law nonlinearity. Appl. Math. Comput. 2011, 217, 7372–7375. [Google Scholar] [CrossRef]
- Johnpillai, A.G.; Kara, A.H.; Biswas, A. Symmetry Solutions and Reductions of a Class of Generalized. 2 C 1/-dimensional Zakharov–Kuznetsov Equation. Int. J. Nonlinear Sci. Numer. Simul. 2011, 12, 45–50. [Google Scholar] [CrossRef]
- Ebadi, G.; Mojaver, A.; Milovic, D.; Johnson, S.; Biswas, A. Solitons and other solutions to the quantum Zakharov-Kuznetsov equation. Astrophys. Space Sci. 2012, 341, 507–513. [Google Scholar] [CrossRef]
- Morris, R.; Kara, A.H.; Biswas, A. Soliton solution and conservation laws of the Zakharov equation in plasmas with power law nonlinearity. Nonlinear Anal. Model. Control 2013, 18, 153–159. [Google Scholar] [CrossRef]
- Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersing media. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1970; Volume 192, pp. 753–756. [Google Scholar]
- Liu, Z.M.; Duan, W.S.; He, G.J. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas. Phys. Plasmas 2008, 15, 083702. [Google Scholar] [CrossRef]
- Seadawy, A.R. Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas 2014, 21, 052107. [Google Scholar] [CrossRef]
- Seadawy, A.R. Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma. Phys. A Stat. Mech. Appl. 2015, 439, 124–131. [Google Scholar] [CrossRef]
- Abdullah; Seadawy, A.R.; Wang, J. Three-dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation in a magnetized dusty plasma via acoustic solitary wave solutions. Braz. J. Phys. 2019, 49, 67–78. [Google Scholar] [CrossRef]
- Wang, G.W.; Xu, T.Z.; Johnson, S.; Biswas, A. Solitons and Lie group analysis to an extended quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 2014, 349, 317–327. [Google Scholar] [CrossRef]
- Zhang, B.G.; Liu, Z.R.; Xiao, Q. New exact solitary wave and multiple soliton solutions of quantum Zakharov–Kuznetsov equation. Appl. Math. Comput. 2010, 217, 392–402. [Google Scholar] [CrossRef]
- Pakzad, H.R. Soliton energy of the Kadomtsev–Petviashvili equation in warm dusty plasma with variable dust charge, two-temperature ions, and nonthermal electrons. Astrophys. Space Sci. 2010, 326, 69–75. [Google Scholar] [CrossRef]
- Korteweg, D.J.; De Vries, G., XLI. On the Change of Form of Long Waves advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. Philos. Mag. 2011, 91, 1007–1028. [Google Scholar] [CrossRef]
- Yu, X.; Gao, Y.T.; Sun, Z.Y.; Liu, Y. N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation. Phys. Scr. 2010, 81, 045402. [Google Scholar] [CrossRef]
- Hirota, R. Exact solution of the Korteweg—de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192. [Google Scholar] [CrossRef]
- Alam, M.N.; Hafez, M.G.; Akbar, M.A. Exact traveling wave solutions to the (3+1)-dimensional mKdV–ZK and the (2+1)-dimensional Burgers equations via exp (-ϕ(η))-expansion method. Alex. Eng. J. 2015, 54, 635–644. [Google Scholar] [CrossRef]
- Abdou, M.A. The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 2007, 190, 988–996. [Google Scholar] [CrossRef]
- Xu, G.; Li, Z. Exact travelling wave solutions of the Whitham–Broer–Kaup and Broer–Kaup–Kupershmidt equations. Chaos Solitons Fractals 2005, 24, 549–556. [Google Scholar] [CrossRef]
- Wen, X. Construction of new exact rational form non-travelling wave solutions to the (2+1)-dimensional generalized Broer–Kaup system. Appl. Math. Comput. 2010, 217, 1367–1375. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, D.S. A generalized extended rational expansion method and its application to (1+1)-dimensional dispersive long wave equation. Appl. Math. Comput. 2009, 212, 296–304. [Google Scholar] [CrossRef]
- Yao, Y. Abundant families of new traveling wave solutions for the coupled Drinfel’d–Sokolov–Wilson equation. Chaos Solitons Fractals 2005, 24, 301–307. [Google Scholar] [CrossRef]
- Peng, Y.Z. Exact solutions for some nonlinear partial differential equations. Phys. Lett. A 2003, 314, 401–408. [Google Scholar] [CrossRef]
- Ugurlu, Y.; Kaya, D.; Inan, I.E. Comparison of three semi-analytical methods for solving (1+1)-dimensional dispersive long wave equations. Comput. Math. Appl. 2011, 61, 1278–1290. [Google Scholar] [CrossRef]
- Dinarv, S.; Khosravi, S.; Doosthoseini, A.; Rashidi, M.M. The homotopy analysis method for solving the Sawada-Kotera and Lax’s fifth-order KdV equations. Adv. Theor. Appl. Mech. 2008, 1, 327–335. [Google Scholar]
- Biazar, J.; Badpeima, F.; Azimi, F. Application of the homotopy perturbation method to Zakharov–Kuznetsov equations. Comput. Math. Appl. 2009, 58, 2391–2394. [Google Scholar] [CrossRef]
- Kanth, A.R.; Aruna, K. Differential transform method for solving the linear and nonlinear Klein–Gordon equation. Comput. Phys. Commun. 2009, 180, 708–711. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Erfani, E. Traveling wave solutions of WBK shallow water equations by differential transform method. Adv. Theor. Appl. Mech. 2010, 3, 263–271. [Google Scholar]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 741–750. [Google Scholar] [CrossRef]
- Abazari, R.; Abazari, M. Numerical simulation of generalized Hirota–Satsuma coupled KdV equation by RDTM and comparison with DTM. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 619–629. [Google Scholar] [CrossRef]
- Seadawy, A.R. New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Comput. Math. Appl. 2011, 62, 3741–3755. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, J. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Guo, S.; Zhou, Y. The extended (G′/G)-expansion method and its applications to the Whitham–Broer–Kaup–Like equations and coupled Hirota–Satsuma KdV equations. Appl. Math. Comput. 2010, 215, 3214–3221. [Google Scholar] [CrossRef]
- Lü, H.L.; Liu, X.Q.; Niu, L. A generalized (G′/G)-expansion method and its applications to nonlinear evolution equations. Appl. Math. Comput. 2010, 215, 3811–3816. [Google Scholar] [CrossRef]
- Li, L.X.; Li, E.Q.; Wang, M.L. The (G′/G,1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl.-Math.-A J. Chin. Univ. 2010, 25, 454–462. [Google Scholar] [CrossRef]
- Wang, J.; Shehzad, K.; Seadawy, A.R.; Arshad, M.; Asmat, F. Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov–Kuznetsov systems with their stability. J. Taibah Univ. Sci. 2023, 17, 2163872. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1039–1047. [Google Scholar] [CrossRef]
- Ali, K.K.; Yilmazer, R.; Yokus, A.; Bulut, H. Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics. Phys. A Stat. Mech. Appl. 2020, 548, 124327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, M.; Seadawy, A.R.; Tanveer, M.; Yasin, F. Study on Abundant Dust-Ion-Acoustic Solitary Wave Solutions of a (3+1)-Dimensional Extended Zakharov–Kuznetsov Dynamical Model in a Magnetized Plasma and Its Linear Stability. Fractal Fract. 2023, 7, 691. https://doi.org/10.3390/fractalfract7090691
Arshad M, Seadawy AR, Tanveer M, Yasin F. Study on Abundant Dust-Ion-Acoustic Solitary Wave Solutions of a (3+1)-Dimensional Extended Zakharov–Kuznetsov Dynamical Model in a Magnetized Plasma and Its Linear Stability. Fractal and Fractional. 2023; 7(9):691. https://doi.org/10.3390/fractalfract7090691
Chicago/Turabian StyleArshad, Muhammad, Aly R. Seadawy, Muhammad Tanveer, and Faisal Yasin. 2023. "Study on Abundant Dust-Ion-Acoustic Solitary Wave Solutions of a (3+1)-Dimensional Extended Zakharov–Kuznetsov Dynamical Model in a Magnetized Plasma and Its Linear Stability" Fractal and Fractional 7, no. 9: 691. https://doi.org/10.3390/fractalfract7090691
APA StyleArshad, M., Seadawy, A. R., Tanveer, M., & Yasin, F. (2023). Study on Abundant Dust-Ion-Acoustic Solitary Wave Solutions of a (3+1)-Dimensional Extended Zakharov–Kuznetsov Dynamical Model in a Magnetized Plasma and Its Linear Stability. Fractal and Fractional, 7(9), 691. https://doi.org/10.3390/fractalfract7090691