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Abstract: Aiming at the problem that the global search performance of a transiently chaotic neural
network is not ideal, a multiple frequency conversion sinusoidal chaotic neural network (MFCSCNN)
model is proposed based on the biological mechanism of the brain, including multiple functional
modules and sinusoidal signals of different frequencies. In this model, multiple FCS functions and
Sigmoid functions with different phase angles were used to construct the excitation function of
neurons in the form of weighted sum. In this paper, the inverted bifurcation diagram, Lyapunov
exponential diagram and parameter range of the model are given. The dynamic characteristics
of the model are analyzed and applied to function optimization and combinatorial optimization
problems. Experimental results show that the multiple frequency conversion sinusoidal chaotic
neural network has better global search performance than the transient chaotic neural network and
other related models.

Keywords: electroencephalography; multiple frequency conversion sinusoidal; chaotic neural network;
inverse bifurcation diagram; Lyapunov exponent; combination optimization

1. Introduction

A transiently chaotic neural network (TCNN) is a type of neural network used to
solve optimization problems [1,2]. The structure of a TCNN network is based on the
traditional Hopfield neural network (HNN) by adding self-feedback connections, which
makes the network show complex chaotic dynamic behavior [3–5]. The optimization
mechanism of TCNN is the same as that of HNN, both of which adopt the gradient descent
algorithm [6]. By introducing the chaotic dynamic (self-feedback) term, TCNN can make
use of the ergodic property, pseudo-randomness and non-repeatability of chaos to avoid
local optimization [7,8]. However, TCNN’s chaotic global search performance is still limited
due to the parameter setting, excitation function, annealing function and other factors,
resulting in not being ideal [9,10]. Therefore, scholars conduct comprehensive research
from diverse perspectives to enhance the model’s performance.

The excitation function of TCNN is usually a monotone increasing Sigmoid func-
tion [2,5]. Shuai et al. [11] showed that the effective excitation function can select various
shapes and should exhibit non-monotonic behavior, and then proposed a CNN model with
odd symmetric excitation function. Potapov et al. [12] proposed that the non-monotonic
excitation function is more likely to make the neural network produce chaotic dynamic
behavior. Therefore, domestic and foreign scholars have carried out relevant research
on this. Chen et al. [7] proposed a PLF-TCNN model for solving the traveling salesman
problem using the piecewise linear function as a nonmonotonic excitation function. Uykan
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et al. [13,14] took the double Sigmoid function as the excitation function of neurons and
proposed a DS-HNN model to solve the channel allocation optimization problem. Xu
et al. [15] proposed a SSW-CNN model for solving combinatorial optimization problems
by summing the Shannond wavelet and Sigmoid function as a non-monotonic excitation
function. Zhang et al. [16] designed the Euler formula as a non-monotonic excitation
function, and proposed a CHNN-APHM model for solving blind detection problems. The
above models all propose different forms of non-monotonic excitation functions. Although
the optimization ability of the model has been enhanced to some extent, they all lack a
certain biological mechanism. According to the biological neurological characteristics of
“the higher the frequency, the lower the amplitude” with α, β, δ, γ and θ brain waves in
different states, Hu et al. [17–19] designed the FCS function, weighted it with the Sigmoid
function, and formed the non-monotonic excitation function, and proposed the FCSCNN
model. The model has a certain actual biological mechanism, but the human brain contains
14 to 16 billion neurons, and is divided into multiple functional modules, therefore, each
module’s activity is different [20,21]. The brain waves are composed of different frequency
of sinusoidal signals [22–25]. Therefore, a single FCS function cannot fully reflect the
complex and varied mechanism of action of brain nerve cells.

The excitation function of the transient chaotic neural network conforms to the bio-
logical mechanism of neuroscience, and makes it have more abundant chaotic dynamic
characteristics and better global search optimization performance. Based on the above
theories and biological mechanisms, this paper combines multiple frequency conversion
sinusoidal (FCS) functions with different phase angles and Sigmoid functions to form new
non-monotonic excitation functions, which are a weighted sum. A new TCNN model,
the multiple frequency conversion sinusoidal chaotic neural network (MFCSCNN) model,
is proposed. This model maintains the overall monotonicity of the Sigmoid excitation
function, and at the same time has variable local non-monotonicity, which can produce
complex chaotic dynamic behavior, and is beneficial to make better use of the chaotic
ergodic characteristics for global optimization. At the same time, the model is more consis-
tent with the actual biological mechanism of neural information transmission in terms of
function construction and phase angle introduction. In this paper, the inverse bifurcation
diagram and Lyapunov exponent diagram [26–28] of chaotic neurons are provided, and
their dynamic characteristics are analyzed. Then, the model is applied to function opti-
mization and combinatorial optimization problems [29–33]. It is verified that the model
has good global optimization performance and can overcome local optimization problems
better than others.

2. MFCS Chaotic Neuron Model
2.1. MFCS Function

By introducing several FCS functions and adding phase angle parameters, this paper
proposes a multi-frequency sine (MFCS) function, which is defined as follows:

S(u) =
N

∑
n=1

cn An sin
(

u
εn

+ φn

)
=

N

∑
n=1

cn An(0) · e−an |u| · sin
(

u
εn(0) · e−bn |u|

+ φn

)
(1)

where n is the number of FCS functions, n = 1, 2, . . ., N; u is the function independent
variable, representing the strength of brain activity; An, An(0) are the amplitude and
the initial value of the amplitude (0 ≤ A(0) ≤ 1), respectively; εn is the steepness factor,
representing the magnitude of the frequency of the sine function, εn(0) is the initial valuen of
the steepness factor (εn(0) > 0); an, bn are positive parameters; cn is the weighting coefficient;
and ϕn is the phase angle. When N = 2, A1(0) = 0.8, ε1(0) = 0.02, a1 = 6, b1 = 1, ϕ1 = 0,
c1 = 0.25, A2(0) = 0.4, ε2(0) = 0.04, a2 = 2, b2 = 1.8, ϕ2 = π/2, and c2 = 0.35, the comparison
graph of FCS and MFCS function, as shown in Figure 1, can be derived.
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where S0 is the Sigmoid function, ε0 is the steepness parameter of S0 (ε0 > 0), and other 
parameters are defined by the same Equation (1). When N is 1 and 2, respectively, the 
graph of the f(u) activation function, as shown in Figure 2, can be derived. The independ-
ent variable u is fixed at 0.5, and other parameters are set as shown in Figure 1, except b1 
and b2. The three-dimensional image of f(u) changing with parameters b1 and b2 is shown 
in Figure 3. 
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Figure 1. The comparison graph of (a) FCS and (b) MFCS function.

As shown in Figure 1, the MFCS function, composed of the weighted sum of two FCS
functions, has more complex and variable amplitude-frequency characteristics than a single
FCS function. With the increase of N value, by selecting different values of A(0), ε(0), ϕ, a, b,
and c, the MFCS function will have a richer image waveform, which can better represent
and reflect the biological mechanism of brainwave superposition, complexity, and diversity.
MFCS and FCS function have the same parameter range and action characteristics, as
shown in Table 1.

Table 1. The parameters scope and impact characteristics of MFCS function.

Parameters Range of Values Action Characteristics

A(0) [0, 1] determine the FCS weight with c

ε(0) [0.0044, 0.32] control the lower bound of f; inversely
proportional to f

ϕ [0, 2π] affect MFCS mutability
a (0, ∞) proportional to the rate at which A decreases

b [0.56, 1.8] control the upper bound of f; proportional to the
rate at which f increases

c [0, 1] determine FCS weights with A(0)

Here, c·A(0) determines the weight of the FCS function; the greater the ε(0), the
smaller the f ; with the increase of |u|, the larger a is, the faster A decreases, and the larger
b is, the faster f increases. As shown in Table 1, the frequency band and range of the
MFCS function (0.497~100.311 Hz) are consistent with the frequency band and range of
brainwave (0.5~100 Hz), and the biometric characteristics of the actual brainwave frequency
are maintained.

2.2. MFCS Chaotic Neuron Model

In order to further analyze the dynamic characteristics and application of the MFCS
function in the MFCSCNN model, the excitation function of neurons is constructed by
weighted sum of the MFCS function and Sigmoid function, which is described as follows:

f (u) = S0(u, ε0) +
N

∑
n=1

[cn · Sn(u, εn)] =
1

1 + e−u/ε0
+

N

∑
n=1

cn An sin
(

u
εn

+ φn

)
(2)

where S0 is the Sigmoid function, ε0 is the steepness parameter of S0 (ε0 > 0), and other
parameters are defined by the same Equation (1). When N is 1 and 2, respectively, the graph
of the f (u) activation function, as shown in Figure 2, can be derived. The independent
variable u is fixed at 0.5, and other parameters are set as shown in Figure 1, except b1 and
b2. The three-dimensional image of f (u) changing with parameters b1 and b2 is shown in
Figure 3.
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As shown in Figure 2, the activation function with MFCS added has more obvious
and intense non-monotonicity, while the global monotonicity of the Sigmoid function is
not affected. As shown in Figure 3, the MFCS excitation function is more multidimensional
and has a richer dynamic basis. When ε0(0) = 0.08, N = 2, A1(0) = 0.2, ε1(0) = 0.1, a1 = 6,
b1 = 1.8, ϕ1 = 0, c1 = 0.25, A2(0) = 0.6, ε2(0) = 0.2, a2 = 3.5, b2 = 0.6, ϕ2 = 0.9π, c2 = 0.35,
Sigmoid, MFCS excitation function and its derivative images, as shown in Figure 4, can
be derived.
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As shown in Figure 4, by adjusting the values of the MFCS function’s parameters,
An(0), εn(0), an, bn, cn, and ϕn, it is possible to control whether the derivative approaches
zero. The derivative image of Sigmoid + MFCS has richer variations and possibilities than
the Sigmoid excitation function, and the problem of gradient disappearance is not easy to
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see. All of the above provide a good prerequisite for neurons to produce more complex
chaotic dynamic behavior. To sum up, according to Equation (2) and Figures 1–4, it can
be seen that larger c·An(0), an, and bn, smaller εn(0) and random ϕn are more conducive to
enhancing the non-monotonic degree of the neuronal excitation function. Therefore, this
paper proposes a MFCS chaotic neuron model, which is described as follows:

x(t) = f (y(t)) (3)

y(t + 1) = ky(t)− z(t)[x(t)− I0] (4)

z(t + 1) = (1− β)z(t) (5)

f (u) = S0(u, ε0) +
N

∑
n=1

(cn · Sn(u, εn)) (6)

S0(u, ε0) = 1/
(

1 + e−u/ε0
)

(7)

Sn(u, εn) = An sin
(

u
εn

+ φn

)
= An(0) · e−an |u| · sin

(
u

εn(0) · e−bn |u|
+ rn · φn

)
(8)

where y(t) is the internal state of the neuron, x(t) is the output of the neuron, z(t) is
the self-feedback connection weight (z(t) > 0), k is the damping factor of the nerve di-
aphragm (0 ≤ k ≤1), I0 is the positive parameter, β is the annealing attenuation factor of z(t)
(0 ≤ β ≤1), rn is the random number between [0, 1], and ϕn is 2π. The other parameters are
defined by the same Equation (2).

2.3. Analysis of Dynamic Characteristics

There are also some techniques to present a strategy for identifying chaotic trajectories,
such as inverse bifurcation diagram [10,18], Lyapunov index [17,26] and so on. In this
paper, the dynamic characteristics of the MFCS chaotic neuron model are analyzed by
drawing the inverse bifurcation diagram and calculating its Lyapunov index. The inverse
bifurcation diagram can directly reflect the evolution process of neuronal dynamics and
observe the state changes of chaos. The Lyapunov index can objectively quantify the nodes
and intensity of chaos and periodic motion [3,26]. A positive Lyapunov exponent indicates
that the model is in a chaotic state, and the greater the value, the stronger the degree of
chaos [27,28]. The Lyapunov exponent definition is described as follows [17]:

λ = lim
m→∞

1
m

m−1

∑
i=0

log
∣∣∣∣dy(t + 1)

dy(t)

∣∣∣∣ (9)

As shown from Equation (4):

dy(t + 1)
dy(t)

= k− z(t)
dx(t)
dy(t)

= k− z(t)

[
dS0(y(t))

dy(t)
+

N

∑
n=1

cn
dSn(y(t))

dy(t)

]
(10)

where

dS0(y(t))
dy(t)

=
1
ε0

S0(y(t))(1− S0(y(t))) (11)
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dSn(y(t))
dy(t)

= d
[

An(0) · e−an |y(t)| · sin
(

u
εn(0) · e−bn |y(t)|

+ φn

)]
/dy(t)

=


An(0) ·

[
−ae−any(t) · sin

(
y(t)ebny(t)

εn(0)
+ φn

)
+

e−any(t)

εn(0)
cos

(
y(t)ebny(t)

εn(0)
+ φn

)
·
(

ebny(t) + bny(t)ebny(t)
)]

, y > 0

An(0) ·
[

aeany(t) · sin

(
y(t)e−bny(t)

εn(0)
+ φn

)
+

eany(t)

εn(0)
cos

(
y(t)e−bny(t)

εn(0)
+ φn

)
·
(

e−bny(t) − bny(t)e−bny(t)
)]

, y < 0

= An(0) ·
[
−ae−an |y(t)| · sin

(
y(t)ebn |y(t)|

εn(0)
+ φn

)
+

e−an |y(t)|

εn(0)
cos

(
y(t)ebn |y(t)|

εn(0)
+ φn

)
·
(

ebn |y(t)| + bny(t)ebn |y(t)|
)]

= An(0)e−an |y(t)| ·
[
(1 + bny(t))

ebn |y(t)|

εn(0)
cos

(
y(t)ebn |y(t)|

εn(0)
+ φn

)
− a · sin

(
y(t)ebn |y(t)|

εn(0)
+ φn

)]

(12)

The Lyapunov exponent calculation formula of the MFCS chaotic neuron model is
shown in Equations (9)–(12). If the appropriate parameters are selected, MFCS neurons will
exhibit abundant chaotic dynamic behavior. The neuron model basic parameter settings are
as follows: k = 1, β = 0.005, ε0 = 0.02, I0 = 0.65, z(0) = 0.8; MFCS function related parameters
setting are as follows: N = 2, A1(0) = 0.8, ε1(0) = 0.02, a1 = 6, b1 = 1, ϕ1 = 0, A2(0) = 0.4,
ε2(0) = 0.04, a2 = 2, b2 = 1.8, r2·ϕ2 = π/2. The output of the neuron x(t) is initialized
randomly. x(t) is iteratively calculated according to the model Equations (3)–(8). The
value of each x(t) are recorded. Inverse bifurcation diagram of the transient chaotic neuron
(c1 = c2 = 0), FCS chaotic neuron (c1 = 0.25, c2 = 0), MFCS chaotic neuron (c1 = 0.25, c2 = 0.6)
and time evolution diagram of the Lyapunov exponent are described as shown in Figure 5
by Matlab R2020a:
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The Lyapunov exponent calculation formula of the MFCS chaotic neuron model is 
shown in Equations (9)–(12). If the appropriate parameters are selected, MFCS neurons 
will exhibit abundant chaotic dynamic behavior. The neuron model basic parameter set-
tings are as follows: k = 1, β = 0.005, ε0 = 0.02, I0 = 0.65, z(0) = 0.8; MFCS function related 
parameters setting are as follows: N = 2, A1(0) = 0.8, ε1(0) = 0.02, a1 = 6, b1 = 1, φ1 = 0, A2(0) = 
0.4, ε2(0) = 0.04, a2 = 2, b2 = 1.8, r2·φ2 = π/2. The output of the neuron x(t) is initialized ran-
domly. x(t) is iteratively calculated according to the model Equations (3)–(8). The value of 
each x(t) are recorded. Inverse bifurcation diagram of the transient chaotic neuron (c1 = c2 
= 0), FCS chaotic neuron (c1 = 0.25, c2 = 0), MFCS chaotic neuron (c1 = 0.25, c2 = 0.6) and time 
evolution diagram of the Lyapunov exponent are described as shown in Figure 5 by Matlab 
R2020a: 
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Figure 5. Cont.
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neuron. Note: The black dashed line in subfigures (b,d,f,h) is line of reference with 0.

As shown in Figure 5, under the same parameter conditions, neuronal output x gradu-
ally changes from a chaotic state to a period-doubling state with the increase of iterations
and the decrease of z (. . ., 4 cycles, 2 cycles, 1 cycle). The output range of the TCN, FCS, and
MFCS chaotic neuron are [0, 1], [−0.0842, 1.0870], [−0.2006, 1.1562], respectively. In order
to further prove our results quantitatively, we used the average Lyapunov exponents from
0 to 400 iterations to quantitatively compare the chaos characteristics of the two models.
After calculation, the average Lyapunov exponents of the TCN, FCS, and MFCS chaotic
neuron were −0.4942, 0.0239, 0.3753, respectively. MFCS has an inverted bifurcation plot
with greater output range, better distribution uniformity, and higher and more positive Lya-
punov exponents than FCS, transient neuron models. To sum up, the MFCS chaotic neuron
model has richer and stronger chaotic dynamics, which lays a good theoretical foundation
for its applications in intelligent optimization, neural computing, secure communication
and so on.

3. Multiple Frequency Conversion Sinusoidal Chaotic Neural Network (MFCSCNN)
Model
3.1. MFCSCNN Model

According to the MFCS chaotic neuron model above and the network structure of
TCNN, the MFCSCNN model is constructed, which is described as follows:

x(t) = f (y(t)) (13)

yi(t + 1) = kyi(t) + α

[
N

∑
j=1,j 6=i

wijxj(t) + Ii

]
− zi(t)[xi(t)− I0] (14)

z(t + 1) = (1− β)z(t) (15)
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f (u) = S0(u, ε0) +
N

∑
n=1

(cn · Sn(u, εn)) (16)

S0(u, ε0) = 1/
(

1 + e−u/ε0
)

(17)

Sn(u, εn) = An sin
(

u
εn

+ φn

)
= An(0) · e−an |u| · sin

(
u

εn(0) · e−bn |u|
+ rn · φn

)
(18)

where α is the input positive proportion parameter, wij is the connection weight between
neuron i and neuron j (wij = wji, wii = 0), Ii is the input threshold of neuron i, and the rest
of the parameters are defined in the same way as the MFCS chaotic neuron model. The
signal flow diagram and network structure diagram of the MFCSCNN model are shown in
Figure 6:
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To obtain good optimization performance of the model, it is necessary to properly
select and balance the relationship between the basic parameters of the model and the
MFCS parameter settings. The higher the complexity of the optimization problem, the
stronger the non-monotony of MFCS is required. In the process of using the model, the
choice of parameters is indeed a very critical factor, not only because of the initial value
sensitivity of chaos, but also because the model has multiple parameters with different
meanings. A relatively larger cn·An(0), an, and bn and a smaller εn(0) can be selected within
the reference range in Table 1 [17–19]. Among the basic parameters, α represents the
weight of the feedback signal received by the current neuron from other neurons, which
is essentially used to balance the strength of chaotic dynamics and gradient descent [1–4].
z(0) and β mainly determine the initial value and decay rate of the self-feedback term
(chaos term), respectively [1–8]. For the adjustment mechanism of α, z(0), and β, it is
usually expected that the early stage is dominated by chaos search (improving the global
search ability, avoiding local optimization), and the late stage is dominated by gradient
convergence (improving the convergence speed). Appropriate parameter selection of
the model determines whether the algorithm can find the optimal solution quickly and
accurately, which is always the difficulty faced by the TCNN class optimization model.
Therefore, in order to facilitate rapid, effective and clear research and the use of appropriate
parameter settings, this paper summarizes all parameter settings and selection guidance
by referring to many literatures [1–10,17–19] and the above experimental analysis and
verification, as shown in Table 2.
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Table 2. The guidance of parameter settings for MFCSCNN model.

Parameters Name Theoretical
Values

Experimental
Values

Empirical
Values

k [1,2] Memory constant (0, ∞) [0, 1] [0.9, 1]
α [1–4] Positive parameter (0, ∞) (0, 1] [0.005, 0.1]

β [1–5,8] Annealing factor [0, 1] (0, 1) [0.001, 0.05]
z(0) [6,7] Initial value of self feedback [0, 1] [0.7, 1] [0.6, 0.8]
I0 [7,8] Positive parameter (0, ∞) [0, 1] [0.45, 0.65]

ε0 [9,10] Steepness parameter [0, ∞) [0.01, 0.5] [0.01, 0.1]
An(0) [17] Initial value of the amplitude [0, ∞) (0, 1.2] [0.1, 0.8]
εn(0) [18] Initial value of teepness (0, ∞) [0.0044, 0.32] [0.01, 0.1]

an [18] Positive parameter (0, ∞) [1, 10] [3, 8]
bn [19] Positive parameter (0, ∞) [0.56, 1.8] [0.6, 1.5]
cn [19] Weighting coefficient (0, ∞) [0, 1] [0.2, 0.8]

r2 Random coefficient [0, 1] [0, 1] [0, 1]
ϕn Phase Angle [0, 2π] [0, 2π] π or 2π

Table 2 shows the theoretical, experimental, and empirical values of the parameters.
The theoretical values of these parameters are generally relatively certain, but the range
is relatively large, and cannot play a good reference role in the actual experiment process.
Experimental values are usually derived from references and experiments. Compared with
the theoretical value, the parameter setting range of experimental values is relatively clear
and narrow. It can ensure that the model can easily generate chaotic dynamics in these
ranges. However, the range of this experimental value is still not accurate enough, which
will make it difficult to find a more suitable parameter value to ensure the optimization
ability of the model. Therefore, this paper provides a smaller range of parameters (empirical
values) for the new model in the last column of Table 2. For users who have no experience
in parameter selection, these empirical values can be used as a good reference.

The parameters shown in Table 2 restrict and influence each other. A change in one
parameter will inevitably lead to a change of the dynamic characteristics in the overall
model. If the change is caused by one parameter beyond the regulating ability of another
parameter, it will lead to the invalidation of the parameters and the model. If any parameter
is improperly selected, the algorithm cannot find the optimal solution or appear invalid
solutions. The above provides the parameter evolution law and reference range of the
MFCSCNN model, which is convenient to provide an effective reference for experiment
setting when solving complex optimization problems by using the algorithm. The selection
and change of MFCS parameters ultimately affect the non-monotonicity of the excitation
function. If the non-monotonicity is too large, it will affect the stability of the model,
and if it is too small, it will not produce the sufficient chaotic global search effect. The
ideal parameter selection adjustment strategy should be based on the difficulty of the
optimization problem and the current solution state to adjust the relevant parameter values
in real time, which is also one of the key difficulties in this kind of model research.

3.2. Optimization Mechanism

The self-feedback term and non-monotonic excitation function are introduced into
the MFCSCNN model based on the HNN structure to generate complex chaotic dynamics
characteristics. With the decrease of z, the self-feedback term gradually attenuates to
zero, and the model also evolves from chaotic search to the gradient descent state, and
finally converges to the optimal solution [29,30]. Therefore, the optimization mechanism of
MFCSCNN is the same as that of HNN, which maps the objective function of the problem
to the energy function of the model and the dynamic evolution process of the model to
the optimization process of the objective function [31]. When the model converges to the
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fixed point, the neuronal output is the solution of the current optimization problem [32].
According to the HNN optimization mechanism, the following relations exist:

dyi
dt

= − ∂E
∂xi

(19)

However, there is an additional energy term in the expression of the energy function
due to the self-feedback term, which is also the key to generating chaotic ergodic search
behavior (avoiding local optimality). The MFCSCNN model energy function is described
as follows:

E(t) = EHop + H

= − 1
2

N

∑
i = 1
i 6= j

N

∑
j = 1
j 6= i

wijxi(t)xj(t)−
N

∑
i=1

Iixi(t) + 1
τ

N

∑
i=1

∫ xi(t)
0 f−1(ξ)dξ + H

(
xi, wij, Ii

)
(20)

where H is the additional energy term, i = 1,2. . ., N, N is the number of neurons, wij is the
connection weight between neuron i and neuron j, xi is the output of the i th neuron, Ii is
the threshold of the i th neuron, τi is the time constant of the i th neuron, and f−1(·) is the
inverse function of the activation function.

4. Application of the MFCSCNN Model for Optimization Problems
4.1. Application of the Model for Function Optimization

In order to verify the optimization performance of the algorithm, a classical function
optimization problem is described as follows:

f (x1, x2) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2 (21)

where f is the objective function (the optimal value is −1.0316285), and x1, x2 are the
independent variables (the extreme value points are −0.089842, 0.71266, respectively).
MFCSCNN is used to optimize the function, and the parameters are set as follows: Xk = 1,
α = 0.03, β = 0.025, ε0 = 0.02, I0 = 0.65, z(0) = 0.8, A1(0) = 0.4, ε1(0) = 0.02, a1 = 6, b1 = 1,
c1 = 0.25, ϕ1 = 0, A2(0) = 0.8, ε2(0) = 0.04, a2 = 2, b2 = 0.5, c2 = 0.35, and ϕ2 = π. The time
evolution of the neuron output x1, x2 and the energy function E of the MFCSCNN model
for optimizing function f is shown in Figure 7:
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The internal state equation of MFCS neurons for solving TSP is as follows: 
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As shown in Figure 7, when the model evolved to 212 steps, E = −1.03162845,
x1 = −0.089834, x2 = 0.71266, the time evolution diagram showed rich evolution pro-
cesses of chaotic search and inverted bifurcations, and finally converged to the fixed point
by gradient. During the experiment, it was found that small parameter changes will affect
the dynamic evolution process of the whole model, which also confirms the initial value
sensitivity of chaos. The experimental results show that MFCSCNN can solve the function
optimization problem well. In order to better verify the optimization performance of the
model, the complex Traveling Salesman Problem (TSP) in combinatorial optimization was
selected for experiments.

4.2. Application of the Model for Combinatorial Optimization

The Traveling Salesman Problem (TSP) can be described as follows: suppose there are
N cities providing their location and distance from each other, a closed path needs to be
found; each city is only visited once, so to return to the starting city, the distance required
for this path is the shortest [33,34]. The objective function of the TSP is as follows:

E =
W1

2

 N

∑
i=1

(
N

∑
j=1

xij − 1

)2

+
N

∑
j=1

(
N

∑
i=1

xij − 1

)2
+

W1

2

N

∑
i=1

N

∑
j=1

N

∑
k=1

(
xk,j+1 + xk,j−1

)
xijdik (22)

The internal state equation of MFCS neurons for solving TSP is as follows:

yij(t + 1) = kyij(t)− z(t)
(

xij(t)− I0
)
+

α

{
−W1

[
N
∑
l 6=j

xil(t) +
N
∑

k 6=i
xkj(t)

]
−W2

[
N
∑

k 6=i
dik

(
xk,j+1(t) + xk,j−1(t)

)]
+ W1

}
(23)

where xi0 = xin, xi(n+1)=xi1, xij represents the output of the neuron, which represents the city
i being accessed at the j th; W1 and W2 are the coupling parameters corresponding to the
constrains and cost function of the tour length, respectively; and dij represents the distance
between city i and city j.

As shown in Figure 8, TSP problems of cities 10, 30 and 75 are selected as experi-
mental objects, and the shortest path lengths shown are 2.6776, 4.237406 and 5.434474,
respectively [15,17,19,30].

Select the MFCSCNN model parameters as follows: k = 1, α = 0.025, β = 0.01, ε0 = 0.02,
I0 = 0.65, z(0) = 0.8, A1(0) = 0.1, ε1(0) = 0.2, a1 = 3, b1 = 1.8, c1 = 0.25, ϕ1 = 0, A2(0) = 0.5,
ε2(0) = 0.1, a2 = 6, b2 = 0.9, c2 = 0.15, ϕ2 = 0.8π, W1 = 1, and W2 = 1. By randomly initializing
the value of xij, the model solves the output x1,1 of a single neuron and the evolution
diagram of the energy function for TSP of 10 cities, as shown in Figure 9.
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Figure 8. The optimal path of (a) 10 and (b) 30 cities TSP.
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Figure 9. The neuron output (a) x1,1 and energy function (b) E of 10 cities TSP by MFCSCNN.

As shown in Figure 9, the final energy function value is 1.3388 and the shortest path
length is 2.6776. MFCSCNN can solve the TSP problem of 10 cities well. In order to further
verify the ability of the model to solve more TSP problems with a higher number and
complexity, the TSP problems of 30 cities were selected for experimental verification. The
parameters of the MFCSCNN model were selected as follows: k = 1, α = 0.02, β = 0.005,
ε0 = 0.02, I0 = 0.65, z(0) = 0.8, A1(0) = 0.2, ε1(0) = 0.2, a1 = 4, b1 = 1.5, c1 = 0.25, ϕ1 = 0,
A2(0) = 0.4, ε2(0) = 0.1, a2 = 2, b2 = 0.8, c2 = 0.15, ϕ2 = 0.6π, W1 = 1, and W2 = 1. By randomly
initializing the value of xij, the output x1,1 of a single neuron and the evolution diagram of
the energy function are shown in Figure 10 for TSP of 30 cities with MFCSCNN.
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As shown from Figure 8, Figure 9 and Figure 10, MFCSCNN can solve the TSP problem
well. In order to verify the optimization performance of MFCSCNN, the basic parameters of
the model are fixed. The different intelligent optimization algorithms (HNN [4], TCNN [10],
ITCNN [13], NCNN [35], FCSCNN [17]) are selected for comparative experiments. The val-
ues of xij and yij were randomly initialized. In total, 2000 and 200 independent experiments
were carried out with the iteration times of each experiment being 1000, 2000, respectively.
Statistical experimental results are shown in Tables 3 and 4.

Table 3. The results of the different models for 10-city TSP.

Model NLP NOP RLP RGM

HNN [4] 1582 930 79.10% 46.50%
TCNN [10] 1972 1809 98.60% 90.45%
ITCNN [13] 2000 1900 100% 95.00%
NCNN [35] 2000 1910 100% 95.50%

FCSCNN [17] 2000 1981 100% 99.05%
MFCSCNN 2000 1992 100% 99.60%

Note: Number of Legitimate Path, NLP; Number of Optimal Path, NOP; Rate of Legitimate Path, RLP; Rate of
Global Minima, RGM. The best performance index are marked in bold.

Table 4. The results of the different models for 30-city TSP.

Model NLP NOP RLP RGM

HNN [4] 112 7 56.0% 3.5%
TCNN [10] 189 45 94.5% 22.5%
ITCNN [13] 196 52 98.0% 26.0%
NCNN [35] 195 60 97.5% 30.0%

FCSCNN [17] 193 61 96.5% 30.5%
MFCSCNN 195 68 97.5% 34.0%

The best performance index are marked in bold.

For the TSP problem of 75 cities, the optimal rate of most algorithms is low, and cannot
find the optimal solution. Therefore, evaluation index J [36] is introduced to evaluate the
optimization performance of different models, and the expression is shown as follows:

J =
AVS− GM

GM
× 100% (24)

where AVS is the mean of the legal solution, and GM is the global optimal solution. The
lower the value of J, the stronger the optimization performance. The values of xij and yij
were randomly initialized. In total, 200 independent experiments were carried out with the
iteration times of each experiment being 8000, respectively. Statistical experimental results
are shown in Table 5.

Table 5. The results of the different models for 75-city TSP.

Model NLP RLP BS J

HNN [4] 32 16.0% 6.4703 25.675%
TCNN [10] 103 51.5% 5.7617 13.534%
ITCNN [13] 125 62.5% 5.5884 10.802%
NCNN [35] 118 59.0% 5.6101 11.513%

FCSCNN [17] 136 68.0% 5.4345 8.621%
MFCSCNN 146 73.0% 5.4345 8.336%

Note: Best Solution, BS; Evaluation Index, J. The best performance index are marked in bold.

The richer the chaotic dynamic characteristics, the stronger the optimization ability of
the model [37]. As shown from Table 3, Tables 4 and 5, MFCSCNN has a better optimal
ratio and accuracy than HNN, TCNN, ITCNN, NCNN and FCSCNN under the same
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basic parameter conditions. The larger the number of cities in TSP problem, the better
to test the optimization ability of the model [38]. Furthermore, it has better performance
when solving larger scale TSP problems. The introduction of more complex and significant
non-monotonic excitation functions in MFCSCNN provides a rich global search basis for
chaotic dynamics in the early stage. At the same time, MFCSCNN has more variable
and complex function characteristics than other models, which also confirms the previous
dynamic analysis results. Therefore, compared with other related algorithms, MFCSCNN
shows better optimization performance.

5. Conclusions

In this paper, a new MFCS function is designed according to the biological mechanism
of the brain wave composed of multiple sinusoidal frequency signals by introducing several
FCS functions and adding phase angle parameters, and a new MFCSCNN model is pro-
posed by combining it with the Sigmoid function to form the excitation function of chaotic
neurons. By analyzing the activation function diagram, inverted bifurcation diagram and
Lyapunov exponential diagram of chaotic neurons, it is proved that MFCS chaotic neurons
have richer and more complex chaotic dynamic characteristics than TCN and FCS chaotic
neurons, which lays a good foundation for global optimization. At the same time, according
to the optimization mechanism and theoretical and experimental analysis, the parameter
selection range of the model is provided. In order to further verify the optimization perfor-
mance of the MFCSCNN model, the classical function optimization and TSP in NP problem
with higher complexity were selected for the simulation experiments. The experimental
results showed that the proposed MFCSCNN model has better optimization performance
and accuracy than several existing optimization algorithms, especially in the optimization
problems with higher complexity, which proves the effectiveness and feasibility of the
model. The scope of the model can be expanded to address various optimization problems.
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