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Abstract: An initial value problem for nonlinear fractional differential equations with a tempered
Caputo fractional derivative of variable order with respect to another function is studied. The absence
of semigroup properties of the considered variable order fractional derivative leads to difficulties
in the study of the existence of corresponding differential equations. In this paper, we introduce
approximate piecewise constant approximation of the variable order of the considered fractional
derivative and approximate solutions of the given initial value problem. Then, we investigate the
existence and the Ulam-type stability of the approximate solution of the variable order Ψ-tempered
Caputo fractional differential equation. As a partial case of our results, we obtain results for Ulam-
type stability for differential equations with a piecewise constant order of the Ψ-tempered Caputo
fractional derivative.
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1. Introduction

Fractional derivatives and integrals of variable order are widely studied in the lit-
erature, and a comprehensive review and a good mathematical framework of fractional
calculus of variable order, based on Scarpi’s approach, is provided in [1]. Surveys of
the types of derivatives/integrals of variable order with some physical discussions are
given in [2,3]. There are several types of definitions of variable order fractional deriva-
tives/integrals (see, for example, [4–6]). These definitions keep the basic property of
fractional derivatives—the nonlocality. This property unfortunately does not have the semi-
group property when variable order is applied (see, for example, [5,7]). This does not allow
us directly to convert the differential equation with variable order fractional derivative to
an equivalent fractional integral equation as is possible for fractionals of constant order
(see, for example, [8–13]). In [14], the author defines a derivative in a new way, again called
a fractional derivative. This derivative keeps the locality property of ordinary derivatives
and it enables one to apply directly a variable order with a semigroup property.

One of the main problems, existence, is studied by many authors. For the Riemann–
Liouville fractional derivative of variable order for differential equations, existence is
studied in [7], and the concept of approximate solution of the given problem is introduced.
This concept is based on the application of piecewise constant orders of fractional integrals
and derivatives used for various problems in [15,16].

To be more general, we consider a tempered Caputo fractional derivative with respect
to another function and variable order. This type of derivative has an exponential kernel,
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and it generalizes the classical Caputo fractional derivative. Furthermore, this derivative is
called the variable order ψ-tempered Caputo fractional derivative. In this paper, we study
the initial value problem of a nonlinear differential equation with the abovementioned
fractional derivative. Based on the tempered Caputo fractional derivative, its application to
differential equations, and some known results for this type of derivative, we introduce
approximate solutions of the given problem and study existence and Ulam-type stability.
Several examples are provided to illustrate the main results. Furthermore, as a partial
case, we obtain existence and Ulam-type stability results for differential equations with a
piecewise constant order ψ-tempered Caputo fractional derivative.

2. Ψ-Tempered Fractional Calculus of Variable Order

There are several definitions for fractional integrals and derivatives of variable order
depending on the time variable (see, for example, [5]).

In this paper, we combine the ideas of variable order fractional integrals and deriva-
tives (see [5]) with Ψ-tempered fractional derivatives/integrals to generalize fractional
calculus in variable order.

Let 0 < T < ∞ be a fixed number; ψ : [0, T] → (0, ∞) be a smooth increasing
function with ψ′(t) > 0 almost everywhere in [0, T]; λ > 0 be a given constant; the function
δ : [0, T] → (0, 1) be locally integrable; and υ ∈ ACψ([0, T],R) where

ACψ([0, T],R) = {h : [0, T] → R :
h′(t)
ψ′(t)

∈ AC([0, T],R)} .

Definition 1. The tempered Riemann–Liouville fractional integral of variable order with respect to
the function ψ (TFIVO) is defined by (here t ∈ (0, T])

0Iδ(t),λ
ψ(t) υ(t) =

1
Γ(δ(t))

∫ t

0
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))δ(t)−1ψ′(s)υ(s)ds.

We will also generalize the Caputo-type fractional derivative of variable order com-
bining the ideas of [17] and the type III Caputo fractional derivative of variable order (see
Definition 2 [5]).

Definition 2. The tempered Caputo fractional derivative of variable order with respect to the
function ψ(t) (GFDVO) is defined by

C
0 D

δ(t),λ
ψ(t) υ(t) = 0I1−δ(t),λ

ψ(t)

(
1

ψ′(t)
d
dt + λ

)
υ(t)

= 1
Γ(1−δ(t))

(∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−δ(t)ν′(s)ds

+λ
∫ t

0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−δ(t)ψ′(s)ν(s)ds
)

, t ∈ (0, T].

Remark 1. The tempered derivatives/integrals with respect to another function, given in Definitions
1 and 2, are called Ψ-tempered derivatives/integrals.

Remark 2. TFIVO and GFDVO are generalizations of the well-known and studied fractional
integrals and derivatives (see, for example, [17–19]).

2.1. Some Results on Caputo-Type Fractional Derivatives of Constant Order

In our paper, we will use some known results for tempered Caputo fractional deriva-
tive with reference to another function and a constant order.

Lemma 1 (Theorem 5.2 [18]). Let α ∈ (0, 1) be a given constant, λ ∈ R, the function ψ : [0, b] →
(0, ∞), b < ∞ be a smooth increasing function with ψ′(t) > 0 almost everywhere in [0, b], and
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f ∈ C([0, b]×R,R). Then, the IVP for the fractional differential equation with the ψ-tempered
Caputo fractional derivative of constant order

C
0 Dα,λ

ψ(t)y(t) = f (t, y(t)), t ∈ (0, b], y(0) = y0, (1)

is equivalent to the fractional integral equation

y(t) = e−λ(ψ(t)−ψ(0))y0

+ 1
Γ(α)

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))α−1ψ′(s) f (s, y(s))ds, t ∈ [0, b],

both to be solved for functions y ∈ ACψ([0, T],R).

Lemma 2 (Lemma 5.4 [18]). Let α ∈ (0, 1), λ ∈ R, ψ be a smooth monotonic function on [0, b]
with ψ′ > 0 almost everywhere, the function f ∈ C([0, b]×R,R) with 0 < b < ∞ and

| f (t, u)− f (t, v)| ≤ L|u − v|, u, v ∈ R, t ∈ [0, b].

Then, the IVP (1) has an unique solution y ∈ ACψ([0, b],R), provided that
L < Γ(α + 1)(ψ(b)− ψ(0))−αeλ(ψ(b)−ψ(0)).

Lemma 3 (Corollary 2 [20]). Let α > 0, b ∈ (0, ∞), ψ : [0, T] → (0, ∞)) be a smooth increasing
function with ψ′(t) > 0 almost everywhere in [0, T], C, K > 0, u ∈ C([0, b], [0, ∞)). If

u(t) ≤ C + K
∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)u(s)ds, t ∈ (0, b],

then we have
u(t) ≤ CEα

(
KΓ(α)(ψ(t)− ψ(0))α), t ∈ (0, b].

We will use the following result for the Caputo fractional derivative with respect
to another function (a special case of GFDVO with λ = 0 and δ(t) ≡ α ∈ (0, 1) being
a constant).

Lemma 4 (Lemma 2 [21]). Let µ ∈ R, α ∈ (0, 1) and ψ : [0, T] → (0, ∞) be a smooth increasing
function with ψ′(t) > 0 almost everywhere in [0, T]. Then, the function Eα

(
µ(ψ(t)− ψ(0))α) is

a solution of the equation C
0 Dα

ψ(t)y(t) = µy(t) where C
0 Dα

ψ(t) is the Caputo fractional derivative
with reference to another function given in Definition 2 with λ = 0 and δ(t) ≡ α.

Lemma 5 (Lemma 1 [21]). Given β > 1, we have

C
0 Dα

ψ(t)(ψ(t)− ψ(0))β−1 =
Γ(β)

Γ(β − α)
(ψ(t)− ψ(0))β−α−1.

2.2. Some Results for Variable Order of Fractional Derivatives

For a general function δ(t), the ψ-tempered Riemann–Liouville variable order frac-
tional integral does not have the semigroup property.

Example 1. Let T = 2, γ(t) = 0.75t + 0.15, δ(t) = 0.25(t + 1), λ = 0, ψ(t) = t and υ(t) ≡ 1.
We will compare 0Iγ(t),λ

ψ(t)

(
0Iδ(t),λ

ψ(t)

)
υ(t)|t=1 and 0Iγ(t)+δ(t),λ

ψ(t) υ(t)|t=1 applied in Definition 1.
From Definition 1 we have

0Iγ(t)+δ(t),λ
ψ(t) υ(t)

= 1
Γ(γ(t)+δ(t))

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))γ(t)+δ(t)−1ψ′(s)υ(s)ds

= 1
Γ(γ(t)+δ(t))

∫ t
0 (ψ(t)− ψ(s))γ(t)+δ(t)−1ψ′(s)ds

(2)
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and
0Iγ(t),λ

ψ(t)

(
0Iδ(t),λ

ψ(t)

)
υ(t)

= 1
Γ(γ(t))

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))γ(t)−1ψ′(s)

(
0Iδ(s),λ

ψ(s)

)
υ(s)ds

= 1
Γ(γ(t))

∫ t
0

1
Γ(δ(s)) (t − s)γ(t)−1 ∫ s

0 (t − s)δ(s)−1dσds

= 1
Γ(γ(t))

∫ t
0

Γ(0.25+0.25s)
Γ(1.25+0.25s)Γ(0.25s+0.25) (t − s)γ(t)−1s0.25s+0.25ds.

(3)

Note
0Iγ(t)+δ(t),λ

ψ(t) υ(t)
∣∣∣t=1 ≈ 0.805043,

0Iγ(t),λ
ψ(t)

(
0Iδ(t),λ

ψ(t)

)
υ(t)

∣∣∣∣t=1 ≈ 1.16595
Γ(0.9)

= 1.09107.

Thus, 0Iγ(t),λ
ψ(t)

(
0Iδ(t),λ

ψ(t)

)
υ(t)

∣∣∣t=1 ̸= 0Iγ(t)+δ(t),λ
ψ(t) υ(t)

∣∣∣
t=1

.

Remark 3. Without the semigroup property of the ψ-tempered Riemann–Liouville variable order
fractional integral (see Example 1), the integral presentation of Lemma 1 is not true for the case
when the order is variable (see, for example, Equation (7) [22]).

In our study, we will use the ideas of Lemma 6 [7], which will be slightly modified:

Lemma 6. Let δ ∈ C([0, T], (0, 1)). Then, for any ϵ > 0 there exist a natural number m = m(ϵ)
and points Tk = Tk(ϵ) : 0 = T0 < T1 < T2 < . . . < Tm−1 < Tm = T such that

|δ(t)− α(t)| ≤ ϵ, t ∈ [0, T],

where α(t) = ∑m
k=1 δ(Tk−1)Ik(t) for t ∈ [0, T], and Ik(t) is the indicator of the interval [Tk−1, Tk],

k = 1, 2, . . . , m, i.e.,

Ik(t) =
{

1, i f t ∈ (Tk−1, Tk],
0, otherwise.

Proof. Let ϵ > 0 be a given fixed number. Note that δ is uniformly continuous on [0, T], so
there exists a θ > 0 with |δ(t)− δ(s)| ≤ ϵ for t, s ∈ [0, T] and |t − s| ≤ θ .

Take p1 = δ(0). If |δ(t)− p1| ≤ ϵ for t ∈ (0, T], then we choose m = 1 and T1 = T
and stop the process. Otherwise, there exists a number T1 ∈ (0, T] (note T1 ≥ θ) such
that |δ(t)− p1| ≤ ϵ, t ∈ [0, T1]. Take p2 = δ(T1). If |δ(t)− p1| ≤ ϵ for t ∈ (T1, T], then we
choose m = 2, T2 = T and stop the process. Otherwise, there exists a number T2 ∈ (T1, T]
(note T2 − T1 ≥ θ) such that |δ(t)− p2| ≤ ϵ, t ∈ (T1, T2]. Take p3 = δ(T2) and continue this
process (the process will stop after a finite number since there exists a positive integer l
with l θ ≥ T). Thus, we have constructed (for some m) the function

α(t) =
m

∑
k=1

pk Ik(t) =





δ(T0), i f t ∈ [T0, T1],
δ(T1), i f t ∈ (T1, T2],
...
δ(Tm), i f t ∈ (Tm−1, Tm].

(4)

□

Definition 3. The piecewise constant function α defined by (4) will be called an ϵ-approximation of
the variable order δ(t).

Remark 4. Note that the partition as well as the piecewise function α, defined by (4), depend on the
number ϵ.
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Example 2. Let T = 2, δ(t) = 0.5 sin(t) + 0.4 ∈ (0, 1).
Let ϵ = 0.2. We will construct an 0.2-approximation of the fractional order δ(t). Since

|δ(t)− δ(0)| = |0.5 sin(t)| ≤ 0.2 for t ∈
(
0, sin−1( 0.2

0.5
)
= sin−1(0.4)

]
we take T1 = sin−1(0.4) ∈

(0, 2). Then, from |δ(t)− δ (T1)| = |0.5 sin (t) − 0.5(0.4)| ≤ 0.2 for t ∈ (T1, T2) with
T2 = sin−1(0.8) ∈ (T1, 2). Furthermore, |δ(t)− δ (T2)| = |0.5 sin (t) − 0.5(0.8)| ≤ 0.2 for
t ∈ [T2, 2].

Therefore, the partition is 0 < sin−1(0.4) < sin−1(0.8) < 2, and the 0.2-approximation of
δ(t) is

α(t) =





0.4, i f t ∈
[
0, sin−1(0.4)

]
,

0.6, i f t ∈
(
sin−1(0.4), sin−1(0.8)

]
,

0.8, i f t ∈
(
sin−1(0.8), 2

]
.

(5)

Let ϵ = 0.1. Since |δ(t)− δ(0)| = |0.5 sin(t)| ≤ 0.1 for t ∈
(
0, sin−1 ( 0.1

0.5
)
= sin−1(0.2)

]

we take T1 = sin−1(0.2) ∈ (0, 3). Then, from |δ(t)− δ (T1)| = |0.5 sin (t) − 0.5(0.2)| ≤ 0.1
for t ∈ (T1, T2) with T2 = sin−1( 0.2

0.5
)
= sin−1(0.4) ∈ (T1, 2). Furthermore, |δ(t)− δ (T2)| =

|0.5 sin(t)− 0.5(0.4)| ≤ 0.1 for t ∈ [T2, T3] with T3 = sin−1 0.3
0.5 = sin−1(0.6). Furthermore,

|δ(t)− δ (T3)| = |0.5 sin (t)− 0.5(0.6)| ≤ 0.1 for t ∈ [T3, T4] with T4 = sin−1 0.4
0.5 = sin−1 0.8.

Therefore, the partition is 0 < sin−1(0.2) < sin−1(0.4) < sin−1(0.6) < sin−1(0.8) < 2
and the 0.1-approximation of δ(t) is

α(t) =





0.4, i f t ∈
[
0, sin−1(0.2)

]
,

0.5, i f t ∈
(
sin−1(0.2), sin−1(0.4)

]
,

0.6, i f t ∈
(
sin−1(0.4), sin−1(0.6)

]
,

0.7, i f t ∈
(
sin−1(0.6), sin−1(0.8)

]
,

0.8, i f t ∈
(
sin−1(0.8), 2

]
.

(6)

The example illustrates the ϵ-approximation of the fractional order depends on ϵ.

Note that the claim of Lemma 6 could be proved on a half real line.

Lemma 7. Let δ ∈ C([0, ∞), (0, 1)) be such that limt→∞ δ(t) = ξ ∈ (0, 1). Then, for any ϵ > 0,
there exist a natural number m = m(ϵ) and points Tk = Tk(ϵ) : 0 < T1 < T2 < . . . < Tm+1 < ∞
such that

|δ(t)− α(t)| < ϵ, t ∈ [0, ∞),

where α(t) = ∑m+1
k=1 δ(Tk−1)Ik(t) + ξ IT(t) for t ∈ [0, T], Ik(t) is the indicator of the interval

[Tk−1, Tk], k = 1, 2, . . . , m + 1, and IT(t) is the indicator of the interval (Tm+1, ∞) (here T0 = 0).

Proof. Let ϵ > 0 be a given fixed number. From limt→∞ δ(t) = ξ ∈ (0, 1) it follows that
there exists a number T > 0 such that

|δ(t)− ξ| < ϵ, t > T.

Consider the finite interval [0, T] and apply Lemma 6 to it. Then, the piecewise
constant function

α(t) =
m

∑
k=1

pk Ik(t) =





δ(T0), i f t ∈ [T0, T1],
δ(T1), i f t ∈ (T1, T2],
...
δ(Tm), i f t ∈ (Tm, Tm+1],
ξ, i f t > Tm+1,

(7)

is the function needed. □
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3. Differential Equations with Variable Order of the Fractional Derivative

Consider the initial value problem (IVP) for the nonlinear scalar differential equation
with the ψ-tempered Caputo fractional derivative of variable order

C
0 D

δ(t),ϱ
ψ(t) ω(t) = F(t, ω(t)), t ∈ (0, T],

ω(0) = V0,
(8)

where V0 ∈ R, ϱ > 0, 0 < T < ∞, δ(.) : [0, T] → (0, 1), C
0 D

δ(t),ϱ
ψ(t) denotes the ψ-tempered

Caputo fractional derivatives with variable order δ(·), and F : [0, T]×R → R is a given
function.

Definition of Approximate Solutions of the Initial Value Problem (8)

We will assume ϵ > 0 is a fixed number and δ ∈ C([0, T], (0, 1)).
According to Lemma 6 for the given fixed number ϵ, there exists a partition

P = {(Tk−1, Tk], k = 1, 2, . . . , m} of the given interval [0, T] and an ϵ-approximation of
δ, defined by (4) with |δ(t)− α(t)| ≤ ϵ, t ∈ [0, T]. Note that for the given number ϵ, the
partition P is not unique. In this section, we will consider a fixed partition P, i.e., fixed
points 0 = T0 < T1 < T2 . . . < Tm−1 < Tm = T.

Let t ∈ (Tk−1, Tk], where k is an arbitrary integer 1 ≤ k ≤ m. Then, α(t) = pk with
pk = δ(Tk−1), and the fractional derivative can be written

C
0 D

α(t),λ
ψ(t) ω(t)

= 1
Γ(1−α(t))

(∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−α(t)ω′(s)ds

+λ
∫ t

0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−α(t)ψ′(s)ω(s)ds
)

= 1
Γ(1−pk)

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk

(
1

ψ′(s)
d
dt + λ

)
ω(s)ds

= C
0 D

pk ,λ
ψ(t)ω(t).

(9)

Applying (9), we could define for any integer k : 1 ≤ k ≤ m, the following IVP for the
differential equation with tempered Caputo fractional derivative of a constant order pk,
which is deeply connected to the studied IVP (8) and the ϵ-approximation of the variable
order δ(t):

C
0 D

pk ,λ
ψ(t)ν(t) = F(t, ν(t)) f or t ∈ (0, Tk],

ν(0) = V0.
(10)

With the help of the IVP (10), we will define an approximate solution of (8).

Definition 4. For a given ϵ > 0 the function

ω(t) =





ν1(t), i f t ∈ [T0, T1],
ν2(t), i f t ∈ (T1, T2],
...
νm(t), i f t ∈ (Tm, Tm+1],

(11)

is called an ϵ-approximate solution of IVP (8), where νk(t) ∈ C([0, Tk],R) is a solution of IVP (10),
k = 1, 2, . . . , m.

Example 3. Consider the following linear IVP:

C
0 D

δ(t)
ψ(t)ω(t) = −0.2ω(t), t ∈ [0, 2],

ω(0) = V0,
(12)
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where δ(t) = 0.5 sin(t) + 0.4 and C
0 D

δ(t)
ψ(t) is the variable order Caputo fractional derivative with

reference to another function given in Definition 2 with λ = 0.
Let ϵ = 0.2. Then, according to Example 2, the 0.2-partition of the fractional order δ(t) is

given by (5), and the 0.2-approximate solution of (12) according to Lemma 4 and Definition 4 is

ω0.2(t) =





V0E0.4
(
− 0.2(ψ(t)− ψ(0))0.4), i f t ∈

[
0, sin−1(0.4)

]
,

V0E0.6
(
− 0.2(ψ(t)− ψ(0))0.6), i f t ∈

(
sin−1(0.4), sin−1(0.8)

]
,

V0E0.8
(
− 0.2(ψ(t)− ψ(0))0.8), i f t ∈

(
sin−1(0.8), 2

]
.

(13)

Let ϵ = 0.1. Then, according to Example 2 the 0.1-partition of the fractional order δ(t) is
given by (6) and the 0.1-approximate solution of (12) according to Lemma 4 and Definition 4 is

ω0.1(t) =





V0E0.4
(
− 0.2(ψ(t)− ψ(0))0.4), i f t ∈

[
0, sin−1(0.2)

]
,

V0E0.5
(
− 0.2(ψ(t)− ψ(0))0.5), i f t ∈

(
sin−1(0.2), sin−1(0.4)

]
,

V0E0.6
(
− 0.2(ψ(t)− ψ(0))0.6), i f t ∈

(
sin−1(0.4), sin−1(0.6)

]
,

V0E0.7
(
− 0.2(ψ(t)− ψ(0))0.7), i f t ∈

(
sin−1(0.6), sin−1(0.8)

]
,

V0E0.8
(
− 0.2(ψ(t)− ψ(0))0.8), i f t ∈

(
sin−1(0.8), 2

]
.

(14)

Remark 5. If the piecewise constant function α(t) is an ϵ-approximation of the variable order δ(t);
νk(t) ∈ C([0, Tk],R), k = 1, 2, . . . , m are solutions of the initial value problems; (10) and ω(t) is
an ϵ-approximate solution of (8), then, according to (9), we have C

0 D
α(t),λ
ψ(t) ω(t) = C

0 D
pk ,λ
ψ(t)νk(t) =

F(t, νk(t)) = F(t, ω(t)) for any t ∈ (Tk−1, Tk] with pk = δ(Tk−1), k = 1, 2, . . . , m.

We now introduce condition (H):

Hypothesis 1 (H1). The function ψ : [0, T] → (0, ∞) is a smooth increasing function with
ψ′(t) > 0 almost everywhere in [0, T], λ > 0, and the function δ ∈ C([0, T], (0, 1)).

Hypothesis 2 (H2). The function F ∈ C([0, T]×R,R), and it is globally Lipschitz with a
constant L such that

Leλ(ψ(T)−ψ(0)) max
{

1, (ψ(T)− ψ(0))p} < A,

where p = maxt∈[0,T] δ(t) ∈ (0, 1), A = minp∈[0,1] Γ(1 + p) > 0.

Theorem 1. Let ϵ > 0 be a given number, condition (H1) be satisfied; P = {(Tk−1, Tk], k = 1, . . . , m}
be the the partition of the interval [0, T], defined in Lemma 6 for ϵ; the function
F ∈ C([0, T]×R,R); and there exist constants Lk > 0, k = 1, 2, . . . , m, such that

|F(t, y)− F(t, z)| ≤ Lk|y − z|, t ∈ [0, Tk], y, z ∈ R

with
Lk < Γ(1 + pk) (ψ(Tk)− ψ(0))−pk e−λ(ψ(Tk)−ψ(0))), k = 1, 2, . . . , m.

Then, IVP (8) has an ϵ-approximate solution.

Proof. According to Lemma 2 with L = Lk, b = Tk, f = F, the initial value problem with
the fractional derivative of constant order (10) has a solution νk ∈ ACψ([0, Tk],R) for all
k = 1, 2, . . . , m. Then, the function ω(t) defined by (11) is an ϵ-approximate solution of the
IVP (8). □

We now define an approximate solution of (8).

Definition 5. The initial value problem (8) has an approximate solution if for any ϵ > 0 it has an
ϵ-approximate solution.
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Remark 6. The approximate solution of (8) depends on the initial value.

Theorem 2. Let condition (H) be satisfied. Then, IVP (8) has an approximate solution.

Proof. Let ϵ be an arbitrary given number. According to Lemma 6 for the given number ϵ,
there exist a partition P of the interval [0, T] and a piecewise constant function α(t) defined
by (4) which is an ϵ-approximation of the variable order δ(t).

Then, for any k = 1, 2, . . . , m the inequalities

L (ψ(Tk)− ψ(0))pk

Γ(1 + pk)
≤ L (ψ(T)− ψ(0))pk

A

hold.
Furthermore,

- for ψ(T)− ψ(0) > 1 we have (ψ(T)− ψ(0))pk < (ψ(T)− ψ(0))p;
- for ψ(T)− ψ(0) ≤ 1 we have (ψ(T)− ψ(0))pk ≤ 1.

Thus, eλ(ψ(Tk)−ψ(0))(ψ(T)− ψ(0))pk ≤ eλ(ψ(T)−ψ(0)) max
{

1, (ψ(T)− ψ(0))p}. There-

fore, L (ψ(Tk)−ψ(0))pk

Γ(1+pk)
eλ(ψ(Tk)−ψ(0)) < 1, and, according to Theorem 1, the IVP (8) has an

ϵ-approximate solution (the function ωϵ(t) defined by (11)). Since ϵ is an arbitrary number,
we are finished. □

4. Ulam-Type Stability of Approximate Solutions

Note that the Ulam-type stability for differential equations with the Caputo-tempered
fractional derivative with respect to another function is studied in [5] for the case of constant
order. In the case of constant order, the fractional differential equation is equivalent to a
fractional integral Equation (see Lemma 1), but it is not true for the variable order. We
will now study the stability of approximate solutions of (8). In this case, we change the
definitions for Ulam-type stability given in [5] (Definition 5.1).

Definition 6. Let condition (H1) be satisfied, and F ∈ C([0, T]×R,R). Now, (8) is said
to be approximately Hyers–Ulam-stable if there exists a constant C0 > 0 such that for any
ϵ > 0, an ϵ-approximation α(t) of the fractional order δ(t) (defined by (4)) with a partition
P = {(Tk−1, Tk], k = 1, . . . , m} and for any function ηk ∈ ACψ([0, Tk],R) satisfying the inequality

∣∣∣C0 D
pk ,λ
ψ(t)ηk(t)− F(t, ηk(t))

∣∣∣ ≤ ϵ, t ∈ [0, Tk], k = 1, 2, . . . , m, (15)

with pk = δ(Tk−1), k = 1, 2, . . . , m, there exists an ϵ-approximate solution ωϵ(t) of (8) with

|ωϵ (t)− η(t)| ≤C0ϵ, t ∈ [0, T],

where

η(t) =





η1(t), i f t ∈ [T0, T1],
η2(t), i f t ∈ (T1, T2],
...
ηm(t), i f t ∈ (Tm, Tm+1].

(16)

Theorem 3 (UHS). Let condition (H) be satisfied. Then, (8) is approximately Hyers–Ulam-stable.

Proof. Let ε > 0 be an arbitrary number. According to Lemma 6 there exist a partition
P = {(Tk−1, Tk], k = 1, . . . , m} and an ϵ-approximation α(t) of the fractional order δ(t),
defined by (4). Let the function ηk ∈ ACψ([0, Tk],R) be a solution of inequality (15),
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k = 1, 2, . . . , m. Then, for any k = 1, 2, . . . , m we consider the functions gk ∈ C([0, Tk],R) :
|gk(t)| ≤ ϵ such that

C
0 D

pk ,λ
ψ(t)ηk(t) = F(t, ηk(t)) + gk(t), t ∈ [0, Tk]. (17)

According to Lemma 1, the integral equality

ηk(t) = e−λ(ψ(t)−ψ(0))ηk(0)
+ 1

Γ(pk)

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))pk−1ψ′(s)(F(s, ηk(s)) + gk(s))ds,

= e−λ(ψ(t)−ψ(0))ηk(0) + 0I pk ,λ
ψ(t) (F(s, ηk(s)) + gk(s)), t ∈ [0, Tk],

(18)

holds.
Denote η0 = mink=1,2...,m ηk(0) and consider the initial value problem (8) with

V0 ∈ R: V0 < η0 + ϵ. According to Theorem 1 the initial value problem (8) has an
ϵ-approximate solution ωϵ(t).

Let k : 1 ≤ k ≤ m be an arbitrary fixed integer. Then, for t ∈ (Tk−1, Tk] the equality
ωϵ(t) = νk(t) holds where νk(t), t ∈ [0, Tk], is the solution of (10) with V0 = η0.

Then, for any t ∈ [0, Tk], we obtain

|νk(t)− ηk (t)| ≤
∣∣∣ηk(t)− e−λ(ψ(t)−ψ(0))ηk(0)− 0I pk ,λ

ψ(t) F(s, ηk(s))
∣∣∣

+
∣∣∣νk(t)− e−λ(ψ(t)−ψ(0))V0 − 0I pk ,λ

ψ(t) F(s, νk(s))
∣∣∣+e−λ(ψ(t)−ψ(0))|V0 − ηk(0)|

+
∣∣∣0I pk ,λ

ψ(t) (F(s, η(s))− F(s, νk(s)))
∣∣∣

≤
∣∣∣0I pk ,λ

ψ(t) gk(t)
∣∣∣+e−λ(ψ(t)−ψ(0))|V0 − ηk(0)|

+ L
Γ(pk)

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))pk−1ψ′ (s)|ηk (s))−νk(s))|ds

≤ ϵ 1
Γ(pk)

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))pk−1ψ′(s)ds + ϵ

+ L
Γ(pk)

∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))pk−1ψ′ (s)|ηk (s))−νk(s))|ds

≤ ϵ
Γ(1+pk)

(ψ(t)− ψ(0))pk + ϵ

+ L
Γ(pk)

∫ t
0 (ψ(t)− ψ(s))pk−1ψ′ (s)|ηk (s))−νk(s))|ds

≤ ϵ
(

1 + (ψ(Tk)−ψ(0))pk

Γ(1+pk)

)

+ L
Γ(pk)

∫ t
0 (ψ(t)− ψ(s))pk−1ψ′ (s)|ηk (s))−νk(s))|ds.

(19)

Denote M = 1 +
max{1,(ψ(T)−ψ(0))p}

A . We have (ψ(Tk)− ψ(0))pk ≤ max{1, (ψ(T)−
ψ(0))p} (see the proof of Theorem 2).

Therefore, for any t ∈ [0, Tk] we have

|νk(t)− ηk (t)| ≤ ϵM+ L
Γ(pk)

∫ t
0 (ψ(t)− ψ(s))pk−1ψ′ (s)|ηk (s))−νk(s))|ds. (20)

According to Lemma 3 with u(t) =|νk(t) − ηk(t)|∈ C[0, Tk], [0, ∞)), C = ϵM,
K = L

Γ(pk)
, α = pk, b = Tk and inequalities Eγ(xγ) < ex

γ , x > 0, γ ∈ (0, 1), and
pk
√

L(ψ(T)− ψ(0)) < pk
√

A ≤ p
√

A because A ∈ (0, 1] (see, condition (H)), we obtain

|νk(t)− ηk (t)| ≤ ϵMEpk

(
L(ψ(t)− ψ(0))pk

)

≤ ϵMEpk

((
pk
√

L(ψ(T)− ψ(0))
)pk

)

≤ ϵM e
pk
√

L(ψ(T)−ψ(0))

ξ ≤ ϵM e
p√A

ξ , t ∈ [0, Tk],

(21)

where ξ = mint∈[0,T] δ(t) > 0.
From inequality (21), it follows that

|ωϵ (t)− η(t)| = |νk(t)− ηk (t)| ≤C0ϵ, t ∈ (Tk−1, Tk], k = 1, 2, . . . , m, (22)
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with C0 = M e
p√A

ξ . □

We will illustrate the approximate Hyers–Ulam stability with a simple example.

Example 4. Consider the linear fractional differential Equation (12) with variable order
δ(t) = 0.5 sin(t) + 0.4, ψ(t) = t2, and C

0 D
δ(t)
ψ(t)-the variable order Caputo fractional derivative

with reference to another function given in Definition 2 with λ = 0.
The assumptions (H1) and (H2) are satisfied with L = 0.2 because in this case Leλ(ψ(T)−ψ(0))

max
{

1, (ψ(T)− ψ(0))p} = 0.2(4) = 0.8 < minp∈(0,1) Γ(1 + p) = 0.8872. According to
Theorem 3 Equation (12) is approximately Hyers–Ulam-stable. We will illustrate this for a particular
value of ϵ. For example, let ϵ = 0.2.

In Example 3 several ϵ-approximate solutions of (12) are given.
Then, the inequality (15) is reduced to

∣∣∣C0 D
pk
ψ(t)ηk(t) + 0.2ηk(t)

∣∣∣ ≤ 0.2, t ∈ [0, Tk], k = 1, 2, 3, (23)

with T1 = sin−1(0.4), T2 = sin−1(0.8), T3 = 2 and p1 = 0.4, p2 = 0.6, p3 = 0.8 (see Example 3).
Then, according to Lemma 5 with β = 2, ψ(t) = t2, α = 0.4, 0.6, 0.8, we obtain

(see Figures 1–3)
η1(t) = 0.3

(
t2)2−1, t ∈

[
0, sin−1(0.4)

]
,

η2(t) = 0.1
(
t2)2−1, t ∈

[
0, sin−1(0.8)

]
,

η3(t) = 0.05
(
t2)2−1, t ∈ [0, 2],

(24)

According to (13), the 0.2-approximate solution is

ω0.2(t) =





V0E0.4
(
−0.2

(
t2)0.4), i f t ∈

[
0, sin−1(0.4)

]
,

V0E0.6
(
−0.2

(
t2)0.6), i f t ∈

(
sin−1(0.4), sin−1(0.8)

]
,

V0E0.8
(
−0.2

(
t2)0.8), i f t ∈

(
sin−1(0.8), 2

]
,

(25)

where V0 = min(0.3, 0.1, 0.05) + 0.2.
Then, |ω0.2 (t)− η(t)| <C00.2 with C0 = 2 and η(t) defined by (16) with m = 2 (see Figure 4).
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Figure 1: Graphs of
∣∣∣ C0 D0.4

t2 η1(t) + 0.5η1(t)
∣∣∣ and ε = 0.2 on [0, sin−1(0.4)],

5 Piecewise constant order of the fractional deriva-
tive

Consider the case when the partition 0 = T0 < T1 < · · · < Tm−1 < Tm = T
of the interval [0, T ] is given initially, and the fractional order of the fractional
derivative is defined by the equality

δ(t) =





p1, if t ∈ [T0, T1],

p2, if t ∈ (T1, T2],
...

pm, if t ∈ (Tm−1, Tm],

(26)

16

Figure 1. Graphs of
∣∣∣ C

0 D0.4
t2 η1(t) + 0.5η1(t)

∣∣∣ and ϵ = 0.2 on [0, sin−1(0.4)].Figure 1. Graphs of
∣∣∣C0 D0.4

t2 η1(t) + 0.5η1(t)
∣∣∣ and ϵ = 0.2 on

[
0, sin−1(0.4)

]
.
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Figure 4: Graphs of |ω(t)− η(t)| and C0ε = 2(0.2) on [0, 2].

δ(t) = pk and from Definition 2 we have

C
0 Dδ(t),λψ(t) υ(t)

=
1

Γ(1− pk)
(∫ t

0
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkν ′(s)ds

+ λ

∫ t

0
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkψ′(s)ν(s)ds

)

=
1

Γ(1− pk)
( k−1∑

i=1

∫ Ti

Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkν ′(s)ds

∫ t

Tk−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkν ′(s)ds

+ λ
k−1∑

i=1

∫ Ti

Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkψ′(s)ν(s)ds
)

+ λ

∫ t

Tk−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkψ′(s)ν(s)ds
)

= C
Tk−1
Dp2,λψ(t)υ(t)

+
1

Γ(1− pk)
k−1∑

i=1

(∫ Ti

Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkν ′(s)ds

+ λ

∫ Ti

Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pkψ′(s)ν(s)ds
)
, t ∈ (Tk−1, Tk].
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.
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5. Piecewise Constant Order of the Fractional Derivative

Consider the case when the partition 0 = T0 < T1 < . . . < Tm−1 < Tm = T of the
interval [0, T] is given initially, and the fractional order of the fractional derivative is defined
by the equality

δ(t) =





p1, i f t ∈ [T0, T1],
p2, i f t ∈ (T1, T2],
...
pm, i f t ∈ (Tm−1, Tm],

(26)

where the constants pk ∈ (0, 1), k = 1, 2, . . . , m are initially given.
Let t ∈ (Tk−1, Tk], where k is an arbitrary integer 1 ≤ k ≤ m. Then, δ(t) = pk and from

Definition 2 we have

C
0 D

δ(t),λ
ψ(t) υ(t)

= 1
Γ(1−pk)

(∫ t
0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ν′(s)ds

+λ
∫ t

0 e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ψ′(s)ν(s)ds
)

= 1
Γ(1−pk)

(
k−1
∑

i=1

∫ Ti
Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ν′(s)ds
∫ t

Tk−1
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ν′(s)ds

+λ
k−1
∑

i=1

∫ Ti
Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ψ′(s)ν(s)ds
)

+λ
∫ t

Tk−1
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ψ′(s)ν(s)ds

)

= C
Tk−1

Dp2,λ
ψ(t)υ(t)

+ 1
Γ(1−pk)

k−1
∑

i=1

(∫ Ti
Ti−1

e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ν′(s)ds

+λ
∫ Ti

Ti−1
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))−pk ψ′(s)ν(s)ds

)
, t ∈ (Tk−1, Tk].

Therefore,

C
0 D

δ(t),λ
ψ(t) υ(t) ̸=

k−1

∑
i=1

C
Ti−1

Dpi ,λ
ψ(t) υ(t)|t=Ti

+ C
Tk−1

Dpk ,λ
ψ(t)υ(t), t ∈ (Tk−1, Tk],

or its equivalent

C
0 D

δ(t),λ
ψ(t) υ(t) ̸=

k−1

∑
i=1

C
Ti−1

Dδ(t),λ
ψ(t) υ(t)|t=Ti

+ C
Tk−1

Dδ(t),λ
ψ(t) υ(t), t ∈ (Tk−1, Tk],

hold and their corresponding equalities cannot be applied (see, for example, Equation (6) [23],
Equation (5) [16], Equation (9) [24], Equation (3.1) [25]).

In connection with the above, we will apply our approach to study IVP (8) when the
order of the fractional derivative is a piecewise constant function σ(t). Our approach is
based on (9).

We now introduce assumption (A):

Assumption 1 (A1). The function ψ ∈ C1([0, T], (0, ∞)) is an increasing function with ψ′(t) > 0
almost everywhere, λ > 0 is a given constant, and the function δ : [0, T] → (0, 1) is defined by (26).

Assumption 2 (A2). The function F ∈ C([0, T]×R,R) and there exist constants Lk > 0,
k = 1, 2, . . . , m, such that

|F(t, y)− F(t, z)| ≤ Lk|y − z|, t ∈ [0, Tk], y, z ∈ R, k = 1, 2, . . . , m,



Fractal Fract. 2024, 8, 11 13 of 15

with
Lkeλ(ψ(Tk)−ψ(0))(ψ(Tk)− ψ(0))pk < L(1 + pk).

We obtain the following existence result for the initial value problem (8) with piecewise
constant order, defined by (26).

Theorem 4. Let conditions (A1) and (A2) hold. Then, the initial value problem (8) has a solution.

Proof. Consider the partition P = {(Tk−1, Tk], k = 1, 2, . . .} defined by the given point
Tk, k = 1, 2, . . . , m − 1. For any k = 1, 2, . . . , m, we consider the initial value problem (10).
According to Lemma 2, it has a unique solution νk(t), t ∈ (0, Tk] for any k = 1, 2, . . . , m.
Construct the function

ω(t) =





ν1(t), i f t ∈ [T0, T1],
ν2(t), i f t ∈ (T1, T2],
...
νm(t), i f t ∈ (Tm−1, Tm].

(27)

The function ω(t) is a solution of (8) because ω(0) = V0 and for any t ∈ (Tk−1, Tk]
we have

C
0 D

δ(t),λ
ψ(t) ω(t) = C

0 D
pk ,λ
ψ(t)νk(t) = F(t, νk(t) = F(t, ω(t)).

□

Remark 7. The solution of (8) with a fractional derivative of piecewise constant order is not
continuous on the whole interval [0, T].

The definition of Ulam-type stability for fractional derivatives of a piecewise constant
order reduces to:

Definition 7. Let condition (A1) hold and F ∈ C([0, T]×R,R). Now, (8) is said to be Hyers–
Ulam-stable if there exists a constant C0 > 0 such that for any ϵ > 0 and for any function
ηk ∈ Cψ([0, Tk],R), k = 1, 2, . . . , m, satisfying the inequality

∣∣∣C0 D
pk ,λ
ψ(t)η(t)− F(t, η(t))

∣∣∣ ≤ ϵ, t ∈ [0, Tk], (28)

with pk = δ(Tk−1), k = 1, 2, . . . , m, there exists an ϵ-approximate solution ωϵ(t) of (8) with

|ωϵ (t)− η(t)| ≤C0ϵ, t ∈ [0, T],

where the function η is defined by (16).

Theorem 5 (UHS). Let condition (A1) and (A2) hold. Then, (8) is Hyers–Ulam-stable.

The proof of Theorem 5 is similar to the one of Theorem 3 without applying ϵ.

6. Conclusions

In this paper, we consider differential equations with the variable order Caputo-type
fractional derivative with respect to another function and we study the general case of
continuous variable order of the fractional derivative. We define in appropriate way an
ϵ-solution of the given initial value problem and an approximate solution.

Furthermore, we define and study the Hyers–Ulam stability. As a partial case, we
obtain results for stability of the differential equations with fractional derivatives of piece-
wise constant order. In future work, we hope to appropriately define some other types
of Ulam stability, such as Hyers–Ulam–Rassias stability, and obtain sufficient conditions.
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Furthermore, the existence on the the interval [0, ∞) could be investigated. In addition,
we could consider the general case of the variable order applying a local definition for
fractional derivative [14] in the future.
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