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Abstract: The Katz fractal dimension (KFD) is an effective nonlinear dynamic metric that characterizes
the complexity of time series by calculating the distance between two consecutive points and has seen
widespread applications across numerous fields. However, KFD is limited to depicting the complexity
of information from a single scale and ignores the information buried under different scales. To
tackle this limitation, we proposed the variable-step multiscale KFD (VSMKFD) by introducing a
variable-step multiscale process in KFD. The proposed VSMKFD overcomes the disadvantage that
the traditional coarse-grained process will shorten the length of the time series by varying the step
size to obtain more sub-series, thus fully reflecting the complexity of information. Three simulated
experimental results show that the VSMKFD is the most sensitive to the frequency changes of a
chirp signal and has the best classification effect on noise signals and chaotic signals. Moreover, the
VSMKFD outperforms five other commonly used nonlinear dynamic metrics for ship-radiated noise
classification from two different databases: the National Park Service and DeepShip.

Keywords: Katz fractal dimension; variable-step multiscale process; feature extraction; ship-
radiated noise

1. Introduction

The classification and identification of underwater acoustic targets are important
in the fields of marine resource exploitation and national defense [1,2]. Among them,
effective ship target recognition technology is pivotal for rights protection cruises and
monitoring of infringing vessels in sensitive territories. And the recognition of ship-radiated
noise (SRN) is undoubtedly the core of ship target recognition since it contains a huge
number of characteristics, such as course angle, category, and speed [3,4]. However, SRN
has non-Gaussian, nonlinear, and nonstationary characteristics [5–7], and the commonly
used time-frequency domain metrics have difficulty effectively reflecting its nonlinear
behavior. As a result, it has become clear that many researchers are focusing on the
study of nonlinear dynamic metrics [8–10]. Among these, entropy, Lempel–Ziv complexity
(LZC) [11], and fractal dimension-based nonlinear dynamic metrics emerge as prevalent
and effective methodologies.

Entropy-based nonlinear dynamic metrics can quantitatively characterize the irregu-
larity and uncertainty of the system [12]. The entropy theory was derived from information
entropy. With the gradual deepening of the study of entropy theory, various entropies have
been proposed, such as sample entropy (SE) [13], fuzzy entropy (FE) [14], permutation
entropy (PE) [15], and dispersion entropy (DE) [16]. However, each of these entropy metrics
has its own unique limitations. For instance, SE measures the dynamic complexity of a
time series by calculating the rate at which new patterns emerge, but is slow and lacks
stability when calculating longer time series. FE improves stability over SE but still has poor
computational efficiency. Although PE enhances computational efficiency substantially, it
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considers only the sequence order of amplitudes, disregarding the amplitude information
of the signal. While DE accounts for amplitude information, it lacks robustness against
noise interference.

LZC, a prevalent nonlinear dynamic metric, is routinely employed to evaluate the level
of disorder present in time series [11]. However, since the LZC utilizes binary mapping,
this results in the loss of valid information about the original signals [17]. In 2002, Bai
et al. proposed permutation LZC (PLZC) by substituting binary mapping for permutation
patterns, which is more efficient and robust in EGG analysis [18]. Unfortunately, PLZC
still suffers from the loss of the amplitude information. To tackle this problem, Mao et al.
developed dispersion LZC (DLZC) by combining the normal cumulative distribution
function (NCDF) in DE, and the experimental result shows that it can effectively follow the
dynamic changes in heart rate time series [19]. However, the separability of DLZC is not
prominent when used as a separate feature. To address this issue, dispersion entropy-based
LZC (DELZC) [20] and fluctuation-based DLZC (FDLZC) [21] are proposed by improving
the mapping method to enhance the separability of DLZC.

Similar to the concepts of entropy and LZC, the fractal dimension can characterize
extraordinarily complex objects, including those that are non-smooth, irregular, and frag-
mented. In 1988, inspired by the Mendelbrot fractal dimension [22], Katz proposed a
method for calculating fractal dimension based on waveform data named Katz fractal di-
mension (KFD) [23], which has been widely concerned, especially in the field of biomedicine.
In addition, some researchers have proposed many other fractal dimension-based nonlinear
dynamic metrics, such as the box fractal dimension (BFD) [24], Higuchi fractal dimension
(HFD) [25], correlation dimension [26], and Hausdorff dimension [27] to analyze the irregu-
lar time series. Among these metrics, KFD, BFD, and HFD are more frequently utilized,
with KFD being the most computationally efficient and without parameters to be set [28].

However, the nonlinear dynamic metrics described above only reflect the complexity
of the time series at single scale, which leads to the loss of important information at
remaining scales. Afterwards, some researchers proposed multiscale-based nonlinear
dynamic metrics. Humeau–Heurtier [29] proposed multiscale entropy to quantify the
complexity of time series. However, this traditional multiscale process leads to shorter
lengths of coarse-grained series when the scale factor is increased, which, in turn, makes the
stability decrease. To address this flaw, a refined composite multiscale process was proposed
by changing the altering sampling point of the sub-series [30]. Li et al. [31] first applied
the refined composite multiscale process to fractal dimensions in 2023, presenting the
hierarchical refined composite multiscale fractal dimension, which represents exceptional
performance in feature extraction of SRN. Nevertheless, the refined composite multiscale
process still has the disadvantage of significantly shortening the length of coarse-grained
series when the scale factor is large, which leads to a decrease in accuracy. In response to
the above issues, Su et al. [32] developed a variable-step multiscale process and combined it
with LZC in 2022. The variable-step multiscale process improves the coarse-grained process,
reveals more potential information, and achieves a higher and more robust complexity.

In response to the inability of KFD to reflect potential information at different scales
and the problem that the traditional multiscale process suffers from the loss of signal sub-
series information as the time series scale increases, we proposed a novel fractal dimension
algorithm, termed the variable-step multiscale Katz fractal dimension (VSMKFD). The
main contributions and innovations of this paper are as follows: (1) a VSMKFD is proposed
that adopts the variable-step multiscale process to optimize and improve the traditional
multiscale process; (2) three classical simulated experiments are carried out to showcase the
diverse capabilities of the VSMKFD, and the efficacy of the proposed method is validated
through two SNR cases.

The structure of this article is organized as follows: Section 2 presents the fundamental
definition of the KFD and introduces the proposed VSMKFD. Section 3 demonstrates the
capability of VSMKFD based on three simulated experiments. Section 4 evaluates the
application of VSMKFD in the SRN through two cases. Section 5 concludes the article.
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2. Methodology
2.1. KFD

The fractal dimension is a popular physical quantity that quantitatively characterizes
the complexity of a time series. KFD has been widely used in the field of nonlinear dynamics
due to its computationally efficient advantages. The computational procedures of KFD are
as follows:

Step 1: For a time-series X = {x1, x2, . . . , xi, . . . xN}, calculate the length of the series,
which defined as L:

L =
N

∑
i=0

xi+1 − xi (1)

Step 2: The maximum distance d between the 1st point and i th point is calculated
according to Equation (2):

d = max(|xi − x1|), 0 < i < N (2)

Step 3: The KFD can be calculated as expressed in the following equation:

KFD(X) =
log(N)

log(N) + log
(

d
L

) (3)

2.2. VSMKFD

The KFD can only characterize the complexity of a time series on a single scale.
Therefore, it is difficult to fully respond to the effective information in the time series. In
order to more accurately depict the complexity of a time series, we introduced a variable-
step multiscale process into the KFD and then proposed the VSMKFD. The specific steps of
the VSMKFD are as follows:

Step 1: A given time series X = {x1, x2, . . . , xi, . . . xN} is converted into several new
sub-series y(s)τ,j by the following variable-step multiscale process:

y(s)τ,j =
τ(j−1)+s

∑
i=τ(j−1)+1

xi, 1 ≤ τ ≤ s, 1 ≤ j ≤ N − s
τ

+ 1 (4)

where τ and s represent the step size and scale factor, respectively, and y(s)τ,j is the j th
element of the τ th variable-step multiscale coarse-grained series.

Step 2: The KFD for all the sub-series obtained in Step 1 are calculated, and the mean
value of KFD of all sub-series is defined as the VSMKFD:

VSMKFD(X, s) =
1
s

s

∑
τ=1

KFD
(

y(s)τ,j

)
(5)

To understand the variable-step multiscale process more intuitively, we take the s = 3
as an example, and Figure 1 displays the schematic diagram of the traditional multiscale
process and variable-step multiscale process. From Figure 1, it can be seen that when
s = 3, only one series is obtained in the traditional multiscale process, but in the variable-
step multiscale process, three different sub-series can be obtained, which can mine more
potential information from the time series. Therefore, the variable-step multiscale process
can reflect the complexity of the original time series more comprehensively.
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Figure 1. The schematic diagram of multiscale process (s = 3): (a) traditional multiscale process;
(b) variable-step multiscale process.

3. The Simulated Signal Analysis

In this section, we showcase the unique properties of the proposed VSMKFD through
three classic simulated experiments and compare its performance with five other variable-
step multiscale-based nonlinear dynamic metrics, including variable-step multiscale HFD
(VSMHFD), variable-step multiscale BFD (VSMBFD), variable-step multiscale DE (VS-
MDE), variable-step multiscale PE (VSMPE), and variable-step multiscale LZC (VSMLZC).
VSMKFD, VSMBFD, and VSMLZC do not relate the selection of parameters; the embedding
dimension m and time delay τ of VSMPE are 3 and 1, respectively; the k of VSMHFD is set
to 20, and the category number c of VSMDE is 6.

3.1. The Chirp Signal Experiment

The chirp signal is known for its frequency variation over time, making it an apt choice
for such experiments, and the chirp signal is defined as follows:

x(t) = e
(

j2π( f0t+ 1
2 kt2)

)
(6)

where k is the modulation frequency, taken as 1.5; f0 is called the initiation frequency, taken
as 10 Hz; the time duration is 16 s; the sampling frequency is 1000 Hz, and its frequency is
increased from 10 Hz to 40 Hz.

Figure 2 displays the waveform of the chirp signal. It encompasses a total of 16,000 sample
points, the sliding window of 1 s is chosen, with a 90% overlap of this window, which allows
us to obtain 150 samples. And the complexity curves of six metrics for the chirp signal are
presented in Figure 3, where we only present the situations of s = 5 and s = 9.
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Figure 2. The waveform of chirp signal.
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Figure 3. The complexity curves of six metrics for chirp signal: (a) s = 5; (b) s = 9.

As exhibited in Figure 3, whether s = 5 or s = 9, the complexity curves of six nonlinear
dynamic metrics present an upward trend, reflecting the gradual enhancement of chirp
signal frequency; among them, except for VSMKFD and VSMHFD, the curves of the
remaining four metrics fluctuated to varying degrees, with the most severe fluctuations
in VSMLZC; and the complexity curve of VSMKFD is much smoother than the VSMHFD
curve. From the above analysis, we can observe that VSMKFD is able to more effectively
reflect the changes in frequency than other nonlinear dynamic metrics.

3.2. The Noise Signal Classification Experiment

For this classification experiment, four distinct noise signals were selected to illustrate
the superior performance of the proposed VSMKFD, consisting of violet noise, white noise,
red noise, and blue noise. Then we take 100 non-overlapping samples, each with a total
of 1000 sampling points. Figure 4 shows the waveforms of four noise signals under one
sample to display the characteristics of these noise signals.

Figures 5 and 6 depict the feature distribution of four noise signals for six metrics; we
only provide the figures of s = 5 and s = 9, as previously. As shown in Figure 5, all six
nonlinear dynamic metrics are able to completely distinguish the red noise from the other
three noise signals; among the feature distributions of the VSMKFD, there is no overlapping
part for the feature distribution of four noise signals, which shows that all the noise signals
can be better distinguished; for the other five metrics, the violet noise, white noise, and blue
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noise appear to overlap, with the overlap of VSMDE being the largest, making it difficult to
differentiate between the three noise signals and with a large variance in the signal features.

From Figure 6, the situation with s = 9 is similar to that with s = 5; all six nonlinear
dynamic metrics can distinctly differentiate red noise from the other three noise types; in
the case of the VSMKFD, violet noise and blue noise overlap only slightly. Conversely,
for the other five metrics, there is a noticeable overlap among the violet, white, and blue
noise, with the most significant overlap continuing to be in the VSMDE. In summary, the
VSMKFD demonstrates superior capability in differentiating noisy signals, further attesting
to its efficacy.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. The waveforms of four noise signals. 

Figures 5 and 6 depict the feature distribution of four noise signals for six metrics; we 
only provide the figures of 𝑠𝑠 = 5 and 𝑠𝑠 = 9, as previously. As shown in Figure 5, all six 
nonlinear dynamic metrics are able to completely distinguish the red noise from the other 
three noise signals; among the feature distributions of the VSMKFD, there is no overlap-
ping part for the feature distribution of four noise signals, which shows that all the noise 
signals can be better distinguished; for the other five metrics, the violet noise, white noise, 
and blue noise appear to overlap, with the overlap of VSMDE being the largest, making it 
difficult to differentiate between the three noise signals and with a large variance in the 
signal features. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The waveforms of four noise signals.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. The waveforms of four noise signals. 

Figures 5 and 6 depict the feature distribution of four noise signals for six metrics; we 
only provide the figures of 𝑠𝑠 = 5 and 𝑠𝑠 = 9, as previously. As shown in Figure 5, all six 
nonlinear dynamic metrics are able to completely distinguish the red noise from the other 
three noise signals; among the feature distributions of the VSMKFD, there is no overlap-
ping part for the feature distribution of four noise signals, which shows that all the noise 
signals can be better distinguished; for the other five metrics, the violet noise, white noise, 
and blue noise appear to overlap, with the overlap of VSMDE being the largest, making it 
difficult to differentiate between the three noise signals and with a large variance in the 
signal features. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Cont.



Fractal Fract. 2024, 8, 9 7 of 16

Fractal Fract. 2023, 7, x FOR PEER REVIEW 7 of 16 
 

 

  
(e) (f) 

Figure 5. The feature distribution of four noise signals for six metrics (𝑠𝑠 = 5 ): (a) VSMKFD; (b) 
VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. The feature distribution of four noise signals for six metrics (𝑠𝑠 = 9 ): (a) VSMKFD; (b) 
VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC. 

From Figure 6, the situation with 𝑠𝑠 = 9 is similar to that with 𝑠𝑠 = 5; all six nonlinear 
dynamic metrics can distinctly differentiate red noise from the other three noise types; in 
the case of the VSMKFD, violet noise and blue noise overlap only slightly. Conversely, for 

Figure 5. The feature distribution of four noise signals for six metrics (s = 5): (a) VSMKFD;
(b) VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 7 of 16 
 

 

  
(e) (f) 

Figure 5. The feature distribution of four noise signals for six metrics (𝑠𝑠 = 5 ): (a) VSMKFD; (b) 
VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. The feature distribution of four noise signals for six metrics (𝑠𝑠 = 9 ): (a) VSMKFD; (b) 
VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC. 

From Figure 6, the situation with 𝑠𝑠 = 9 is similar to that with 𝑠𝑠 = 5; all six nonlinear 
dynamic metrics can distinctly differentiate red noise from the other three noise types; in 
the case of the VSMKFD, violet noise and blue noise overlap only slightly. Conversely, for 

Figure 6. The feature distribution of four noise signals for six metrics (s = 9): (a) VSMKFD;
(b) VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC.

3.3. The Chaotic Signal Classification Experiment

In addition to the noise signal classification experiment, we conducted further tests
using three distinct chaotic signals to validate the feature extraction capabilities of the
proposed VSMKFD. Figure 7 shows the waveforms of the Henon [33], Chen [34], and
Rossler [35] signals in one sample.
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Figures 8 and 9 show the feature distribution of six metrics for chaotic signals. As
before, we present only the scenarios of s = 5 and s = 9. It can be observed from
Figures 8 and 9, that whether s = 5 or s = 9, there is no overlapping distribution area in
the VSMKFD, and the means of three chaotic signals also differ greatly, which indicates that
the three kinds of chaotic signals can be distinguished; all three chaotic signals produce
a large area of overlap in the distribution map of the VSMHFD; neither the VSMBFD nor
the VSMDE can fully distinguish between the three chaotic signals; both the VSMPE and
the VSMLZC can only distinguish the Rossler signal, while the distributions of Henon and
Chen signals have large overlaps. With the above analysis, we can see that the VSMKFD
has better classification performance on chaotic signals.
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Figure 9. The feature distribution of three chaotic signals for six metrics (s = 9): (a) VSMKFD;
(b) VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC.

4. The Feature Extraction Experiment on Ship-Radiated Noise

To underscore the superiority of the proposed VSMKFD in SRN analysis, this section
undertook feature extraction experiments on SRNs of different categories and the same
categories. It is imperative to note that the nonlinear dynamic metrics and corresponding
parameter configurations employed for comparative analysis align precisely with those
delineated in Section 3.
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4.1. Case 1: Different Categories of Ship-Radiated Noise

To evaluate the ability of the VSMKFD in feature extraction, the four different cate-
gories of SRN used in this experiment are from the National Park Service [36], including
the categories of state ferry, freighter, outboard engine (60 hp) at 20 knots, and small diesel-
engine-powered ships underwater recording, named Ship-1, Ship-2, Ship-3, and Ship-4.
For each category of SRN, we adopted a sampling frequency of 44,100 Hz and selected
200 samples; each of these samples encompassed 2048 sampling points. Figure 10 displays
the normalized waveform of four categories of SRN.
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Figure 10. The normalized waveform of four categories of SRN.

First, half of the samples of each class from the SRN were randomly selected as the
training set, and the other half were selected as the test set. This resulted in 100 training
samples and an equivalent number of test samples, which were trained using a K-n neighbor
(KNN) classifier to conduct the classification experiment. Table 1 reveals the highest average
recognition rate under different feature numbers. From Table 1, for the six nonlinear
dynamic metrics, as the number of extracted features continues to increase, the recognition
rate first improves, then stabilizes, and finally decreases slightly, and the overall recognition
effect presents an upward trend. For the VSMKFD, no matter the number of features
extracted, it has the highest classification accuracy of the other five metrics, with a 99.5%
recognition rate in all cases except for single features and ten features; the recognition rate
of the VSMHFD reaches its highest only at five features. From the above, compared to other
nonlinear dynamic metrics, the VSMKFD exhibits enhanced SRN classification capability.

Table 1. The highest average recognition rate under different feature numbers (%).

Metrics
Number of Extracted Features

1 2 3 4 5 6 7 8 9 10

VSMKFD 98.75 99.50 99.50 99.50 99.50 99.50 99.50 99.50 99.50 99.25
VSMHFD 94.25 98.25 99.00 99.00 99.25 99.25 99.25 99.25 99.00 99.00
VSMBFD 97.25 97.75 97.50 97.50 97.50 96.50 95.50 95.25 95.00 95.00
VSMDE 97.00 98.25 98.75 98.75 98.50 98.25 98.25 98.25 98.00 97.75
VSMPE 92.75 96.75 98.25 98.25 98.25 98.25 98.25 98.00 98.25 97.75

VSMLZC 90.50 95.50 95.75 95.75 95.75 96.00 95.50 95.25 95.25 95.25

Then, to more intuitively demonstrate the advantages of the VSMKFD in distinguishing
SRN, we calculate the different nonlinear dynamic metric values of each signal under 10 scales
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to obtain the corresponding 10-dimensional spatial feature set. Then the t-stochastic neighbor
embedding (t-SNE) was visualized to map each 10-dimensional object onto a point in 2-
dimensional phase space to visualize the extracted features. Figure 11 depicts the visualization
results of extracted features of four ship signals. From Figure 11, it can be seen that the
VSMKFD has the best visualization result; the features of the various kinds of SRN in the
VSMKFD are relatively centralized and have nearly no overlapping sections. However, the
features extracted from the other nonlinear dynamic metrics suffer from varying degrees of
overlap and decentralization. For example, the features of each SRN in the VSMHFD are
more decentralized than those of VSMKFD, especially in the distribution of Ship-1, Ship-2,
and Ship-4. For the VSMBFD, VSMDE, VSMPE, and VSMLZC, Ship-1 and Ship-4 have wide
overlapped areas. In addition, the distribution of Ship-3 in VSMLZC was more decentralized,
being split into two parts. Therefore, the proposed VSMKFD can better recognize different
categories of SRN compared to other nonlinear dynamic metrics.
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Figure 11. The visualization results of extracted features of four ship signals: (a) VSMKFD;
(b) VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC.
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4.2. Case 2: Same Categories of Ship-Radiated Noise

In this section, we select four tanker singles from the DeepShip database [37], including
KIRKEHOLMEN, CARIBBEAN SPIRIT, CHERRY GALAXY, and CHAMPION EBONY,
named as Tanker-1, Tanker-2, Tanker-3, and Tanker-4. In addition, the sampling frequency
is 32,000 Hz, and we also selected 200 samples, each encompassing 2048 sampling points.
Figure 12 displays the normalized waveform of four tanker signals.
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Figure 12. The normalized waveform of four tanker signals.

To evaluate the practicality of the VSMKFD in feature extraction of SRN, the recognition
rate was calculated using an approach that was similar to that of Case 1. Table 2 demonstrates
the highest average recognition rate under different feature numbers. It can be observed in
Table 2 that VSMKFD has the highest recognition rate under different numbers of features; the
recognition rates are higher than 98% under multi features and even reach 99.25% under four
features, while the recognition rates of the other five metrics are all below 96%, whereas the
recognition rates of the VSMDE, VSMPE, and VSMLZC are all below 90%, and the recognition
rate of the VSMLZC can only reach 80%. Based on the above analysis, the proposed VSMKFD
still performed best on the feature extraction of the SRN.

Table 2. The highest average recognition rate under different feature numbers (%).

Metrics
Number of Extracted Features

1 2 3 4 5 6 7 8 9 10

VSMKFD 96.75 98.50 99.25 99.25 99.25 99.25 99.00 98.75 98.75 98.50
VSMHFD 68.50 93.75 95.00 95.00 95.25 95.00 95.00 94.75 94.25 93.50
VSMBFD 70.25 91.00 92.25 92.25 92.25 91.75 91.25 90.75 90.50 90.50
VSMDE 65.00 88.00 89.25 88.75 89.25 88.75 88.25 87.25 87.25 86.00
VSMPE 66.00 81.25 86.00 87.25 87.00 87.25 86.00 85.25 84.50 83.00

VSMLZC 59.50 78.00 80.00 79.75 80.00 80.00 78.25 78.00 78.00 75.75

Aiming to further verify the efficiency of the proposed VSMKFD, we conducted a
feature extraction experiment for four tanker signals, and the visualization results of the
extracted features of four tanker signals are shown in Figure 13. From Figure 13, it is evident
that the distribution of four signals in the VSMKFD can be nicely separated with scarcely
any overlap of features. In contrast, the other five metrics all suffer from varying degrees of
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feature overlap. Neither the VSMHFD nor the VSMBFD can distinguish between Tanker-1
and Tanker-2 due to overlapping features; VSMDE cannot even distinguish between Tanker-
3 and Tanker-4; the most serious are VSMPE and VSMLZC, where all four signals have
overlapping features. The t-SNE experiment shows that the VSMKFD is more effective for
the SRN recognition task than other nonlinear dynamic metrics.
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Figure 13. The visualization results of extracted features of four tanker signals: (a) VSMKFD;
(b) VSMHFD; (c) VSMBFD; (d) VSMDE; (e) VSMPE; (f) VSMLZC.

5. Conclusions

In this study, a novel nonlinear dynamic metric, termed VSMKFD, was proposed
and applied to the feature extraction of SRN. The simulated and real signal experiments
demonstrate the validity of the proposed method. The main conclusions are summarized
as follows:
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(1) The VSMKFD was proposed by combining a variable-step multiscale process with
KFD, which can improve the feature extraction performance of KFD and fully exploit
signal information buried in multiscale.

(2) It is validated that the VSMKFD is able to effectively reflect the frequency change of
the chirp signal and has a stronger distinguishing capability for noise signals and
chaotic signals than other nonlinear dynamic metrics.

(3) The VSMKFD outperforms the VSMHFD, VSMBFD, VSMDE, VSMPE, and VSMLZC
in classifying different and the same categories of SRN and achieves the highest
recognition rate and more stable performance, which effectively improves the feature
extraction performance.
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Nomenclature

SRN ship-radiated noise
LZC Lempel–Ziv complexity
SE sample entropy
FE fuzzy entropy
PE permutation entropy
DE dispersion entropy
PLZC permutation Lempel–Ziv complexity
DLZC dispersion Lempel–Ziv complexity
NCDF normal cumulative distribution function
DELZC dispersion entropy-based Lempel–Ziv complexity
FDLZC fluctuation-based dispersion Lempel–Ziv complexity
KFD Katz fractal dimension
BFD box fractal dimension
HFD Higuchi fractal dimension
VSMKFD variable-step multiscale Katz fractal dimension
VSMHFD variable-step multiscale Higuchi fractal dimension
VSMBFD variable-step multiscale box fractal dimension
VSMDE variable-step multiscale dispersion entropy
VSMPE variable-step multiscale permutation entropy
VSMLZC variable-step multiscale Lempel–Ziv complexity
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