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Abstract: The evaluation process of the Fractional Order Model is as follows. To address the
commonly observed issue of low accuracy in traditional situational assessment methods, a novel
evaluation algorithm model, the fractional-order BP neural network optimized by the chaotic sparrow
search algorithm (TESA-FBP), is proposed. The fractional-order BP neural network, by incorporating
fractional calculus, demonstrates enhanced dynamic response characteristics and historical depen-
dency, showing exceptional potential for handling complex nonlinear problems, particularly in the
field of network security situational awareness. However, the performance of this network is highly
dependent on the precise selection of network parameters, including the fractional order and initial
values of the weights. Traditional optimization methods often suffer from slow convergence, a ten-
dency to be trapped in local optima, and insufficient optimization accuracy, which significantly limits
the practical effectiveness of the fractional-order BP neural network. By introducing cubic chaotic
mapping to generate an initial population with high randomness and global coverage capability,
the exploration ability of the sparrow search algorithm in the search space is effectively enhanced,
reducing the risk of falling into local optima. Additionally, the Estimation of Distribution Algorithm
(EDA) constructs a probabilistic model to guide the population toward the globally optimal region,
further improving the efficiency and accuracy of the search process. The organic combination of these
three approaches not only leverages their respective strengths, but also significantly improves the
training performance of the fractional-order BP neural network in complex environments, enhancing
its generalization ability and stability. Ultimately, in the network security situational awareness
system, this integration markedly enhances the prediction accuracy and response speed.

Keywords: fractional calculus; situational assessment; machine learning; swarm intelligence

1. Introduction

In the complex environment of naval battlefield electronic information systems, net-
work security situational prediction faces multiple challenges, including high precision,
real-time performance, and robustness. To address these issues, this paper proposes a
network security situational assessment model based on the TESA-FBP (fractional-order
BP neural network optimized by the chaotic sparrow search algorithm) to enhance the
performance of network security situational prediction models. Although traditional BP
neural networks possess strong nonlinear mapping capabilities [1–3], they often exhibit
slow convergence and a tendency to become trapped in local optima when dealing with
highly dynamic and limited data scenarios typical of network security situational predic-
tions, rendering them inadequate for the stringent demands of naval battlefield electronic
information systems.

By leveraging the long memory characteristics of fractional calculus [4–8], the BP
neural network’s ability to respond to complex situational changes is enhanced, thereby
addressing the limitations of traditional integer-order models in handling multiscale prob-
lems. Furthermore, to mitigate the impact of initial weight settings on model prediction
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accuracy, this paper proposes using cubic chaotic mapping to generate an initial population
with high randomness and coverage, thereby improving the global exploration capability
of the sparrow search algorithm and reducing the risk of the network becoming trapped
in local optima during the early stages of training. Building on this, to further enhance
the accuracy and efficiency of network weight optimization, the paper integrates the Esti-
mation of Distribution Algorithm (EDA), which constructs a probabilistic model to guide
the population toward the globally optimal solution. This approach effectively avoids the
local convergence issues common in traditional optimization algorithms when dealing
with complex multimodal problems, significantly improving the accuracy and stability of
network security situational predictions.

2. Materials and Methods
2.1. Fundamental Theory of Fractional Calculus

Fractional calculus, an important branch of calculus, dates back to the 17th century and
has evolved alongside integer-order calculus. Scholars such as L’Hospital were pioneers
in proposing the concept of fractional calculus, which has since generated considerable
academic interest. Fractional calculus extends integer-order calculus by allowing differenti-
ation and integration orders to be real numbers. When the order is an integer, fractional
calculus is reduced to integer-order calculus; when the order is fractional, its unique proper-
ties become apparent. However, due to the theoretical and modeling complexities and early
computational limitations, solving problems in fractional calculus was once challenging,
making its practical application in engineering difficult and limiting its early adoption.

In the 21st century, the rapid advancement of computer technology has renewed inter-
est in fractional calculus. These technological breakthroughs have simplified the solving
process and significantly reduced computational demands. Scholars have discovered that
many natural phenomena are difficult to describe accurately using traditional integer-order
models, while fractional calculus offers greater flexibility and precision. As a result, frac-
tional calculus has been widely applied in fields such as control systems [9,10], image
processing [11–13], and chaotic dynamics [14,15], achieving significant results. Today, frac-
tional calculus has become a research hotspot, and its potential applications are continually
being explored. With ongoing research and technological progress, fractional calculus is
expected to play a more significant role in advancing various disciplines.

The theoretical framework of fractional calculus has now matured with extensive
applications in both theoretical research and engineering practice. Its definitions are diverse,
including those of Caputo, Grunwald-Letnikov, Cauchy, and Riemann-Liouville, each
possessing unique features and interconvertibility. The Caputo definition is particularly
noted for its simplicity and practicality.

Traditional gray models are constrained by first-order fitting equations; however, the
introduction of fractional-order theory has effectively broadened their application scope.
This combination retains the simplicity of the gray models while significantly enhancing
their predictive performance. Therefore, integrating fractional calculus with gray models
represents a practical and effective improvement with important implications for research
and applications across multiple fields.

2.2. Fundamental Theory of BP Neural Networks

BP neural networks are multilayer feedforward networks based on the error backprop-
agation algorithm. These networks simplify biological models [16,17] and are currently
among the most widely used and popular neural network models [18]. Typically, by em-
ploying the gradient descent algorithm, BP neural networks can perform various nonlinear
mappings, including input-to-output mappings. The BP algorithm is known as the back-
propagation learning algorithm [19] because the network weights are adjusted based on the
difference between the actual and desired outputs, with the adjustment process occurring
in a backward manner. BP networks are primarily used for function approximation and
pattern recognition, achieving widespread applications [20–28].
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2.3. Basic Principles of BP Neural Networks

BP neural networks (BPNN, BP) are common neural network models. Their primary
structure, as illustrated in Figure 1, comprises an input layer, multiple hidden layers, and
an output layer. The nodes in each layer are interconnected through connection weights
without interfering with each other.
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Figure 1. The model of a BP neural network. 
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2.4. Fractional BP Neural Network
2.4.1. Caputo Fractional Derivative

For a function f (t), its first-order causal derivative can be written as

Dl f (t) =limh→0+
f (t)− f (t − h)

h
(1)

Combining this with the Caputo fractional calculus formula yields the definition of
the Caputo fractional causal derivative.

C
t0

Dα
t f (t) =

1
Γ(m − α)

∫ t

t0

f (m)(τ)

(t − τ)α−m+1 dτ (2)

where aDα
t denotes the Caputo fractional operator, α is the fractional order, and [a, t] is the

integration interval of f (t). When α is in the interval (0, 1), the formula becomes

lCaputo aDα
t f (t) =

1
Γ(1 − α)

∫ t

a
(t − τ)−α · f ′(τ)dτ (3)

The Caputo fractional derivative offers the following several key advantages
Physical Interpretability: The Caputo fractional derivative retains some of the physical

interpretability of classical integer-order calculus, particularly in the setting of the initial
conditions. It allows for the use of traditional initial condition forms within fractional-
order models, ensuring that the training and optimization process of the network remains
consistent with the physical context of the application.

Ease of Handling Initial Conditions: Within the framework of the Caputo fractional
derivative, the initial conditions can be maintained in the same form as those in traditional
integer-order derivatives. This is particularly important in fractional-order BP neural
networks for handling boundary and initial value problems, as it avoids the complexity of
calculating the initial conditions associated with other types of fractional derivatives.

Smooth Memory Effect: The Caputo fractional derivative better captures the memory
characteristics and historical dependencies of the system, which is especially effective for
BP neural networks dealing with time-series data or data with long-term dependencies.
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The Caputo derivative introduces a smooth memory effect, enabling the network to more
accurately reflect the influence of past inputs during optimization, thereby improving the
predictive performance.

Relative Computational Simplicity: Compared to other forms of fractional derivatives,
such as the Riemann-Liouville derivative, the Caputo fractional derivative is relatively
simpler to implement numerically. This simplicity reduces the computational burden
during the training of complex BP neural networks, thereby facilitating more efficient
training and optimization.

Overall, the application of the Caputo fractional derivative in fractional-order BP neu-
ral networks balances physical interpretability, computational simplicity, and the capture of
system memory effects, making it a preferred choice for optimizing network performance.

2.4.2. Caputo Fractional BP Neural Network

Let the number of neurons in the input layer, hidden layer, and output layer of a
BP neural network be m, n, and l, respectively, with a sample size of J. The input sample
j (j ∈ J) and its expected output are denoted as X j and Oj. Let W1 =

(
νiq

)
n×m represent the

weights between the input and hidden layers, and W2 = (µ1, µ2, · · · , µn)
T represent the

weights between the hidden and output layers, where i, q are the weights corresponding to
neurons in the input and hidden layers, and µp are the weights corresponding to neurons
in the p hidden layer and the output layer. Assume that the transfer function of the hidden
layer is g, and the transfer function of the output layer is f .

Define θi,j = νi1xj
1 + νi2xj

2 + · · ·+ νimxj
m = νi · X j representing the input from sample

j to the hidden layer neuron i. The input to the output layer is ξ j = W2 · G
(
W1 · X j),

and the actual output is yj = f
(
W2 · G

(
W1X j) . The error function of the weights can be

expressed as

E(W) =
1
2∑J

j=1

(
Oj − f

(
W2 · G(W1 · X j)

))2
= ∑J

j=1 f j

(
W2 · G(W1 · X j)

)
(4)

Here, f j(t) = 1
2
(
Oj − f (t)

)2, t ∈ R, f j(·) is composed of functions G and f ; initial
weights are W0 =

(
W10, W20); and weights at iteration Wk = (W1k, W2k).

The error function’s partial derivative with respect to the weights using Caputo
fractional calculus can be expressed as

µk+1
i = µk

i − η · lCaputocminDα
µk

i
E(W)

νk+1
ir = νk

ir − η · lCaputocminDα
νk

ir
E(W)

(5)

where η > 0 is the learning rate; α is the fractional order; and h(s(t)) is a composite function.
According to the definition of the Caputo fractional derivative, h(s(t)) with respect to t of
order α is

From Equation (5), we can obtain l Caputo cmin Dα
νk

ir
E(W) and lCaputo cmin Dα

νk
ir

E(W).

First, for

lCaputocminDα
µk

i
E(W) : lCaputocminDα

νk
ir

E(W) =
∂E(W)

∂ζ j · lCaputocminDα
µk

i
(ζ j) (6)

where ∂E(W)

∂ζ j = ∑J
j=1 f ′j

(
W2 · G

(
W1 · X j)). When 0 < α < 1, it can be expressed as

l Caputo cmin Dα
µk

i

(
ζ j) = 1

Γ(1−α)

∫ µk
i

cmin (µk
i − τ)−α·g(νk

i · X j)dτ = 1
Γ(1−α)

g(νk
i · X j)

∫ µk
i

cmin (µk
i − τ)−αdτ

= 1
Γ(1−α)

1
1−α g(νk

i · X j)(µk
i − c min )1−α

(7)
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Therefore, the specific formula for the error with respect to µk
i is

l Caputo cmin Dα
µk

i
E(W) = 1

(1−α)Γ(1−α)
· ∑J

j=1 f ′j (W2·

G
(
W1 · X j))g(νk

i · X j)
(

µk
i − c min

)1−α (8)

Next, for l Caputo cmin Dα
νk

ir
E(W), similarly:

lCaputocmin Dα
νk

ir
E(W) =

∂E(W)

∂θi,j · lCaputocmin Dα
νk

ir
(θi,j) where

∂E(W)

∂θi,j = ∑J
j=1 f ′j

(
W2 · G(W1X j)

)
µig′(νi · X j).

The Caputo fractional derivative of θi,j with respect to νk
ir is

l Caputo cmin Dα
νk

ir

(
θi,j) = 1

Γ(1−α)

∫ νk
ir

c min (νk
ir − τ)−αxj

rdτ =

1
Γ(1−α)

xj
r

1
1−α (ν

k
ir − τ)−α

∣∣∣νk
ir

c min
=

1
(1−α)Γ(1−α)

xj
r(ν

k
ir − cmin )1−α

(9)

νk
ir: Represents the input value for the rrr-th neuron in the kkk-th layer for the iii-th

sample. It typically indicates the input signal at a particular layer of a neural network.
θi,j: Denotes the weight parameter between the jjj-th neuron and a target neuron for

the iii-th sample. This parameter is generally the weight that is optimized during the
training of the neural network.

α: The fractional order of the derivative, ranging between 0 and 1, representing the
fractional order of the derivative.

c min representing the fractional order of the derivative between 0 and 1 target neuron
for the iii-th sample. This parameter is generally the weight that is optimized during the
training of the neural network

Γ(1 − α): The Gamma function, used to calculate the normalization constant in the
fractional derivative. The Gamma function is a common special function in fractional
calculus.

xj
r: Represents the value of the jjj-th input signal received by the rrr-th neuron. It

usually indicates either the input signal from the input layer or the output signal from the
previous layer.

r: The integration variable, representing a variable over time or space, used to define
the integration range from c min to νk

ir.

2.5. Fundamental Theory of the Sparrow Search Algorithm
2.5.1. Mathematical Model of the Algorithm

In 2020, Xue Jiankai proposed a novel swarm intelligence algorithm known as the
sparrow search algorithm (SSA). Compared to other swarm intelligence optimization
algorithms, SSA demonstrates exceptional performance in terms of search accuracy, faster
convergence speed, and relatively stable performance, and has gradually attracted the
attention of many scholars. The inspiration for this algorithm comes from the foraging and
anti-predation behavior of sparrows in nature.

In SSA, there are three roles: discoverers, joiners, and scouts. Discoverers are responsi-
ble for finding food and guiding the direction of the entire population. Joiners search for
food based on the information provided by discoverers, often acting together to find food
sources. Scouts monitor and compete with discoverers for food and stop foraging when
the entire population faces predation threats or perceives danger.

The mathematical model for the discoverers is shown in Equation (10):

Xt+1
i,d =

{
Xt

i,d · exp
(

−i
α·G

)
i f R2 < ST

Xt
i,d + Q · L i f R2 ≥ ST

(10)
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In the formula, t represents the current iteration number, G is the maximum number
of iterations, Xi,d is the position information of the i-th sparrow, α ∈ (0, 1] is a random
number, ST is the safety value, R2 is a random number in the interval (0, 1), Q is a normally
distributed random number, and L is a 1 × d matrix. The mathematical model for the
joiners is shown in Equation (11):

Xt+1
i,d =

 Q · exp
(

Xt
worst−Xt

i,d
i2

)
i f i > n/2

Xt+1
P +

∣∣∣Xt
i,d − Xt+1

P

∣∣∣ · A+ · L otherwise
(11)

In the formula, XP denotes the position of the discoverer; Xt
worst is the worst position

in the population; Q is a random number following a standard Gaussian distribution;
and A is a 1 × d matrix, with A+ = AT(AAT)−1. The mathematical model for scouts is
described as follows (Equation (12)):

Xt+1
i,d =


Xt

best + β ·
∣∣∣Xt

i,d − Xt
best

∣∣∣ i f fi > fg

Xt
i,d + K ·

(
|Xt

i,d−Xt
worst|

( fi− fw)+ε

)
i f fi = fg

(12)

In the formula: Xt
best denotes the global optimal position; β is a random variable

following a standard Gaussian distribution; fi represents the fitness value of the current
sparrow; fg is the optimal objective function value; fw is the worst objective function value;
and ε is a small constant. A flowchart of the sparrow search algorithm is illustrated in
Figure 2.
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Figure 2. The flowchart of sparrow search algorithm.

The pseudocode for the sparrow search algorithm is presented in Table 1.
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Table 1. Sparrow search algorithm.

The Framework of Sparrow Search Algorithm

input:
G: Maximum Number Of Iterations;
w: Number of Discoverers in Sparrow Population;
SD: Number of vigilantes in the sparrow population;
R2: warning value;
Establish an objective function F(x), where N X = x(x1, x2, · · · , xd), are initialized, and relevant
parameters are defined;
output: xbest, fg;
1: while t ≤ G;
2: Sort the fitness values to find the current best individual and the current worst individual;
3 : R2 = rand(1);
4: for i = 1 : N*w;
5: Update the position of individual sparrow discoverers using Equation (10);
6: end for;
7: for i =

(
N*w + 1

)
: N;

8: Use Equation (11) to update the position of individual sparrow joiners;
9: end for;
10: for i = 1 : SD*N;
11: Use Equation (12) to update the position of individual sparrow watchers;
12: end for;
13: Obtain the latest global optimum;
14: t = t + 1;
15: end while;
16: return xbest, fg.

2.5.2. Analysis of the Advantages and Disadvantages of SSA

The sparrow search algorithm (SSA), as an innovative heuristic method, has garnered
significant attention in academia due to its rapid convergence, ease of implementation,
and minimal parameter tuning. The algorithm demonstrates exceptional performance in a
local search. However, like all algorithms, SSA is not without its limitations. The primary
drawbacks of the SSA algorithm include the following:

Premature Convergence: When discoverers in the SSA algorithm identify a local
optimum, followers quickly converge around this solution. Due to the algorithm’s lack of
an effective mechanism to escape local optima, SSA sometimes exhibits low convergence
accuracy. This is a critical area for further research and improvement.

Slow Convergence Speed: At the onset of the SSA, both discoverers and followers
are randomly generated, resulting in an uneven distribution. Additionally, the ratio of
discoverers to followers is preset and fixed, which makes it difficult to adjust strategies
flexibly based on real-time environmental changes during iterations. Particularly in the
later stages of the iteration, the lack of population diversity often results in a relatively slow
convergence rate. This limitation restricts the effectiveness of the SSA in certain complex
scenarios, necessitating further research and optimization.

2.6. Fundamental Theory of Chaos

Chaos, as a distinctive phenomenon within deterministic systems, exhibits both chaotic
disorder and inherent order. This complex state is prevalent during numerous natural
movements and events. The sensitivity of chaotic systems to initial conditions and their
intrinsic randomness form a robust foundation for the application of chaos theory across
various scientific disciplines, particularly in fields such as artificial intelligence and cryptog-
raphy. The integration of chaos theory with intelligent algorithms is especially significant.

2.6.1. Definition of Chaos

Chaos is characterized by finite non-periodic motion, with its dynamics concentrated
in specific attractor regions. Despite its finite nature, this motion demonstrates marked
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instability, distinguishing it from quasi-periodic or stable finite motions. There are several
definitions of chaos. The Li-Yorke definition provides a rigorous mathematical perspective
but is complex and challenging to comprehend. Conversely, the definition proposed by
Devaney in 1989 is more accessible and intuitive, making it easier to understand and more
widely accepted.

Li-Yorke Definition of Chaos

The Li-Yorke definition of chaos for a continuous self-map f (x) on an interval I is
as follows:

(1) The periodic points of f have unbounded periods.
(2) For any x1, x2 ∈ S where x1 ̸= x2, lim

n→∞
sup| f n(x1)− f n(x2)| > 0

(3) For any x1, x2 ∈ S, lim in f
n→∞

| f n(x1)− f n(x2)| = 0

(4) Where f n(·) = f ( f · · · f (·)), and for any x ∈ S and any periodic point y of f ,
lim

n→∞
sup| f n(x)− f n(y)| > 0 Then f is said to be chaotic on interval I.

Based on the Li-Yorke definition of chaos, a chaotic system should possess three core
characteristics:

(1) The system includes a countable number of stable periodic trajectories that exhibit
regular and repetitive patterns.

(2) It also contains numerous unstable non-periodic trajectories that display irregular and
unpredictable behavior.

(3) Crucially, there is at least one unstable non-periodic trajectory, underscoring the
complexity and unpredictability of chaotic motion.

Devaney’s Definition of Chaos

Devaney’s definition of chaos states that a continuous map f : X → X is chaotic if
it satisfies:

(1) f is topologically transitive.
(2) The periodic points of f are dense in X.
(3) Sensitivity to initial conditions: there exists δ > 0, such that for any ε > 0 and any

x ∈ X, there exists y in the ε-neighborhood of x and a natural number n such that
d( f n(x), f n(y)) > δ.

In Devaney’s criteria for chaotic maps, the existence of f is attributed to its topological
transitivity, indicating that the chaotic system cannot be decomposed into interacting
subsystems under f, and that its trajectories exhibit regular features. The density of the
periodic points of f within X suggests that the chaotic map is indecomposable, with chaotic
behavior demonstrating a dense periodic trajectory that eventually evolves into a chaotic
attractor, revealing a rich and self-similar structure. Activities within the chaotic attractor
in a specific region can comprehensively cover every trajectory, illustrating its independent
and non-overlapping nature. The sensitivity of f to the initial conditions highlights the
instability of the chaotic map. While the short-term effects of minor initial changes are
predictable, the long-term outcomes are unpredictable, epitomized by the “butterfly effect”.

2.6.2. Chaotic Mapping

The characteristics of the chaotic optimization algorithm (COA) were first anticipated
by mathematician Henri Poincaré in the late 19th century. However, it was not until
1963 that the algorithm was formally proposed and applied to atmospheric flow stud-
ies. Since then, research on chaotic algorithms has shown significant advancements and
breakthroughs [29–32].

The COA is characterized by randomness, regularity, ergodicity, and sensitivity. As a
typical nonlinear phenomenon, the ergodicity and randomness of chaotic sequences make
them powerful tools for solving optimization search problems.
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The search results of the COA are not influenced by the initial values, which helps
avoid the problem of local optima. Moreover, the algorithm is computationally effi-
cient, has good global convergence, and consistently determines the optimal solutions in
each search.

Chaos, as a nonlinear phenomenon, plays a significant role in optimization search
problems. The ergodicity and randomness of chaotic sequences offer new perspectives and
methods for solving these problems. The COA has also been applied in various engineering
fields [33–36]. It employs chaotic sequences generated by chaotic mapping to transform the
variables to be optimized into a chaotic variable space. This space has the same range as the
solution space for the variables to be optimized. The algorithm then performs a thorough
search in the solution space based on the random and regular characteristics of chaotic
variables, and finally transforms the obtained solution linearly back into the variable space
to be optimized. This direct search method, which is based on chaotic variables following
their intrinsic rules, is more efficient. Therefore, chaotic optimization can escape local
optima and improve optimization efficiency. Common one-dimensional chaotic mapping
functions are listed in Table 2.

Table 2. Common chaos mapping functions.

Serial Number Names of Chaotic Mappings Expression

1 Logistic xn+1 = µxn(1 − xn), 0 < µ ≤ 4.

2 Chebyshev xn+1 = f (xn) = cos(karccos(xn)) x ∈ [−1, 1].

3 Tent xi+1 =

{
2xi, 0 ≤ x ≤ 1

2
2(1 − xi), 1

2 < x ≤ 1.

4 Cubic xn+1 = 4x3
n − 3xn

Logistic Map

The Logistic map function, despite its simple form, exhibits complex and unpredictable
dynamic behavior within certain parameter ranges. This characteristic makes it useful
for generating pseudo-random number sequences. The formula is given in Equation (13)
as follows:

xn+1 = µxn(1 − xn), 0 < µ ≤ 4 (13)

The Logistic map, derived from a demographic dynamical system, is extensively used
due to its simplicity. When µ = 4, the system reaches a chaotic state. Here, xn represents
the value at the nth iteration, and µ is a constant, typically within the range [1, 4]. The
Logistic map generates sequences with random properties, producing values within the
interval [0, 1].

Chebyshev Map

The Chebyshev map, defined by its order, offers the advantage of a simple iterative
equation, facilitating its implementation. The Chebyshev map is defined by Equation (14).

xn+1 = f (xn) = cos(karccos(xn)), x ∈ [−1, 1] (14)

Here, k is a control factor, and for k ≥ 2, the system exhibits chaotic behavior. This
property enables the Chebyshev map to generate numerous complementary and highly
correlated renewable signals that have extensive applications across various fields.

Tent Chaotic Map

The Tent chaotic map function, also referred to as the Tent map function, offers the
benefits of uniformly distributed chaotic sequences and rapid iteration. The computation
method for the Tent map function is given in Equation (15).
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xi+1 =

{
2xi, 0 ≤ x ≤ 1

2

2(1 − xi), 1
2 < x ≤ 1.

(15)

Introducing the random variable “rand” (0, 1)/N addresses the potential of the unsta-
ble periodic points. The optimized expression is shown in Equation (16).

xi+1 =

{
2xi + rand(0, 1)× 1

N , 0 ≤ x ≤ 1
2

2(1 − xi) + rand(0, 1)× 1
N , 1

2 < x ≤ 1
(16)

By introducing the random variable “rand (0, 1)/N”, the chaotic map’s randomness
is preserved while effectively limiting the range of random values. This further enhances
the regularity of the Tent chaotic map.

Cubic Chaotic Map

A cubic chaotic map is a straightforward type of chaotic mapping that combines
simplicity with strong chaotic characteristics, making it computationally efficient. It is
defined as follows:

xn+1 = 4x3
n − 3xn (17)

where x0 ∈ (0, 1), and n is a positive integer. According to this equation, the map value is 0
when xn = 0; therefore, the cubic chaotic map is valid as long as xn ̸= 0. Through multiple
iterations, the cubic chaotic map generates distribution points that exhibit randomness.
These points lack predictable patterns, and as the number of iterations increases, the
system’s output points randomly cover the entire solution space, achieving comprehensive
traversal.

Selection of Chaotic Maps

The sparrow search algorithm (SSA) often suffers from a lack of population diversity,
which can limit its ability to find the global optimum, thereby affecting its convergence
speed and solution accuracy. To enhance the algorithm’s performance, it is essential to
explore more effective methods for initializing the sparrow population’s position informa-
tion to increase diversity. Based on extensive application practice, it has been found that
among the commonly used chaotic maps—Logistic, Tent, Chebyshev, and cubic—the cubic
chaotic map stands out due to its simplicity, strong chaotic properties, and computational
efficiency, making it more suitable for population initialization.

These advantages are unique to the cubic chaotic map, which led us to select it
to improve the SSA. Specifically, the data generated by the cubic map are uniformly
distributed, allowing the initial positions of the sparrow population to cover various regions
of the search space, thus maintaining diversity. The unpredictability of the cubic map
ensures that the initial population positions are random and unpredictable. Additionally,
the excellent traversal properties of the cubic map enhance the algorithm’s global search
efficiency, enabling the discovery of better solutions and accelerating convergence to the
global optimum.

3. Results
3.1. The Sparrow Search Algorithm Based on Chaotic Mapping and Estimation of Distribution
Algorithm (EDA)

Table 3 presents the optimization strategies for the Chaotic Sparrow Search Algorithm.
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Table 3. Optimization strategies for chaotic sparrow search algorithm.

Optimization
Strategy Description Limitations

Adaptive Weight Strategy

Dynamically adjusts the
weight of individuals’

position updates, enhancing
exploration in early stages and

exploitation in later stages.

Requires fine-tuning, which
may increase computational

complexity.

Mutation Strategy

Introduces random mutations
similar to genetic algorithms,

increasing population
diversity and preventing early

convergence.

Excessive mutation can lead
to instability and impact
convergence accuracy.

Multi-Strategy Cooperative
Optimization

Combines multiple algorithm
strategies (e.g., PSO, GA, DE)
to enhance global search and

convergence performance
through synergy.

High algorithmic complexity;
managing conflicts between

different strategies can be
challenging.

Levy Flight Strategy

Utilizes the Levy flight
mechanism to allow

individuals to perform
long-distance jumps,

enhancing global exploration
capability.

Jump distances are hard to
control and may lead to

unstable search processes.

Adaptive Chaos Strategy

Dynamically adjusts chaotic
parameters during the search,

allowing different chaotic
behaviors at various stages to

balance exploration and
exploitation.

Parameter selection can be
complex and

problem-dependent.

The workflow of the sparrow search algorithm based on Chaotic Mapping and Esti-
mation of Distribution Algorithm (EDA) is shown in Figure 3.

(1) Generate the initial population using the cubic chaotic map to determine the initial
positions of the population, as described by the following equation:

x0
i = Lb + (Ub − Lb) · xi

chaotic (18)

where: Lb, Ub—the lower and upper boundaries of the solution space; xi
chaotic—Chaotic

sequence generated by the cubic chaotic map.
(2) Fitness Calculation: For each individual in the initial population, calculate its fitness

value and determine the position and fitness of the best individual in the population.
(3) Iterative Population Update: Update the positions of explorers, followers, and scouts

in the population according to the standard SSA update rules.
(4) Optimization using EDA: Every five iterations, apply EDA for the secondary optimiza-

tion of the current population. Construct a Gaussian probability model to generate
new individuals, replacing underperforming ones. The formula is as follows:

P(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
(19)

where: µ—mean vector; Σ—covariance matrix.
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The pseudocode for the sparrow search algorithm is shown in Table 4.

Table 4. Sparrow search algorithm based on cubic mapping and EDA.

The Framework of Sparrow Search Algorithm

input:
G: Maximum Number Of Iterations;
w: Number of Discoverers in Sparrow Population;
SD: Number of vigilantes in the sparrow population;
R2: warning value;
Establish an objective function F(x),where N X = x(x1, x2, · · · , xd), are initialized by cubic
algorithm and relevant parameters are defined;
output: xbest, fg;
1: while t ≤ G;
2: Sort the fitness values to find the current best individual and the current worst individual;
3 : R2 = rand(1);
4: for i = 1 : N*w;
5: Update the position of individual sparrow discoverers using Equation (13);
6: end for;
7: for i =

(
N*w + 1

)
: N;

8: Use Equation (14) to update the position of individual sparrow joiners;
9: end for;
10: for i = 1 : SD*N;
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Table 4. Cont.

The Framework of Sparrow Search Algorithm

11: Use Equation (15) to update the position of individual sparrow watchers;
12: Use EDA for optimization: construct a Gaussian probability model using Equation (31) to
generate new individuals after every five iterations, replacing those with poor performance.
12: end for;
13: Obtain the latest global optimum;
14: t = t + 1;
15: end while;
16: return xbest, fg.

3.2. TESA-FBP Model Evaluation Process

The BP neural network suffers from a slow convergence speed and a tendency to
become trapped in local optima. To address these issues, a fractional-order BP neural
network evaluation model was developed, which achieves better optimization results
compared to traditional BP neural networks. The model is further enhanced by employing
a Chaotic Sparrow Search Algorithm, resulting in the TESA-FBP prediction model. The
core concept of this model involves using the TESA algorithm to repeatedly adjust the
initial weights and thresholds of the fractional-order BP neural network to improve the
model’s evaluation accuracy.

The evaluation process of the TESA-FBP model is as follows:
Step 1: Initialize Population and Parameter Setting
Generate the initial population using the cubic mapping strategy to ensure diversity

and even distribution. Set the number of iterations for the algorithm and determine the
ratio of predators to joiners.

Step 2: Calculate Fitness Values
Compute the fitness value for each individual (i.e., sparrow) in the initial population.

Rank the population based on fitness values to identify the best and worst individuals.
Step 3: Update Sparrow Positions
Update the positions of discoverers, joiners, and sentinel sparrows according to the

fitness ranking.
Step 4: Position Comparison and Update
In each iteration, compare the fitness values of the new positions with those from the

previous iteration. If the new position has a better fitness value, update the sparrow position;
otherwise, retain the original position. Repeat this process until the preset conditions are
met (e.g., reaching the maximum number of iterations or achieving a fitness value threshold)
to obtain the global optimum individual and best fitness value.

Step 5: Apply EDA Optimization
After every five iterations, construct a Gaussian probability model to generate new

individuals, replacing those with poorer performance.
Step 6: Update the Optimal Solution
Compare the fitness values of the current population and update the global optimal

solution. Continue executing Step 2 until the termination condition is met.
Step 7: Apply Optimal Solution to fractional-order BP neural network
Convert the global optimal individual into weight values for the fractional-order BP

neural network. The global optimal solution also serves as the threshold value for the
fractional-order BP neural network.

Step 8: Termination and Output
When one of the stopping conditions is satisfied, stop the training process and output

the current neural network’s weights, thresholds, and corresponding prediction results. If
the stopping conditions are not met, continue the training process for the fractional-order
BP neural network.
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3.3. Experimental Analysis
3.3.1. Selection of Experimental Data and Evaluation Metrics

The data for the network security situation awareness system comes from the naval
weaponry preliminary research project, specifically the electronic information system for
maritime battlefields, making the data highly sensitive. To validate the model’s effective-
ness, publicly available network security situation data from the National Computer Net-
work Emergency Response Technical Team/Coordination Center of China (CNCERT/CC)
is used as experimental data. These statistical data mainly come from the security situation
weekly reports regularly published on the CNCERT/CC website. The reports cover five
major categories of security incidents: the number of hosts infected by viruses, number
of websites defaced, number of websites implanted with backdoors, number of phishing
websites, and number of new security vulnerabilities. These five categories are the main
factors affecting the situation assessment level, are independent of each other, and have
obtainable relevant data, making them operable and suitable for indicator selection. Thus,
these five categories of incidents are selected as indicators for assessing the network security
situation. For a more efficient data analysis, the five security situation assessment levels
provided by CNCERT/CC are converted into numerical levels, as shown in Table 5.

Table 5. Five levels of network security situation.

Excellent Good Secondary Poor Dangerous

5 4 3 2 1

3.3.2. Evaluation Model Comparison

(1) BP Neural Network Based on Simulated Annealing and Particle Swarm Optimiza-
tion (SA-PSO-BP) Evaluation Model

A BP neural network employing simulated annealing and particle swarm optimization
was trained and then used for situation assessment. The evaluation results for the training
set are shown in Figure 4.
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The evaluation results for the test set are shown in Figure 5.
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The error between the situation evaluation results obtained through the SA-PSO-BP
model and the actual situation values is shown in Table 6.

Table 6. Comparison of assessment results of the SA-PSO-BP model situation.

Sample Actual Value Evaluation Value Absolute Error

1 3 3.048 0.048
2 4 3.995 0.005
3 4 4 0
4 4 3.993 0.007
5 4 4.005 0.005
6 4 3.981 0.019
7 4 3.998 0.002
8 4 4 0
9 4 4.01 0.01
10 3 3.09 0.09
11 4 3.993 0.007
12 4 4.005 0.005

(2) Evaluation Model Based on BP Neural Network Optimized by D-S Evidence [37].
Theory (D-S BP) The parameters of the BP neural network were optimized using the

D-S evidence theory. After training with the sample data, the GA-BP evaluation model was
successfully constructed. This model was then used to evaluate and analyze 12 sample
data points. The evaluation results of the training set are shown in Figure 6.
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The error between the situational assessment results obtained through the D-S-BP
model evaluation and the actual situational values is shown in Table 7.
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Table 7. Comparison of D-S-BP model situation evaluation results.

Sample Actual Value Evaluation Value Absolute Error

1 4 4.001 0.001
2 4 4 0
3 4 4 0
4 4 4 0
5 4 4.004 0.004
6 4 4 0
7 4 4.001 0.001
8 4 4 0
9 4 4 0
10 4 4 0
11 4 4 0
12 4 4 0

(3) Genetic Algorithm Based Deep Neural Network (GA-DNN) Evaluation Model [38].
The evaluation model was successfully constructed using the GA-DNN algorithm

based on Euclidean distance. Subsequently, this model was utilized for the evaluation
analysis of the 12 sample datasets. The evaluation results of the training set are depicted in
Figure 8.
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Through the evaluation of the GA-DNN model, the calculated error between the

situation assessment results and the actual situation values is presented in Table 8.

Table 8. Comparison of GA-DNN Model Situation Evaluation Results.

Sample Actual Value Evaluation Value Absolute Error

1 4 4.002 0.002
2 4 3.999 0.001
3 4 3.999 0.001
4 4 4 0
5 4 3.999 0.001
6 3 3 0
7 3 2.984 0.016
8 4 3.996 0.004
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Table 8. Cont.

Sample Actual Value Evaluation Value Absolute Error

9 4 4 0
10 4 4 0
11 4 4 0
12 4 4 0
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(4) The Evaluation Model of TESA-FBP Based on chaotic sparrow search algorithm
Optimization

The parameters of the BP neural network were optimized using a Chaotic Sparrow
Search Algorithm. Through training on the sample data, the TESA-FBP evaluation model
was successfully constructed. This model was then utilized to effectively evaluate the
12 sample datasets, with the assessment results of the training set shown in Figure 10.
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The evaluation results of the test set are shown in Figure 11.
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Through the evaluation computation of the TESA-FBP model, the error between the
situational assessment results and the actual situational values is depicted in Table 9.

Table 9. Comparison of evaluation results of the TESA-FBP model situation.

Sample Actual Value Evaluation Value Absolute Error

1 4 4.001 0.001
2 4 4 0
3 4 4 0
4 4 4 0
5 4 4.005 0.005
6 4 4 0
7 4 4.001 0.001
8 4 4 0
9 4 4 0
10 4 4 0
11 4 4 0
12 4 4 0

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

4. Discussion

This section introduces a network security situational assessment method based on
the research topic of naval weaponry and equipment—the maritime electronic information
system, which stipulates a performance requirement that the assessment delay must not
exceed 20 s. Considering the applicability of BP neural networks to complex systems and
their superior performance over deep learning algorithms with fewer input variables while
meeting the performance requirements and accuracy of the assessment, optimizations were
performed to address the slow convergence, poor stability, and tendency to fall into the
local minima of traditional BP neural networks. The following two improvements were
applied to the BP neural network using the fractional-order TESA-FBP algorithm:
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To ensure that the sparrow algorithm avoids premature convergence and exhibits
superior global search performance, the cubic chaotic optimization algorithm was employed
to enhance population diversity. This approach enables the sparrow algorithm to achieve
better diversity and global coverage in the initial stage. Due to the random properties of
chaotic elements, they can enrich the initial dataset of the SSA algorithm, thus improving
its global search efficiency. The cubic chaotic mapping operator, widely used for generating
consistent chaotic sequences within the range [0, 1], offers a relatively high iteration rate.
Consequently, the cubic chaotic mapping function, characterized by uniform distribution,
unpredictability, irreproducibility, and thoroughness, was introduced. Using cubic chaotic
mapping values to represent the initial positions of the population not only maintains
the diversity of the sparrow search algorithm but also increases the likelihood of finding
the globally optimal result, thereby accelerating the search rate and enhancing search
efficiency. The introduction of chaotic variables significantly improves the global search
capability, reduces the occurrence of local optima, and accelerates the convergence speed,
thus ensuring good global convergence.

During the training of the neural network model, fractional-order improvements were
applied to the BP neural network. The memory and non-local properties of the fractional
order partially address the issues of slow convergence and long training times inherent in
BP neural networks. By continuously adjusting the weights and constraints of each layer,
this method reduces the deviation of the final output from the preset target value. This
approach effectively mitigates the reduction in diversity and the local optimum problems
associated with the increase in iteration counts of the sparrow search algorithm, thereby
improving the accuracy, speed, and stability of the search algorithm.

The comparison results of the Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE) for the evaluation results of the three model algorithms are shown in
Tables 10 and 11, respectively.

Table 10. MAE of three model.

Evaluation Model MAE

SA-PSO-BP 0.0165
DS-BP 0.002083

GA-DNN 0.001065
TESA-FBP 0.000583

Table 11. RMSE of three model.

Evaluation Model
RMSE

Train Data (90%) Test Data (10%)

SA-PSO-BP 0.036332 0.036394
DS-BP 0.00095508 0.0049108

GA-DNN 0.00654654 0.0072345
TESA-FBP 0.004125 0.0013614

Based on the comparison results in Tables 8 and 9, it is evident that the network
security situational assessment results obtained using the TESA-FBP model proposed in
this chapter are the lowest in terms of the performance metrics MAE and RMSE compared
to the SA-PSO-BP, DS-BP, and GA-DNN models. Experimental evidence demonstrates
that the TESA-FBP model effectively enhances both the accuracy and efficiency of network
security situational assessments.

The proposed network security situational awareness assessment model utilizes public
data provided by the National Emergency Response Center as experimental data, using
five types of events as primary evaluation indicators. Based on these primary indicators,
the model achieves good evaluation accuracy and delay. In more complex network security
systems, it is often necessary to construct multilevel evaluation indicators. Future research
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could further explore ways to improve the accuracy and convergence speed of the algorithm
model under a multilevel evaluation indicator system.

5. Conclusions

The advantages of the network security situation assessment model proposed in this
article are as follows:

(1) High Adaptability: The chaotic sparrow algorithm enhances the diversity and global
optimization capability of the search process through chaotic mapping, thereby im-
proving the model’s adaptability in complex environments.

(2) High Optimization Efficiency: EDA (Estimation of Distribution Algorithm) effec-
tively utilizes information from historical data distributions to guide the search pro-
cess, allowing the model to converge more quickly in large-scale data and complex
network structures.

(3) Model Stability: The fractional-order BP (Backpropagation) model increases the
network’s memory capacity and robustness by incorporating fractional-order
calculus, leading to greater stability when dealing with variations in complex
network environments.

(4) Computational Complexity Management: The combination of chaotic sparrow opti-
mization and EDA effectively manages computational complexity, maintaining high
efficiency even when handling large-scale networks.

Performance tests of the algorithm convergence speed and global optimization capa-
bility were conducted using public situational data from the National Internet Emergency
Center. The TESA-FBP evaluation model was compared with the recently proposed SA-
PSO-BP, DS-BP, and GA-DNN models using the performance metrics MAE and RMSE.
Experimental results demonstrate that the TESA-FBP model proposed in this chapter
achieves higher prediction accuracy, validating its precision and effectiveness.
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