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Abstract: There are few studies utilizing only IR cameras for long-distance gender recognition, and
they have shown low recognition performance due to their lack of color and texture information in IR
images with a complex background. Therefore, a rough body segmentation-based gender recognition
network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by
emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss
for the segmentation network and an adaptive body attention module are also proposed, which
effectively integrate the segmentation and classification networks. To enhance the analytic capabilities
of the proposed framework, fractal dimension estimation was introduced into the system to gain
insights into the complexity and irregularity of the body region, thereby predicting the accuracy of
body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple
modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk
body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender
recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively,
surpassing state-of-the-art methods.

Keywords: gender recognition; infrared light images; fractal dimension; body segmentation;
surveillance system

1. Introduction

With the advancement of technology, image processing has been widely adopted
in various fields [1–6]. In addition, image-based intelligent surveillance systems have
recently been utilized for various purposes such as crime prevention, security, criminal
investigation, and suspect search. There is a growing demand for intelligent software
in surveillance systems to automate the analysis of large volumes of images captured
by closed circuit television (CCTV) cameras. This is particularly crucial for surveillance
and security operations. When an image captured by a surveillance system is utilized to
search for information on an individual that is stored in a database, gender recognition can
enhance the efficiency of locating a person or a group of people of a specific gender. Gender
recognition can also be employed to issue an alert regarding access to an area where only a
specific gender is permitted [7]. Most previous studies on gender recognition have focused
on high-resolution facial images. However, surveillance camera systems capture images
from long distances, resulting in low resolution images, and it is often impractical to obtain
high-quality facial images due to challenges such as human pose variation, changes in
illumination, and occlusion. Consequently, there is a growing necessity for body-based
gender recognition utilizing body images of individuals rather than facial images.

Previous studies on body-based gender recognition have primarily utilized images
captured by visible light cameras in surveillance environments. With visible light images,
high recognition performance can be achieved because of the abundance of information in
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the data, including color information and body shape details. However, it is essential to
ensure the robust application of surveillance systems even during nighttime for tasks such
as crime prevention, suspect tracking, and crime alarms. In low illumination environments
such as nighttime, visible light camera images pose challenges for gender recognition due to
the degradation of image quality caused by insufficient light. Conversely, infrared (IR) light
images utilize light in the infrared wavelength band, invisible to the human eye, enabling
the clear capture of a person’s shape even in low illumination or nighttime conditions.
In particular, leveraging thermal information based on a person’s body temperature can
ensure stable gender recognition performance despite environmental variations such as
illumination changes, shadows, and foggy or dusty conditions. Therefore, a pressing need
for research on gender recognition using IR images exists, but several challenges persist.
Firstly, IR images are grayscale, lacking color information crucial for distinguishing gender
characteristics like skin, hair, and clothing color. Secondly, the accurate extraction of body
features may be hindered if the temperature of a body part closely matches the ambient
temperature, potentially impacting gender recognition performance. Against this backdrop,
this study proposes a method to enhance gender recognition performance by emphasizing
human body regions in IR images through rough body segmentation. This approach aims
to address the degradation of recognition performance caused by external environmental
factors and the limited color information available in IR images.

The contributions of this study are as follows:

- To address the lack of color and texture information in IR images used in low illu-
mination environments, a rough body segmentation-based gender recognition net-
work (RBSG-Net) is proposed. In this network, rough body shape information is
emphasized through a semantic segmentation network, thereby enhancing gender
recognition performance.

- To mitigate the degradation of body segmentation performance in IR images when the
contrast between the human region and the background is low, a novel anthropometric
loss based on human anthropometric information is implemented into the semantic
segmentation network.

- An adaptive body attention module (ABAM) is introduced, utilizing a binary rough
segmentation map (BRSM) to identify the human body region in the image. The
ABAM determines its attention based on anthropometric information to improve
gender recognition performance by integrating segmentation and recognition tasks.

- To analyze the segmentation correctness capability within the proposed framework,
the fractal dimension estimation technique is introduced to gain insights into the
complexity and irregularity of the body regions. Additionally, the RBSG-Net code is
available on the GitHub website [8].

This paper is organized as follows: Section 2 analyzes previous studies on body-based
gender recognition. Section 3 describes the method proposed in this work. Section 4
presents and analyzes the experimental results. Section 5 provides the conclusion of
this study.

2. Related Work

Previous studies on body-based gender recognition can be categorized into methods
based on visible light images, methods combining visible light and IR images, and methods
solely using IR images, depending on the type of images employed.

2.1. Using Visible Light Images

There are numerous open datasets available for visible light images [9–11], leading
to a proliferation of related studies. Ng et al. [12] applied a shallow convolutional neural
network (CNN) model comprising two convolutional layers, two subsampling layers, and
one fully connected layer to a body-based gender recognition task. Antipov et al. [13]
demonstrated that gender recognition performed better with learned features extracted
through deep learning model training than with handcrafted features on heterogeneous
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datasets. Cai et al. [14] proposed an effective method called histogram of oriented gradients
(HOG)-assisted deep feature learning (HDFL). It enhances gender recognition performance
by integrating handcrafted features, such as the weighted HOG feature, with deep-learned
features obtained through model training. However, these studies did not consider noise
elements (background or occlusion) present in the images as they relied solely on global
features from full-body images. Subsequently, studies utilizing local features have emerged
to address performance degradation caused by background noise [15–18]. Raza et al. [15]
proposed a method for gender recognition by parsing pedestrians in an image using a
deep decomposition network (DDN) [16], followed by inputting both the full-body and
upper-body images into the CNN model. In a subsequent study, Raza et al. [18] enhanced
gender recognition performance by employing a stacked sphere autoencoder (SSAE) instead
of a CNN for human full-body images obtained using a DDN. These studies aimed to
enhance gender recognition by extracting only the human silhouette in an image. However,
since human parsing is applied universally to all images, there is a limitation whereby
gender recognition performance may be influenced by the results of the parsing model.
Liu et al. [11] improved performance by proposing HydraPlus-Net (HP-Net), utilizing
an attentive feature network (AF-Net) that applies attention in multiple directions to a
multi-scale feature map extracted from a CNN. Tang et al. [19] introduced an attribute
localization module (ALM) based on a weakly supervised attention method to enhance
recognition performance. This module identifies the most discriminative region for a
classification label in an input image. Jia et al. [20] split existing datasets containing identical
identities in training and test sets into a zero-shot setting akin to real-world environments.
They compared a robust baseline method for training the model with conventional state-
of-the-art (SOTA) methods. Roxo and Proença [21] proposed YinYang-Net (YY-Net) to
improve performance. It detects the head using key points extracted by AlphaPose [22]
to utilize the head part, crucial for gender recognition, and merges each feature extracted
from the head and body images into a learnable matrix. Fan et al. [23] introduced a
transformer-based multi-task pedestrian attribute recognition network (PARFormer), which
is a vision transformer-based method based on the Swin Transformer [24] as its backbone.
As described above, many studies on body-based gender recognition tasks have utilized
visible light images instead of IR images due to the availability of more data for model
training and readily usable color information. However, the drawback is a significant
deterioration in recognition performance in environments with insufficient external light
(nighttime, dark indoors, dark weather, etc.).

2.2. Using Visible Light and IR Images

As previously discussed, recognizing gender using visible light images in low illu-
mination environments, such as nighttime, presents challenges. Consequently, in areas
where nighttime usage is prevalent, such as intelligent surveillance systems, relying solely
on visible light images may limit recognition performance. To circumvent this limitation,
research has explored the use of IR images, which are well suited for night vision. Nguyen
and Park [25] extracted HOG features from visible light and IR images, reduced feature
dimensionality using principal component analysis (PCA), and performed gender recogni-
tion by fusing the respective scores obtained from a support vector machine (SVM) classifier.
In a subsequent study, Nguyen and Park [26] enhanced gender recognition performance
by concentrating features more on the foreground area of the image. This was achieved
through a method that amplified HOG features extracted from both the visible light and
thermal images by weighting the mean and standard deviation of pixels within each patch
of the IR image. However, the application of near-infrared (NIR) images is limited due to
unclear foreground–background distinctions and differing features compared to long-wave
infrared (LWIR) images. Baek et al. [27] augmented the resolution of visible light images
using a two-step method involving denoising and super-resolution (SR) models. They
then combined scores extracted from IR and visible light images using ResNet-101 [28] to
enhance gender recognition performance based on body images. These approaches offer
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the advantage of improving performance by supplementing degradation elements (such
as low illumination, shadows, and clothing types) in visible light images with IR images.
However, the simultaneous use of both types of data entails disadvantages, including
increased computational complexity in feature extraction and fusion processes, as well
as heightened system costs due to the necessity of employing both visible light and IR
cameras simultaneously. Consequently, gender recognition studies utilizing only IR images
have been pursued to address this challenge.

2.3. Using IR Images

In comparison to gender recognition based on visible light images, gender recognition
utilizing IR images has not received extensive attention in prior studies on body-based
gender recognition. This is primarily due to the relatively limited availability of data and
lower image quality associated with IR images. Nevertheless, there has been a growing
demand for research focused on gender recognition using solely IR images, driven by the
necessity for robust performance in low-illumination environments and the importance
of privacy protection. Previous studies on IR image-based gender recognition can be
categorized as either without body segmentation or with body segmentation.

2.3.1. Without Body Segmentation

Previous research [29] curated a dataset comprising images extracted in frame units
from video data captured by thermal cameras. Subsequently, they employed a CNN model
consisting of 15 layers to extract features for individual images. They then trained the
model with gait features, which can be extracted from image sequences using a bidirectional
gated recurrent units (BGRUs) layer, for gender recognition. However, their method did
not address performance degradation resulting from background presence in the image.
Moreover, being an image sequence-based approach, it entails greater computational
intensity compared to single image-based methods.

2.3.2. With Body Segmentation

During gender recognition, it becomes imperative to eliminate background elements
unrelated to gender, as these elements can significantly impact recognition performance.
This issue is particularly pronounced in thermal images, where the contrast between the
body and background is minimal when the ambient temperature closely matches that of
the body, resulting in diminished recognition accuracy. While open datasets exist for visible
light images with annotated human body parts [18,30], there is currently no database
providing similar annotations for IR images. Consequently, gender recognition research
applying semantic segmentation to IR images is lacking. To address this gap, RBSG-Net
is proposed in this study for rough segmentation-based gender recognition of human
body regions.

3. Proposed Methodology
3.1. Overall Procedure of the Proposed Method

The overall procedure of the proposed RBSG-Net is schematically depicted in Figure 1.
Upon input of an IR image, a prediction map in pixel units for the human body region
is generated by the pre-trained semantic segmentation network. This prediction map
facilitates the extraction of the human body region corresponding to the rough human
body region. Subsequently, the ABAM computes the ratio of human anthropometric pixels
representing the head, upper body, and lower body parts within the extracted human
body region, ensuring each ratio falls within a predefined specific range. If the ratio
meets this criterion, the body attention module (BAM) is activated for processing the input
image; otherwise, the original input image is directly forwarded to the gender classification
network. Ultimately, gender is determined using the gender classification network.
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3.2. RBSG-Net

Since IR images lack color information, their extractable features are comparatively
limited to those of visible light images. Additionally, noise generated from external en-
vironmental factors contributes to the degradation of gender recognition performance.
To address these constraints, this study introduces a noise-robust RBSG-Net, which com-
pensates for the absence of color information by enhancing structural features, such as
body shape, in the IR image through a semantic segmentation network. Figure 2 shows
the structural framework of the RBSG-Net. The RBSG-Net is designed to delineate the
human body region based on the prediction map extracted from a pre-trained semantic
segmentation network. It subsequently employs adaptive attention via the ABAM before
sequentially transmitting the outcome to the gender classification network. Therefore, the
performance of the semantic segmentation network significantly impacts the classification
network. However, anticipating high segmentation performance is challenging due to the
absence of annotations for the body region in IR images. To address this challenge, the
ABAM is proposed, which assesses the segmentation result quality based on anthropomet-
ric information and selectively applies it to the image instead of employing all segmentation
outcomes. Adaptive attention through the ABAM alleviates the decline in gender recogni-
tion performance resulting from reduced semantic segmentation network efficacy, while
also facilitating the extraction of features emphasizing body shape information by the
classification network.

3.2.1. Semantic Segmentation Network

When training the semantic segmentation network to segment the body region, train-
ing the data with annotation information for the body region is necessary. However, given
the absence of an open dataset containing IR image-based body annotation information,
this study addresses the issue by leveraging human anthropometric information as com-
pensation for insufficient training data. Such information, rooted in the ratio of each body
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part, facilitates rough yet effective segmentation, thereby enhancing gender recognition
accuracy. Figure 3 shows the training process of the semantic segmentation network based
on human anatomical information for rough body segmentation. The prediction map,
extracted from the input image via the semantic segmentation network, is partitioned
into the head, upper body, and lower body according to specific ratios for each body part.
Subsequently, the divided prediction map generated through this process is utilized to
compute segmentation loss and anthropometric loss. This approach aims to complement
the limited annotated training data available for human body segmentation by encouraging
the segmentation network to consider and recognize the structural characteristics of the
body. Detailed explanations of how the model integrates this anthropometric information
into the training process are provided in Section 3.2.1.
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Model Overview

In this study, a conventional U-Net [31] was employed for binary semantic segmen-
tation, aiming to segment the human full body from the background in an IR image. The
primary rationale behind selecting U-Net as the segmentation model lies in its robust
performance, even with a limited quantity of annotated training data. This was verified
through experiments, details of which are provided in Sections 4.4.1 and 4.5.1.

Figure 3 elaborates on the comprehensive process of training the semantic segmenta-
tion model. Initially, the input image undergoes processing by the encoder and decoder
components of U-Net to generate a prediction map corresponding to the human body. Sub-
sequently, the prediction map is transformed into probabilities using the SoftMax function
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and split based on a predefined ratio. In this study, the original image height is utilized to
split the top 15% as the head, the middle 45% as the upper body, and the bottom 40% as
the lower body, without overlap. The optimal ratio value was determined by comparing
gender recognition performance using the training data. To utilize the ratio of human body
parts within an image as anthropometric information, the BRSM for the human body is
derived from the prediction map, as represented by Equation (1):

BRSMi,j = arg
k

max Pi,j,k (1)

where P ∈ RH×W×C is the prediction map, i and j represent the indices of image height and
width, respectively, k denotes the channel of the prediction map, representing the index for
background and foreground, and BRSM is a binary map representing the human body at
the corresponding pixel (i, j).

Based on the detected BRSM, the human body region is defined, and the ratio of each
body part including the head, upper body, and lower body is utilized within the body
region as anthropometric information by dividing each proportionally. In detail, for the
detected BRSM(x, y), the minimum and maximum coordinates (xmin, ymin, xmax, and ymax)
with BRSM(x, y) = 1 denote the four vertices of the body region. Utilizing the obtained
human body region excludes the influence of background, facilitating the extraction of
features crucial for gender recognition. Subsequently, the human body region is divided
into body parts, the head, upper body, and lower body, as depicted in Figure 3, to compute
the anthropometric loss, detailed in the following subsection. The effectiveness of the
human body region extractor is demonstrated through the ablation study in Section 4.4.1,
and examples of extracted human body regions are provided in Figure 4.
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Loss Functions for Training the Semantic Segmentation Network

The loss function employed in this study to optimize the semantic segmentation
network is defined as follows:

Ltotal = (1 − λanthro)Lseg + λanthroLanthro (2)

where Lseg and Lanthro are the segmentation and anthropometric losses, respectively, and
λanthro is a parameter balancing the anthropometric loss within the overall loss. In this
study, it was set to 0.05, representing the optimal parameter for achieving the highest
gender recognition accuracy with the training data. Lseg is calculated as the sum of the
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cross-entropy loss (CE) [32] for each body part after dividing the prediction map (P) and
ground truth (G) into [Ph; Pu; Pl], [Gh; Gu; Gl], respectively, as follows:

Lseg = ∑
k∈{h,u,l}

1
HkW

Hk−1

∑
i=0

W−1

∑
j=0

CE(Pk(i, j), Gk(i, j)) (3)

In this case, each body part is delineated according to the specific ratio suggested in
Section Model Overview: 15% for the head, 45% for the upper body, and 40% for the lower
body, without overlap. Additionally, a novel anthropometric loss is proposed, utilizing
anthropometric information to address the challenge of insufficient segmentation annotated
training data. The anthropometric loss is computed as the sum of the mean squared
errors between predefined values (yh, yu, and yl) based on the method for calculating the
proportion of pixels for each body part (head, upper body, and lower body) in the image.
Equation (4) shows the calculation of the anthropometric loss:

Lanthro = ∑
k∈{h,u,l}

{
1

HkW

Hk−1

∑
i=0

W−1

∑
j=0

BRSMk(i, j)− yk

}2

(4)

Here, BRSMh, BRSMu, and BRSMl represent the BRSM split in ratios corresponding to
the head, upper body, and lower body parts, with the human body region defined. In this
study, the lower bound (l) and upper bound (u) of the pixel ratio for each body part (head,
upper body, and lower body) within the BRSM were set. Specifically, (lh, uh) = (0.3, 0.6),
(lu, uu) = (0.6, 0.9), and (ll, ul) = (0.4, 0.6) were assigned, considering various poses. The
values of yh, yu, and yl were set to the average of each lower and upper bounds, specifically
0.45, 0.75, and 0.5, respectively. These selections were made as they resulted in the highest
gender recognition accuracy with the training data. Consequently, the anthropometric loss
guides the model to predict the distribution of body parts more accurately in an image
based on the pixel proportion of each body part. This aspect is particularly crucial, given
the insufficiency of annotated training data. Through this approach, the model acquires
knowledge about the typical range of ratios occupied by various body parts, enhancing
the generalization capability of the segmentation network, even with limited data. This
contributes to consistent segmentation performance for human images of diverse sizes
and poses.

3.2.2. ABAM

The ABAM proposed in this study serves the purpose of accentuating the human body
shape in the input image processed by the human body region extractor. After applying
the SoftMax function in the channel direction to the prediction map (P) derived from the
semantic segmentation network, the BAM for the human body region is generated as
demonstrated in the following Equation (5):

BAM(i, j) =
{

1 i f P(i, j) ≥ T
(1 − T) + P(i, j) otherwise

(5)

Each pixel value in the prediction map (P) represents the probability for the human
region and ranges between 0 and 1. If the value of P is greater than or equal to the threshold
(T), it is set to 1; otherwise, the pixel value of the region predicted as the human body is
preserved by adding (1 − T) to the existing value. In other cases, the existing pixel value
is reduced to enhance the contrast between the human body and the background. In this
scenario, the optimal T was set to 0.2, a value determined to yield the highest gender recog-
nition accuracy with the training data. For the BAM generated in this manner, the shape is
aligned with the input image by extracting the same human body region as the input image
from the human body region extractor. However, since the semantic segmentation network
was trained with limited annotation data, achieving high segmentation performance is
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challenging. To address this, an ABAM is proposed that assesses the quality of a segmenta-
tion mask based on anthropometric information and decides whether to selectively apply
the BAM to the input image according to the results. To assess the quality, the region
obtained by the human body region extractor is extracted from the BRSM generated by
the semantic segmentation network. Then, the human full body is divided into three parts
(head, upper body, and lower body), and the pixel ratio for each part is calculated as shown
in the following equation:

rh =
nh

Hh × W
, ru =

nu

Hu × W
, rl =

nl
Hl × W

(6)

where nh, nu, and nl represent the number of pixels with BRSM = 1 for the divided head,
upper body, and lower body parts, respectively, Hh, Hu, and Hl denote the height of each
part, and W represents the width of BRSM.

As shown in Equation (7), the value α is defined, which indicates whether the pixel
ratio (r) for each part is between the set lower bound (l) and the upper bound (u) presented
in Section Loss Functions for Training the Semantic Segmentation Network:

αk =

{
1, i f lk ≤ rk ≤ uk

0, otherwise
, k ∈ {h, u, l} (7)

This value is multiplied for all parts to calculate αfinal, the value for the final decision
of attention:

α f inal = αh × αu × αl (8)

Suppose the input image is I, then the ABAM-applied image (E) is defined as follows:

E(i, j) =
{

I(i, j)⊛ BAM(i, j) i f α f inal = 1
I(i, j) otherwise

(9)

where ⊛ denotes element-wise multiplication.

3.2.3. Gender Recognition Network

In this study, the semantic segmentation network detects the human body region in
the input image, and based on this detection, the emphasized human body region, achieved
using the human body region extractor and the ABAM, serves as the input to the gender
classification network. The classification network chosen for gender recognition in human
full-body images is the dual attention vision transformer (DaViT) [33], depicted in Figure 5.
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Figure 5a shows the architecture of DaViT. Like hierarchical vision transformers [24,34],
it consists of four stages. Furthermore, each stage consists of a patch embedding layer
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and a dual attention block [33]. The patch embedding layer splits the image into multiple
patches via overlapped convolution and converts them into embedding vectors. Afterward,
the spatial window self-attention [24,33] and channel group self-attention [33] operations
are sequentially performed in the dual attention block. Spatial window self-attention
focuses on local features by computing attention scores between spatial tokens within
non-overlapping windows. However, this approach loses the ability to capture global
features. To address this issue, channel group self-attention is introduced, which focuses
on learning relationships between tokens by dividing the channels into several groups
and performing self-attention within each group. Consequently, the resulting feature map
attains a size of R1024× H

32×
W
32 . This feature map is subsequently converted into a feature

vector through the global average pooling layer. Finally, the fully connected layer facilitates
the classification of each individual as male or female.

Given that this study delves into gender recognition grounded in the human body’s
appearance in an IR image, it becomes imperative to incorporate global context information,
encompassing data pertaining to the entire body. Transformer series models, exemplified
by DaViT, excel in capturing global features more effectively than CNN-based models by
leveraging correlations among multiple patches extracted from the input image [35]. The
DaViT-Base stands out due to its superior recognition performance compared to alternative
models. Comparative experiments involving the classification network are outlined in
Sections 4.4.1 and 4.5.1.

4. Experimental Results
4.1. Experimental Database and Environment

Previous gender recognition studies have predominantly utilized datasets comprising
visible light images, rendering them unsuitable for experiments focused on IR image-based
gender recognition. Consequently, this study exclusively employed IR images sourced
from the Sun Yat-sen University multiple modality re-identification version 1 database
(SYSU-MM01) [36], an open-access database offering both visible light and IR images,
alongside the Dongguk body-based gender version 2 (DBGender-DB2) [25] dataset. SYSU-
MM01 encompasses 15,495 NIR images featuring 490 individuals, comprising 275 males
and 215 females. These images were captured utilizing NIR cameras across various settings,
including dark indoor environments and cluttered outdoor environments. To assess the
effectiveness of the proposed method across different IR image wavelengths, experiments
were conducted using DBGender-DB2 as a supplementary experimental dataset. This
dataset consists of thermal images captured by a thermal imaging camera [37] utilizing
the long-wave infrared (LWIR) range of 7.5 to 13.5 µm. It includes 4120 images obtained
from outdoor settings, featuring a total of 412 individuals, comprising 254 males and 158 fe-
males. Notably, both the SYSU NIR dataset and the DBGender-DB2 thermal dataset exhibit
variations in image sizes due to the extraction of IR images at different distances in human
units. To the best of our knowledge, there is no IR image open dataset that provides gender
information as ground truth considering various environmental conditions, except for the
two experimental databases, SYSU-MM01 and DBGender-DB2. To maintain consistency in
model training and validation while preserving the human body’s appearance, the input
image size was standardized to 384 × 128 pixels in this study. Figure 6 shows sample
images from the datasets utilized in this investigation.

K-fold cross-validation was conducted to validate the experiments. For the SYSU-
MM01 NIR dataset, 2-fold cross-validation was utilized due to its sufficiently large size.
Conversely, for the relatively small DBGender-DB2 thermal dataset, 5-fold cross-validation
was employed. Ensuring the inclusion of individuals with different identities (open-world
setting) in both the train and test sets was crucial to enhance the reliability of the experi-
ments and simulate real-world conditions. To create a validation set for model evaluation,
images corresponding to 10% of the total individuals were separated from the training set.
During training, data augmentation involved applying horizontal flips exclusively to the
training set. Table 1 summarizes the dataset composition for the experiments.
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Table 1. A summary of the experimental IR datasets: ‘M’ denotes the number of males; ‘F’ denotes
the number of females.

Dataset Fold
Training Set Validation Set Test Set

People (M/F) Images (M/F) People
(M/F) Images (M/F) People

(M/F)
Images
(M/F)

SYSU-MM01
NIR

1 221
(125/96)

7011
(4018/2993)

24
(13/11)

760
(380/380)

245
(137/108)

7724
(4338/3386)

2 221
(122/99)

6968
(3862/3106)

24
(15/9)

756
(476/280)

245
(138/107)

7771
(4398/3373)

DBGender-DB2
thermal

1 297
(186/111)

2970
(1860/1110)

33
(16/17)

330
(160/170)

82
(52/30)

820
(520/300)

2 297
(180/117)

2970
(1800/1170)

32
(21/11)

320
(210/110)

83
(53/30)

830
(530/300)

3 297
(183/114)

2970
(1830/1140)

32
(21/11)

320
(210/110)

83
(50/33)

830
(500/330)

4 297
(183/114)

2970
(1830/1140)

33
(23/10)

330
(230/100)

82
(48/34)

820
(480/340)

5 297
(184/113)

2970
(1840/1130)

33
(19/14)

330
(190/140)

82
(51/31)

820
(510/310)

The experiments were conducted using PyTorch version 1.13.0 [38], Intel® Core i7-
12700F, with 32 GB of memory, and an NVIDIA GeForce RTX 4070 graphics processing
unit (GPU) [39]. For segmentation annotation, manual labeling was performed using the
Roboflow (version 1.0) software [40].

4.2. Training

The training process of the RBSG-Net proposed in this study comprises two parts: the
training of the semantic segmentation network and the training of the classification network.
Initially, the semantic segmentation network was trained using an Adam optimizer [41]
with a learning rate of 10−4. During training, random brightness contrast and cutout [42]
were applied online for additional augmentation to address the limited amount of data.
The mini-batch size was set to eight, and training was conducted for a total of 300 epochs.

Upon completion of the training for the semantic segmentation network, its parameters
were frozen to prevent further updates. Subsequently, the classification network was fine-
tuned by initializing its weights with pre-trained ImageNet-1K weights and using the
Adam optimizer. The cosine learning rate decay method [43] was applied to decay the
initial learning rate from 10−4 to a minimum of 10−6. The weight decay was set to 10−4, and
only horizontal flipping was applied for data augmentation. The mini-batch size remained
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at eight, with training conducted for 30 epochs on SYSU-MM01 NIR and 60 epochs on
DBGender-DB2 thermal. The cross-entropy loss function was employed for training the
classification network. Figure 7 shows the graphs of training loss and validation loss for
both the semantic segmentation network and the classification network. In all instances, the
train loss converged with increasing epochs, indicating sufficient training on the training
data for both networks. Furthermore, the validation loss also converged as the epoch count
increased, suggesting that neither network was overfitted to the training data.
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4.3. Evaluation Metric and Fractal Dimension Estimation

The equal error rate (EER) was employed as the primary metric to assess the perfor-
mance of the gender recognition model proposed in this study, utilizing the SYSU-MM01
NIR dataset. The EER, commonly utilized in biometrics and applicable to soft biometrics
such as gender recognition [25], is derived from Type I and Type II errors. True positive
(TP) represents cases where the model recognizes a female as a female, true negative (TN)
represents cases where a male is recognized as a male, false negative (FN) represents cases
where a female is incorrectly recognized as a male, and false positive (FP) represents cases
where a male is incorrectly recognized as a female. Then, the Type I and Type II errors are
calculated as follows:

Type I error =
FP

FP + TN
(10)

Type I I error =
FN

FN + TP
(11)

Thus, the Type I error is the percentage of males misclassified as females, whereas the
Type II error is the proportion of females misclassified as males. Typically, these values
exhibit a trade-off relationship as the gender recognition threshold adjusts. The EER denotes
the error rate where Type I and Type II errors intersect. In this research, the EER served as
the principal performance metric for the gender recognition model.
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Fractals are intricate forms that exhibit self-similarity and deviate from conventional
geometric principles [44]. The fractal dimension (FD) measures the complexity of a shape,
showing whether it is concentrated or spread out. In this research, binary masks predicted
for human body regions are generated using a semantic segmentation network trained
with proposed anthropometric loss, where the FD ranges from one to two, representing
varying levels of complexity. Within this interval, the FD spans numerous representations
for binary images, with higher values signifying greater shape intricacy. The FD for the
human body is determined through the box counting method [45]. Here, N denotes the
number of boxes that uniformly divide each body part, and ϵ stands for the scaling factor
of the boxes. The FD is computed using the following Equation (12):

FD = lim
ϵ→0

(
− log(N(ϵ))

log(ϵ)

)
(12)

where FD ∈ [1, 2], and for all ϵ > 0, there exists an N(ϵ). The pseudocode for estimating
the FD of the generated human body parts of the U-Net using the box-counting method is
provided in Algorithm 1.

Algorithm 1: The Pseudocode for FD Estimation

Input: Img: input is the produced output by U-Net
Output: FD
1: Determine the largest dimension of box size and adjust it to the nearest power of 2
Max_dim = max(size(Img))
ϵ = 2ˆ[log2(Max_dim)]
2: If the size is smaller than ϵ, pad the image to match the dimension of ϵ

if size(Img) < size(ϵ)
pad_width = ((0, ϵ - Img.shape [0]), (0, ϵ - Img.shape[1]))
padded_Img = pad(Img, pad_width, mode=‘constant’, constant_values=0)
else
padded_Img = Img
3: Initialize an array storing the number of boxes for each dimension size
n = zeros(1, ϵ +1)
4: Compute the number of boxes, ‘N(ϵ)’ containing at least one pixel of body region
n[ϵ + 1] = sum(I[:])
5: While ϵ > 1:
a. Diminish the size of ϵ: ϵ = ϵ /2
b. Update the number of ‘N(ϵ)’
6: Compute log(N(ϵ)) and log(ϵ) for each ‘ϵ’
7: Fit line to [(log(ϵ), log(N(ϵ)] using the least squares method
8: Fractal dimension is determined by the slope of the fitted line
Return FD

4.4. Testing the Proposed Method with the SYSU-MM01 NIR Dataset
4.4.1. Ablation Studies

Ablation studies were conducted to understand the impact of the semantic segmen-
tation network trained with the anthropometric loss (Lanthro) and segmentation loss (Lseg)
described in Section Loss Functions for Training the Semantic Segmentation Network on
the final gender recognition performance of the RBSG-Net. First, the results of the ablation
study according to the loss term used to train the semantic segmentation network are
presented in Table 2. When the semantic segmentation network trained with both Lseg and
Lanthro was applied to the RBSG-Net, the best EER performance was observed. In addition,
Table 3 shows the recognition performance according to the value of λanthro, the weight of
the Lanthro term. In this experiment, it was found that the best performance was obtained
when the value of λanthro was 0.05. In subsequent experiments, this optimal value was used,
based on the results of Tables 2 and 3.
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Table 2. Effect of loss term of training semantic segmentation network (unit: %).

Lseg Lanthro EER

5.395

✔ 4.997

✔ 5.194

✔ ✔ 4.320

Table 3. Effect of adjusting λanthro weights on gender recognition performance (unit: %).

λanthro EER

0.01 4.840

0.1 4.606

0.05 4.320

Next, the results of the ablation study for the human body region extractor and the
ABAM, introduced in Section Model Overview and Section 3.2.2, respectively, are presented.
Case 1 in Table 4 is the result of using only the classification network without the semantic
segmentation network. In case 2, the EER of the ABAM alone is 5.180%, which is 0.23%
lower than case 1. Case 3 shows an EER of 4.863% when using only the human body region
extractor, which is a 0.547% reduction compared to case 1. Finally, case 4 uses both the
human body region extractor and the ABAM, with an EER of 4.320%, suggesting the best
improvement in gender recognition performance.

Table 4. An ablation study on the impact of the human body region extractor and the ABAM on
gender recognition performance (unit: %).

Case Human Body Region
Extractor ABAM EER

1 5.410

2 ✔ 5.180

3 ✔ 4.863

4 ✔ ✔ 4.320

In the following ablation study, the effectiveness of the ABAM was demonstrated
by comparing cases of adaptive versus non-adaptive (i.e., uniform across all images)
application of the BAM, as presented in Table 5. Specifically, only the adaptivity of BAM
application was compared under the conditions of case 4 in Table 4. In Table 5, case
1 represents the results obtained solely with the application of the human body region
extractor, while case 2 shows the outcomes of applying BAM in a non-adaptive manner.
Comparing case 1 and case 2, the non-adaptive application of the attention map hinders
feature extraction due to an image with an unsophisticated attention map, resulting in
an increase in the EER compared to an image without the BAM. On the other hand, in
case 3, the adaptively applied BAM compensates for this degradation and improves the
recognition performance. The results of anthropometric loss and the ABAM can be found
in Tables 2 and 4 in Section 4.4.1. Table 2 presents the results of the ablation study for the
anthropometric loss in training the semantic segmentation network and shows the changes
in gender recognition performance accordingly. Table 4 presents the results of the ablation
study for the ABAM and shows the changes in gender recognition performance. The results
in Tables 2 and 4 indicate that the ABAM gives the main result, and the anthropometric
loss gives the secondary result.
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Table 5. Comparative analysis of gender recognition performance between adaptive and non-adaptive
body attention modules (unit: %).

Case Adaptive
BAM

Non-Adaptive
BAM EER

1 4.863

2 ✔ 5.581

3 ✔ 4.320

The results of comparative experiments are presented in Tables 6 and 7 to verify the
robustness of the proposed RBSG-Net against various semantic segmentation networks and
classification networks. First, to demonstrate the robustness of the proposed RBSG-Net to
various semantic segmentation networks, comparative experiments were conducted using
the CNN-based models of U-Net [31], DeepLabV3Plus [46], HRNet [47], DDRNet [48], and
the transformer-based models of SegFormer [49]. The DaViT-Base model, presented in
Section 3.2.3, was used as the classification network. As shown in Table 6, in all cases using
various semantic segmentation networks, the EER is lower than 5.410%, compared to when
only the classification network was used. This indicates that the RBSG-Net ensures robust
improvement in gender recognition performance, regardless of the segmentation network
type. In particular, the lowest EER of 4.320% was achieved using the U-Net. In the following
experiments, the U-Net was adopted as the semantic segmentation network with the best
performance and conducted comparative experiments on various classification networks.

Table 6. Comparisons of different segmentation networks for RBSG-Net on the SYSU-MM01 NIR
(unit: %).

Method EER

DeepLabV3Plus [46] 5.347

HRNet [47] 4.878

DDRNet [48] 5.339

SegFormer [49] 5.239

U-Net [31] 4.320

w/o segmentation 5.410

Table 7. Comparisons of different classification networks for RBSG-Net on the SYSU-MM01 NIR
dataset (unit: %).

Model
EER

w/o w/

CNN

InceptionV3 [50] 5.284 5.149

ResNet-101 [28] 5.411 4.913

ConvNeXt-Base [51] 5.135 4.777

Transformer

Swin-Base [24] 6.257 5.693

DeiT-Large [52] 7.303 6.920

DaViT-Base [33] 5.410 4.320

Secondly, comparative experiments were conducted to demonstrate the robustness
of the proposed RBSG-Net to various classification networks. For a fair comparison, all
classification networks were pre-trained with ImageNet-1K. The performance of the RBSG-
Net was evaluated on various types of CNN-based models, including InceptionV3 [50],
ResNet-101 [28], and ConvNeXt-Base [51], as well as transformer-based models such as
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Swin-Base [24], DeiT-Large [52], and DaViT-Base [33]. In Table 7, ‘w/o’ is the result of using
only classification network in the RBSG-Net, and ‘w/’ is the result of training using both
the human body region extractor and the ABAM in the RBSG-Net.

As shown in Table 7, the experimental results show that when both the human body
region extractor and the ABAM based on semantic segmentation network were applied,
there was a performance improvement in all classification networks of the CNN and the
transformer. Among them, DaViT-Base [33] showed the best performance with an EER of
4.320% and was utilized as a classification network in other experiments.

4.4.2. Comparisons of Gender Recognition Accuracy with SOTA Methods

Since this study focused on body-based gender recognition using IR images, it is
necessary to compare the performance with distant gender recognition methods that use
human full body images instead of faces. However, since there is not much research on
gender recognition using only IR images, the proposed method is compared with existing
methods using only visible light images, HP-Net [11], ALM [19], Strong Baseline [20],
YY-Net [21], and PARFormer [23], and methods using only IR images, 1-ch ResNet-101 [27]
and 15-layer CNN [29]. The experiments were performed with 2-fold cross-validation, and
the average EER of each method is shown. According to Table 8, the RBSG-Net achieved
an EER of 1.747% lower than the second-best model, Strong Baseline [20].

Table 8. Comparisons of gender recognition accuracies with SOTA methods using the SYSU-MM01
NIR dataset (unit: %).

Method EER

HP-Net [11] 11.404
1-ch ResNet-101 [27] 11.312

ALM [19] 8.757
Strong Baseline [20] 6.067
15-layer CNN [29] 7.221

YY-Net [21] 6.422
PARFormer-B [23] 6.777
PARFormer-L [23] 6.319

RBSG-Net (proposed) 4.320

Figure 8 shows the receiver operating characteristic (ROC) curve and the EER line
to compare the gender recognition performance of the proposed method and other SOTA
models. The intersection points of the ROC curve and the EER line of each model are the
points where the Type I error and Type II error are equalized, which represents the EER. As
shown in Figure 8, the RBSG-Net proposed in this study has better gender recognition
performance than the SOTA methods.

4.4.3. Comparisons of Gender Recognition Accuracy with SOTA Methods: 5-Fold
Cross-Validation

The SYSU-MM01 NIR dataset has more images than the DBGender-DB2 thermal
dataset, so a 2-fold cross-validation was performed. However, the body-based gender
recognition dataset is characterized by low diversity of the training set because it is divided
into a training set and a test set based on human identity. Therefore, to further improve
the reliability of the generalization performance of the model, 5-fold cross-validation
was performed.

Table 9 shows the average EER obtained by 5-fold cross-validation of the SOTA method
in Section 4.4.2. From Table 9, the average EER of the RBSG-Net is 2.429%, which is the
lowest compared to SOTA methods. The results in Tables 8 and 9 demonstrate that the
RBSG-Net has a high generalization performance compared to SOTA methods in different
experimental settings. Figure 9 shows the ROC curve and the EER line to visually represent
the results.
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Method EER

HP-Net [11] 7.650
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15-layer CNN [29] 4.394
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RBSG-Net (proposed) 2.429
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4.5. Testing of Proposed Method with DBGender-DB2 Dataset

NIR images utilize infrared light at wavelengths close to visible light, so they have a
higher resolution than LWIR images, which are thermal images. Due to these characteristics,
NIR images tend to outperform LWIR images in gender recognition tasks. However, NIR
images require an additional illuminator to acquire, and are more difficult to acquire in low
light conditions than LWIR images and are more sensitive to changes in the surrounding
environment. In contrast, LWIR images are acquired using the heat of the object, so no
additional illuminator is required, and images can be acquired even under low illumination
conditions, so they have a wider range of applications than NIR images.

In this subsection, to compare the performance of the proposed method for gender
recognition in images using infrared light of various wavelengths, the DBGender-DB2
thermal dataset, consisting of LWIR images, is used as the second experimental data.

4.5.1. Ablation Study: Comparative Analysis of RBSG-Net with Various Networks

Ablation studies were conducted to demonstrate the effectiveness of the RBSG-Net
on various semantic segmentation and classification networks using the DBGender-DB2
thermal dataset. The experimental setup was the same as the models mentioned in
Section 4.3. In Table 10, ‘w/o segmentation’ refers to the gender recognition performance
using only the classification network, DaViT-Base, without the semantic segmentation
network. As shown in Table 10, the RBSG-Net can use various semantic segmentation
networks to improve performance compared to using only a classification network. In
particular, the lowest EER of 8.303% was achieved using the U-Net, so the U-Net was
adopted as the semantic segmentation network for further experiments.

Table 10. A comparison of different semantic segmentation networks on the DBGender-DB2 thermal
dataset (unit: %).

Method EER

DeepLabV3Plus [46] 9.224
HRNet [47] 9.361

DDRNet [48] 9.055
SegFormer [49] 9.307

U-Net [31] 8.303
w/o segmentation 9.491

Table 11 shows the results of the gender recognition performance comparison exper-
iment when various classification networks are used in the RBSG-Net. In Table 11, ‘w/’
refers to the EER performance of the RBSG-Net using segmentation information to perform
gender recognition. The experimental results show that performance was improved for all
classification networks. Compared to the different models, the DaViT-Base model showed
the best performance. These results demonstrate that the RBSG-Net can flexibly utilize
various networks in gender recognition tasks for LWIR images.

Table 11. A comparison of different classification networks on the DBGender-DB2 thermal dataset
(unit: %).

Method
EER

w/o w/

CNN

InceptionV3 [50] 10.271 9.776

ResNet-101 [28] 13.476 12.167

ConvNeXt-Base [51] 9.687 9.356

Transformer

Swin-Base [24] 14.151 13.870

DeiT-Large [52] 10.561 9.523

DaViT-Base [33] 9.491 8.303
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4.5.2. Comparisons of Gender Recognition Accuracy with SOTA Methods

To compare the performance of body-based gender recognition in this study, a com-
parative experiment was conducted with the SOTA method. As shown in Table 12, the
average EER of the second-best model, PARFormer-L, was 11.668%, and the average EER
of the proposed model, the RBSG-Net, was 8.303%, which is a reduction of about 3.365%.

Table 12. Comparisons of gender recognition accuracies with SOTA methods using the DBGendr-DB2
thermal dataset (unit: %).

Method EER

HP-Net [11] 20.811
1-ch ResNet-101 [27] 21.315

ALM [19] 13.348
Strong Baseline [20] 12.536
15-layer CNN [29] 12.872

YY-Net [21] 12.784
PARFormer-B [23] 12.743
PARFormer-L [23] 11.668

RBSG-Net (proposed) 8.303

The following Figure 10 shows the ROC curves of the SOTA and proposed methods for
gender recognition of the DBGender-DB2 thermal dataset. The intersection of the EER line
and the ROC curve represents the EER value, and it is visually shown that the proposed
method, the RBSG-Net, has the lowest EER value among the other comparison models.
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4.6. Comparison of Gender Recognition Accuracy across Heterogeneous Datasets with
SOTA Methods

LWIR and NIR images are acquired using different wavelengths of infrared light, each
of which has unique image characteristics. In this subsection, experiments are conducted
on a heterogeneous dataset using images of different wavelengths. The results of the
experiments are shown in Table 13. Using the SYSU-MM01 NIR dataset as the training set
and the DBGender-DB2 thermal dataset as the test set, the EER of the proposed method
was measured to be 22.777%. On the other hand, when training with the DBGender-DB2
thermal dataset and testing with the SYSU-MM01 NIR dataset, the EER was found to be
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26.728%. Compared with other methods, these results show that the RBSG-Net has a high
gender recognition ability despite the domain differences between IR images, indicating
that the model has a good generalization performance that can be practically applied in
various environmental conditions and IR wavelengths. This has important implications
for the use of IR images in different wavelengths in security, surveillance, and workforce
management systems.

Table 13. EERs of different methods with heterogeneous datasets: ‘S’ denotes the SYSU-MM01 NIR
dataset, and ‘D’ denotes the DBGender-DB2 thermal dataset (unit: %).

Models
Training Dataset → Test Dataset

S → D D → S

HP-Net [11] 54.325 48.706

1-ch ResNet-101 [27] 40.014 46.809

ALM [19] 51.260 42.970

Strong Baseline [20] 41.098 33.904

15-layer CNN [29] 43.071 40.735

YY-Net [21] 37.983 32.989

PARFormer-B [23] 33.777 30.199

PARFormer-L [23] 30.838 28.337

RBSG-Net (proposed) 22.777 26.728

4.7. Testing of Proposed Method with Visible Light Images

As demonstrated in Sections 4.3–4.5, the proposed RBSG-Net outperformed existing
methods in gender recognition using infrared light images. However, to show that the
proposed method also works well for visible light images acquired in a surveillance envi-
ronment, additional experiments were conducted using the visible light datasets used in
previous studies of Table 8.

4.7.1. Visible Light Datasets and Evaluation Metrics

The pedestrian attribute (PETA) [9] dataset, which has been widely used in previous
body-based gender recognition studies, was utilized in this study. The PETA dataset
consists of 19,000 pedestrian images from visible light surveillance cameras. To compare the
proposed method with existing methods, experiments were conducted using two protocols.
The first protocol follows the method of [21] and divides the dataset into training, validation,
and test sets (protocol 1). The second protocol follows the method of [53], excluding the MIT
dataset, a subset of the PETA dataset, as the training set and using the MIT dataset as the
test set (protocol 2). The details of each training, validation, and test dataset configuration
are shown in Table 14, and samples of the PETA dataset and MIT dataset are shown
in Figure 11.

Table 14. A summary of the visible light image dataset: protocol 1 is same setting as described in [21],
and protocol 2 is same setting as described in [53] ‘M’ denotes the number of males and ‘F’ denotes
the number of females.

Protocol Training Set
(M/F)

Validation Set
(M/F)

Test Set
(M/F)

1 9500
(5240/4260)

1900
(1034/866)

7600
(4147/3453)

2 13,555
(6778/6777)

3389
(1694/1695)

888
(600/288)
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mixed view of a female and male from left to right.

For a fair comparison with existing methods, overall accuracy and mean accuracy
were used as indicators of gender recognition performance. These two metrics are defined
by the following Equations (13) and (14).

Overall accuracy =
TP + TN

TP + TN + FP + FN
(13)

Mean accuracy =
1
2
×

(
TP

TP + FN
+

TN
TN + FP

)
(14)

4.7.2. Comparisons of Gender Recognition Accuracy with SOTA Methods

In the proposed method, the RBSG-Net, which was the U-Net, was used for the se-
mantic segmentation network, and DeiT-Large [52] was used for the classification network.
The U-Net was trained using the Pedestrian Parsing Surveillance Scene (PPSS) dataset [16],
and the classification network was pretrained on the ImageNet-1K dataset as described in
Section 4.2. Table 15 compares the gender recognition performance measured in the proto-
col 1 setting. In the protocol 1 setting, the mean accuracy of RBSG-Net is 95.10%, which is
about 0.19% higher than the second-best method, DeiT-Large [52]. Also, in the protocol
2 setting, as shown in Table 16, the overall accuracy and mean accuracy of the RBSG-Net
are 92.7% and 91.2%, respectively, which are 1% and 0.6% higher than the second-best
method, ViT-PGC [53]. This shows that the proposed RBSG-Net works well for visible light
images and shows higher recognition performance than the SOTA methods.

Table 15. Performance comparisons with SOTA methods using protocol 1 setting (unit: %).

Method Mean Accuracy

ALM [19] 92.28
DeepMar [54] 92.33

APR [55] 92.84
VAC [56] 92.85

Strong Baseline [20] 93.13
YY-Net [21] 93.39

DaViT-Base [33] 93.74
DeiT-Large [52] 94.91

RBSG-Net (proposed) 95.10
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Table 16. Performance comparisons with SOTA methods using protocol 2 setting (unit: %).

Method Overall Accuracy Mean Accuracy

Upper body (CNN) [15] 82.8 81.4
Full body (CNN) [15] 82.0 80.7

HDFL [14] 74.3 -
SSAE [18] 82.4 81.6

U+M+L (CNN-3) [17] 81.3 -
J-LDFR [57] 82.0 77.3
CSVFL [58] 85.2 -

DaViT-Base [33] 86.2 84.6
DeiT-Large [52] 90.9 90.5

ViT-PGC [53] 91.7 90.7
RBSG-Net (Proposed) 92.7 91.3

5. Discussion
5.1. Comparisons of Algorithm Computational Complexity

In this subsection, the computational complexity between the proposed method is
compared with other SOTA methods. The input image size was 384 × 128 pixels. The
average processing time per image was measured in both the desktop computer environ-
ment, as presented in Section 4.1, and the embedded environment. For the embedded
environment, the NVIDIA Jetson TX2 [59] board, shown in Figure 12, was used, which can
be used in surveillance systems. The NVIDIA Jetson TX2 consists of an NVIDIA Pascal™
architecture GPU (256 CUDA cores) with 1.33 trillion floating point operations per second
(TFLOPS) and 8 GB of memory.
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Table 17 compares the computational complexity of the RBSG-Net and SOTA methods
in terms of the number of parameters in the model, Giga floating point operations (GFLOPs),
and memory usage. Among the SOTA methods, the ALM [19], Strong Baseline [20], and the
15-layer CNN [29] are the lightweight real-time models used in surveillance environments.
The RBSG-Net is a sequential structure that extracts prediction maps for human body
regions through a semantic segmentation network, followed by feature extraction in a
classification network, so it requires more parameters and computation than other models.
This means that it is not the best in terms of computational complexity. However, in a
desktop environment, the image processing speed is about 58.9 (1000/16.98) frames per
second (fps), which can be processed in real time, so it can be used for video surveillance
like other models except the HP-Net [11].
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Table 17. Comparisons of processing time and computational complexity in the proposed method
and SOTA methods (ms, M, and MB represent millisecond, mega, and mega-bytes, respectively).

Models
Processing Time per an Image (ms) Number of

Parameters (M) GFLOPs
Memory

Usage (MB)Desktop Jetson TX2

HP-Net [11] 89.746 922.345 20.799 10.306 80.173
1-ch ResNet-101 [27] 6.026 73.425 42.498 7.627 162.827

ALM [19] 7.051 60.053 11.021 2.113 42.793
Strong Baseline [20] 3.501 41.934 23.510 4.047 89.919
15-layer CNN [29] 1.762 14.155 6.996 1.335 26.728

YY-Net [21] 6.503 84.656 47.018 8.095 200.975
PARFormer-B [23] 6.961 156.662 86.680 15.169 336.421
PARFormer-L [23] 9.229 296.868 194.900 34.082 747.369

RBSG-Net (proposed) 16.980 345.798 117.917 58.168 454.951

In addition, as shown in Tables 8, 9, 12, 13, 15 and 16, and Figures 8–10, the RBSG-Net
performs the best in terms of gender recognition accuracy compared to other models.
RBSG-Net outperforms the other models on the heterogeneous dataset shown in Table 13,
showing high performance in terms of gender recognition accuracy and infrared spectrum
generalization. Although there may be some challenging issues in terms of processing time,
the proposed model is better than others in terms of gender recognition accuracy, which is
the main purpose of this research.

5.2. Analysis with Grad-CAM

It is a challenging task to analyze the reasons for the inference results of deep learning-
based gender recognition models. In this subsection, gradient-weighted class activation
mapping (GradCAM) [60] was used to analyze the reasons for the inference results of the
RBSG-Net. GradCAM provides the interpretability of the trained model by mapping the
feature regions in the input image that have the most influence on the inference results.
Figure 13a,b show the GradCAMs obtained at each stage of the DaViT-Base [33] model
for the front and back view of a female and male image from the SYSU-MM01 NIR and
DBGender-DB2 thermal datasets. The GradCAM shown in Figure 13 is an indicator of the
degree of activation of the feature values for model prediction, with regions colored in red
indicating strong activation and regions colored in blue indicating weak activation.

As can be seen in Figure 13, the deep stage, or deep layer, captures semantic features,
while the shallow stage focuses on primitive features. Since the proposed RBSG-Net in
this study focuses on the human body regions extracted from the semantic segmentation
network, it focuses on the primitive features such as texture and edges within the human
body regions for all the images in the shallow layer. This shows that feature extraction
was performed by focusing on the features present within the human body region, which
is the foreground region for gender recognition. The features extracted in stage 4 are the
semantic features used for gender recognition, which are also features captured within the
human body region. These features are the key features that allow the model to distinguish
between females and males.

For females, the focus is on the facial area in the front image and the hairstyle in the
back image. Also, unlike males, females are often dressed in short shorts or skirts, so
you can see that the focus is also on the exposed legs, which is a female feature. On the
other hand, the male focuses on the face and shoulders in the front view and the head and
shoulders in the back view. In this way, there is a visual difference in the areas the model
focuses on when recognizing gender.
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Figure 13. GradCAMs of the proposed method at four different network stages: the first row
represents the input image and the second to fifth rows represent the GradCAM images extracted
from stages 1 to 4 of DaViT-Base, respectively. Each row consists of females on the left and males on
the right. (a) shows visualizations for female and male inferences on the SYSU-MM01 NIR dataset;
(b) and for the DBGender-DB2 thermal dataset.

5.3. Statistical Analysis

In this subsection, the statistical significance between the proposed method and the
second-best model is analyzed. Figure 14 shows the t-test result [61] between the second-
best model, YY-Net [21], and the proposed method in Table 9, which compares the gender
recognition performance on the SYSU-MM01 NIR dataset. The t-test resulted in a p-value
of 0.45 × 10−1, which means that there is a statistically significant difference at the 95%
confidence interval. In addition, the Cohen’s d-value [62] is used to verify the effect size
of the proposed method. If the Cohen’s d-value is close to 0.2, it indicates a small effect
size; if it is close to 0.5, it indicates a medium effect size; and if it is close to 0.8, it indicates
a large effect size. The Cohen’s d-value of the proposed RBSG-Net in this study is 1.641,
which indicates a large effect size. This confirms that the proposed method is statistically
and significantly more accurate than the second-best model, YY-Net.

Figure 15 shows the t-test result between the second-best model, PARFormer-L [23],
and the proposed method in Table 12, which compares the gender recognition performance
on the DBGender-DB2 dataset. The t-test result shows that the p-value is 0.18 × 10−1, which
means that there is a statistically significant difference at the 95% confidence interval. Also,
the Cohen’s d-value is 0.961, indicating a large effect size. These analyses show that the
proposed method has high accuracy on both DBGender-DB2 thermal and SYSU-MM01
NIR datasets with statistical significance compared to the second-best model.
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Figure 14. The t-test result of gender recognition accuracy achieved by the proposed method and the
second-best model with the SYSU-MM01 NIR dataset.
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Figure 15. The t-test result of gender recognition accuracy achieved by our proposed method and the
second-best model with the DBGender-DB2 dataset.

5.4. Analysis about Correct and Incorrect Cases

In this subsection, the correct and incorrect recognition cases where the RBSG-Net
performed gender recognition are analyzed. To understand the areas that caused the
RBSG-Net to recognize gender correctly or incorrectly, only the GradCAM obtained from
stage 4 of the classification network DaViT-Base was visualized. Figure 16a,b shows an
example image and the GradCAM of a case with correct classification of a female and a
male, respectively. Even when some body parts are occluded by objects, as shown on the
right side of Figure 16a and on the left side of Figure 16b, the features required for gender
recognition within the human body region are well located. It can also be seen that accurate
gender recognition is performed even with images taken in a dark environment.

Figure 17 shows an incorrect case of the RBSG-Net. In Figure 17a, a female with a short
hairstyle is misclassified as male by focusing on the hairstyle as shown in the GradCAM
image because it is difficult to distinguish the gender of the female based on the back view
alone, while in the image on the left in Figure 17b, a male is misclassified as female based
on the hairstyle. The image on the right in Figure 17b is misclassified as female because
of the exposed leg area, which is an important female feature. This shows that when the
RBSG-Net recognizes gender in cases where it is difficult to see the face from the back,
hairstyle or body parts can affect the recognition performance.
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Figure 16. Correct cases of the RBSG-Net: (a) correctly recognizing a female (TP) (b) correctly
recognizing a male (TN).
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5.5. FD Estimation for Human Body Segmentation

The FD analysis was conducted on the segmented human regions within the input
images for the task of gender recognition. To calculate the FD score, the box-counting
method was applied as outlined in Algorithm 1 of Section 4.3, and subsequently computed
the correlation coefficient (C) between the box size (ϵ) and the corresponding number of
boxes N(ϵ), as well as the coefficient of determination (R2) for the regression line.

Figure 18a presents images where attention was determined by the proposed ABAM
method, whereas Figure 18b shows those where it was not determined for different body
parts of the head, upper body, and lower body. Figures 19–21 depict the human body masks
generated by the U-Net and the corresponding FD values for each body part, as presented
in Figure 18. The first row in Figures 19–21 shows the human body masks generated
by the U-Net, where the pixels corresponding to the human body are represented in
white. The second row displays the log–log plots for each mask, including the FD score,
the correlation coefficient (C), and the coefficient of determination (R2) calculated by
Algorithm 1. The FD value serves as an indicator of the complexity of shapes or patterns
within the mask. A higher FD value indicates more complex structures within the image.
As shown in Figure 19c,d, the FD score for Figure 19a (1.6226) is higher than that for
Figure 19b (1.2156), indicating that the mask where attention was determined by the ABAM
exhibits greater complexity. The FD score represents the slope of the regression line in
the log–log plots presented in Figures 19, 20 and 21c,d. The reliability of the FD value
increases with the strength of the correlation between the number of boxes N(ϵ) and the
box size (ϵ) during the regression process. In this context, the correlation coefficients for the
two samples in Figure 19 are 0.9971 and 0.9961, respectively, indicating a strong positive
correlation. Additionally, the R2 values of 0.994 and 0.992 for both samples suggest that the
regression line provides an excellent fit to the data. The same phenomena can be observed
in Figures 20 and 21.

A higher FD value indicates more complex structures and patterns within the image,
thereby reflecting the complexity of the segmentation mask. Table 18 presents the FD, R2,
and C values for each of the masks shown in Figures 19–21. Across all body parts, the
samples of Figures 19, 20 and 21a with ABAM-determined attention demonstrate higher
FD values compared to the samples of Figures 19, 20 and 21b without ABAM attention.
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This observation suggests that the masks selected by the ABAM for gender recognition are
indeed reliable, as the ABAM selectively passes only those results that satisfy the reliability
criteria based on the percentage of pixel presence in the segmentation mask.
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Table 18. FD, R2, and C values of the head, upper body, lower body from Figures 19–21.

Results
Head Upper Body Lower Body

Figure 19a Figure 19b Figure 20a Figure 20b Figure 21a Figure 21b

FD 1.6226 1.2156 1.8039 1.6802 1.6237 1.5123

R2 0.994 0.992 0.996 0.997 0.997 0.991

C 0.9971 0.9961 0.9981 0.9983 0.9984 0.9956
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Figure 20. FD analysis for upper body segmentation: The first row presents the upper body mask
generated by U-Net. The second row shows the FD value computed using Equation (12), accompanied
by R2 and C values for the upper body mask. (c,d) are the graphs computed from the images of
(a,b), respectively.
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In a broader context, the FD serves as a critical measure of irregularity, with higher
FD values typically indicating more complex and irregular shapes [63]. This makes FD
analysis particularly valuable in predicting human body silhouettes in infrared images,
thereby improving not only gender recognition but also pedestrian attribute recognition
and identity recognition in surveillance environments by addressing gaps in information.
Moreover, the FD enables researchers to assess and compare the complexity of shapes both
within and across datasets, thereby playing a crucial role in the understanding and analysis
of human identity and behavior.

6. Conclusions

In this study, a new gender recognition method using only infrared images was
proposed for use in night and low-light environments. To solve the problems of infrared
images such as a lack of color information, background clutter, and a lack of training
data annotated with body segmentation, a new loss function considering human body
proportions was introduced to enable the semantic segmentation network to perform
approximate segmentation. The RBSG-Net was proposed to improve gender recognition
performance by defining human body regions using human body region prediction maps
and removing unnecessary background elements.

The performance of the proposed method was evaluated using two IR image open
databases and two visible light open databases. Four experimental databases, SYSU-MM01,
DBGender-DB2, PETA, and MIT, cover a variety of environments (e.g., urban surveillance
and different climates). The experimental results show that the RBSG-Net achieves the
highest gender recognition performance compared to other SOTA methods in the four
datasets, and the proposed method extracts features important for gender classification
within the human body region by using GradCAM to interpret the model. Furthermore,
the t-test and Cohen’s d-value between the proposed model and the second-best model
confirm that the proposed method has a statistically, significantly higher accuracy than the
second-best model. It is meaningful that the RBSG-Net using human body segmentation
maps can pay more specific and detailed attention than other attention-based methods,
which can increase the reliability of classification results. To analyze the segmentation
correctness capability within the proposed framework, the fractal dimension estimation
technique was introduced to gain insights into the complexity and irregularity of the body
regions. However, the experimental results showed that in cases where it is difficult to see
the face from the back, hairstyle or body parts can affect the recognition performance, as
shown in Figure 17.

In future work, the method considering face observation for gender recognition should
be studied. In addition, performance enhancement of the segmentation model should be
researched by applying an unsupervised segmentation methodology that includes anthro-
pometric information to compensate for the small amount of human body segmentation
annotation. Furthermore, a light model method that combines segmentation and classifica-
tion in an end-to-end form should be explored to solve the computation and processing
time problems of the RBSG-Net, while also applying knowledge distillation techniques to
further improve its computational efficiency.

Author Contributions: Methodology, Writing—original draft, D.C.L.; Conceptualization, M.S.J.; Data
curation, S.I.J.; Investigation, S.Y.J.; Supervision, Writing—review and editing, K.R.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Science and ICT (MSIT), Korea, under
the Information Technology Research Center (ITRC) support program (IITP-2024-2020-0-01789)
supervised by the Institute for Information and Communications Technology Planning and Evaluation
(IITP).

Data Availability Statement: The proposed RBSG-Net models are publicly available via the Github
site (https://github.com/DongChan2/RBSG-Net.git, accessed on 14 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/DongChan2/RBSG-Net.git


Fractal Fract. 2024, 8, 551 30 of 32

References
1. Jiao, Q.; Liu, M.; Ning, B.; Zhao, F.; Dong, L.; Kong, L.; Hui, M.; Zhao, Y. Image Dehazing Based on Local and Non-Local Features.

Fractal Fract. 2022, 6, 262. [CrossRef]
2. Zhang, Y.; Yang, L.; Li, Y. A Novel Adaptive Fractional Differential Active Contour Image Segmentation Method. Fractal Fract.

2022, 6, 579. [CrossRef]
3. Zhang, Y.; Liu, T.; Yang, F.; Yang, Q. A Study of Adaptive Fractional-Order Total Variational Medical Image Denoising. Fractal

Fract. 2022, 6, 508. [CrossRef]
4. Zhang, X.; Dai, L. Image Enhancement Based on Rough Set and Fractional Order Differentiator. Fractal Fract. 2022, 6, 214.

[CrossRef]
5. Zhang, X.; Liu, R.; Ren, J.; Gui, Q. Adaptive Fractional Image Enhancement Algorithm Based on Rough Set and Particle Swarm

Optimization. Fractal Fract. 2022, 6, 100. [CrossRef]
6. Bai, X.; Zhang, D.; Shi, S.; Yao, W.; Guo, Z.; Sun, J. A Fractional-Order Telegraph Diffusion Model for Restoring Texture Images

with Multiplicative Noise. Fractal Fract. 2023, 7, 64. [CrossRef]
7. Ng, C.B.; Tay, Y.H.; Goi, B.M. Vision-based human gender recognition: A survey. arXiv 2012, arXiv:1204.1611. [CrossRef]
8. RBSG-Net. Available online: https://github.com/DongChan2/RBSG-Net.git (accessed on 14 February 2024).
9. Deng, Y.; Luo, P.; Loy, C.C.; Tang, X. Pedestrian attribute recognition at far distance. In Proceedings of the 22nd ACM International

Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 789–792. [CrossRef]
10. Li, D.; Zhang, Z.; Chen, X.; Ling, H.; Huang, K. A richly annotated dataset for pedestrian attribute recognition. arXiv 2016,

arXiv:1603.07054. [CrossRef]
11. Liu, X.; Zhao, H.; Tian, M.; Sheng, L.; Shao, J.; Yi, S.; Yan, J.; Wang, X. HydraPlus-Net: Attentive deep features for pedestrian

analysis. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 350–359. [CrossRef]

12. Ng, C.-B.; Tay, Y.-H.; Goi, B.-M. A convolutional neural network for pedestrian gender recognition. In Advances in Neural
Networks—ISNN 2013, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7951, pp. 558–564.
[CrossRef]

13. Antipov, G.; Berrani, S.-A.; Ruchaud, N.; Dugelay, J.-L. Learned vs. handcrafted features for pedestrian gender recognition.
In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, QLD, Australia, 26–30 October 2015;
pp. 1263–1266. [CrossRef]

14. Cai, L.; Zhu, J.; Zeng, H.; Chen, J.; Cai, C.; Ma, K.-K. HOG-assisted deep feature learning for pedestrian gender recognition.
J. Frankl. Inst. 2018, 355, 1991–2008. [CrossRef]

15. Raza, M.; Zonghai, C.; Rehman, S.U.; Zhenhua, G.; Jikai, W.; Peng, B. Part-wise pedestrian gender recognition via deep
convolutional neural networks. In Proceedings of the 2nd IET International Conference on Biomedical Image and Signal
Processing (ICBISP), Wuhan, China, 13–14 May 2017; pp. 1–6. [CrossRef]

16. Luo, P.; Wang, X.; Tang, X. Pedestrian parsing via deep decompositional network. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Sydney, NSW, Australia, 3–6 December 2013; pp. 2648–2655. [CrossRef]

17. Ng, C.B.; Tay, Y.-H.; Goi, B.-M. Pedestrian gender classification using combined global and local parts-based convolutional neural
networks. Pattern Anal. Appl. 2018, 22, 1469–1480. [CrossRef]

18. Raza, M.; Sharif, M.; Yasmin, M.; Khan, M.A.; Saba, T.; Fernandes, S.L. Appearance based pedestrians’ gender recognition by
employing stacked auto encoders in deep learning. Future Gener. Comput. Syst. 2018, 88, 28–39. [CrossRef]

19. Tang, C.; Sheng, L.; Zhang, Z.; Hu, X. Improving pedestrian attribute recognition with weakly-supervised multi-scale attribute-
specific localization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 4997–5006. [CrossRef]

20. Jia, J.; Huang, H.; Yang, W.; Chen, X.; Huang, K. Rethinking of pedestrian attribute recognition: Realistic datasets with efficient
method. arXiv 2020, arXiv:2005.11909. [CrossRef]

21. Roxo, T.; Proença, H. YinYang-Net: Complementing face and body information for wild gender recognition. IEEE Access 2022,
10, 28122–28132. [CrossRef]

22. Fang, H.-S.; Li, J.; Tang, H.; Xu, C.; Zhu, H.; Xiu, Y.; Li, Y.-L.; Lu, C. AlphaPose: Whole-body regional multi-person pose estimation
and tracking in real-time. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 7157–7173. [CrossRef] [PubMed]

23. Fan, X.; Zhang, Y.; Lu, Y.; Wang, H. PARFormer: Transformer-based multi-task network for pedestrian attribute recognition. IEEE
Trans. Circuits Syst. Video Technol. 2023, 34, 411–423. [CrossRef]

24. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical vision Transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10–17 October 2021; pp. 9992–10002. [CrossRef]

25. Nguyen, D.T.; Park, K.R. Body-based gender recognition using images from visible and thermal cameras. Sensors 2016, 16, 156.
[CrossRef]

26. Nguyen, D.T.; Park, K.R. Enhanced gender recognition system using an improved Histogram of Oriented Gradient (HOG) feature
from quality assessment of visible light and thermal images of the human body. Sensors 2016, 16, 1134. [CrossRef] [PubMed]

27. Baek, N.R.; Cho, S.W.; Koo, J.H.; Truong, N.Q.; Park, K.R. Multimodal camera-based gender recognition using human-body
image with two-step reconstruction network. IEEE Access 2019, 7, 104025–104044. [CrossRef]

https://doi.org/10.3390/fractalfract6050262
https://doi.org/10.3390/fractalfract6100579
https://doi.org/10.3390/fractalfract6090508
https://doi.org/10.3390/fractalfract6040214
https://doi.org/10.3390/fractalfract6020100
https://doi.org/10.3390/fractalfract7010064
https://doi.org/10.48550/arXiv.1204.1611
https://github.com/DongChan2/RBSG-Net.git
https://doi.org/10.1145/2647868.2654966
https://doi.org/10.48550/arXiv.1603.07054
https://doi.org/10.1109/ICCV.2017.46
https://doi.org/10.1007/978-3-642-39065-4_67
https://doi.org/10.1145/2733373.2806332
https://doi.org/10.1016/j.jfranklin.2017.09.003
https://doi.org/10.1049/cp.2017.0102
https://doi.org/10.1109/ICCV.2013.329
https://doi.org/10.1007/s10044-018-0725-0
https://doi.org/10.1016/j.future.2018.05.002
https://doi.org/10.48550/arXiv.1910.04562
https://doi.org/10.48550/arXiv.2005.11909
https://doi.org/10.1109/ACCESS.2022.3157857
https://doi.org/10.1109/TPAMI.2022.3222784
https://www.ncbi.nlm.nih.gov/pubmed/37145952
https://doi.org/10.1109/TCSVT.2023.3285411
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.3390/s16020156
https://doi.org/10.3390/s16071134
https://www.ncbi.nlm.nih.gov/pubmed/27455264
https://doi.org/10.1109/ACCESS.2019.2932146


Fractal Fract. 2024, 8, 551 31 of 32

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

29. Baghezza, R.; Bouchard, K.; Gouin-Vallerand, C. Recognizing the age, gender, and mobility of pedestrians in smart cities using a
CNN-BGRU on thermal images. In Proceedings of the ACM Conference on Information Technology for Social Good, Limassol,
Cyprus, 7–9 September 2022; pp. 48–54. [CrossRef]

30. Wang, L.; Shi, J.; Song, G.; Shen, I. Object detection combining recognition and segmentation. In Proceedings of the 8th Asian
Conference on Computer Vision (ACCV), Tokyo, Japan, 18–22 November 2007; pp. 189–199. [CrossRef]

31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the
Medical Image Computing and Computer Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241.
[CrossRef]

32. Gordon-Rodriguez, E.; Loaiza-Ganem, G.; Pleiss, G.; Cunningham, J.P. Uses and abuses of the cross-entropy loss: Case studies in
modern deep learning. arXiv 2020, arXiv:2011.05231. [CrossRef]

33. Ding, M.; Xiao, B.; Codella, N.; Luo, P.; Wang, J.; Yuan, L. DaViT: Dual attention vision Transformers. In Proceedings of the
European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022; pp. 74–92. [CrossRef]

34. Yang, J.; Li, C.; Zhang, P.; Dai, X.; Xiao, B.; Yuan, L.; Gao, J. Focal self-attention for local-global interactions in vision Transformers.
arXiv 2021, arXiv:2107.00641. [CrossRef]

35. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2021, arXiv:2010.11929.
[CrossRef]

36. Wu, A.; Zheng, W.-S.; Yu, H.-X.; Gong, S.; Lai, J. RGB-infrared cross-modality person re-identification. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5390–5399.

37. FLIR Tau2. Available online: https://www.flir.com/products/tau-2/?vertical=lwir&segment=oem (accessed on 10 January 2024).
38. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An

imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [CrossRef]
39. GeForce RTX 4070 Family. Available online: https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-family

(accessed on 15 January 2024).
40. Dwyer, B.; Nelson, J.; Solawetz, J. Roboflow (Version 1.0) [Software]. 2022. Available online: https://roboflow.com (accessed on

14 February 2024).
41. Zhang, Y.; Chen, C.; Shi, N.; Sun, R.; Luo, Z.-Q. Adam can converge without any modification on update rules. In Proceedings of

the 36th Conference on Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Volume
35, pp. 28386–28399. [CrossRef]

42. DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552.
[CrossRef]

43. Lewkowycz, A. How to decay your learning rate. arXiv 2021, arXiv:2103.12682. [CrossRef]
44. Brouty, X.; Garcin, M. Fractal properties; information theory, and market efficiency. Chaos Solitons Fractals 2024, 180, 114543.

[CrossRef]
45. Yin, J. Dynamical fractal: Theory and case study. Chaos Solitons Fractals 2023, 176, 114190. [CrossRef]
46. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic

image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 801–818. [CrossRef]

47. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5686–5696. [CrossRef]

48. Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes.
arXiv 2021, arXiv:2101.06085. [CrossRef]

49. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with Transformers. In Proceedings of the advances in Neural Information Processing Systems (NeurIPS), Virtual, 6–14 December
2021; pp. 12077–12090. [CrossRef]

50. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

51. Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 21–24 June 2022; pp. 11966–11976.
[CrossRef]

52. Touvron, H.; Cord, M.; Jégou, H. DeiT III: Revenge of the ViT. In Proceedings of the European Conference on Computer Vision
(ECCV), Tel Aviv, Israel, 23–27 October 2022; pp. 516–533. [CrossRef]

53. Abbas, F.; Yasmin, M.; Fayyaz, M.; Asim, U. ViT-PGC: Vision Transformer for pedestrian gender classification on small-size
dataset. Pattern Anal. Appl. 2023, 26, 1805–1819. [CrossRef]

54. Li, D.; Chen, X.; Huang, K. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. In Proceedings
of the Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 111–115. [CrossRef]

https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1145/3524458.3547235
https://doi.org/10.1007/978-3-540-76386-4_17
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.2011.05231
https://doi.org/10.1007/978-3-031-20053-3_5
https://doi.org/10.48550/arXiv.2107.00641
https://doi.org/10.48550/arXiv.2010.11929
https://www.flir.com/products/tau-2/?vertical=lwir&segment=oem
https://doi.org/10.48550/arXiv.1912.01703
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-family
https://roboflow.com
https://doi.org/10.48550/arXiv.2208.09632
https://doi.org/10.48550/arXiv.1708.04552
https://doi.org/10.48550/arXiv.2103.12682
https://doi.org/10.1016/j.chaos.2024.114543
https://doi.org/10.1016/j.chaos.2023.114190
https://doi.org/10.48550/arXiv.1802.02611
https://doi.org/10.1109/CVPR.2019.00584
https://doi.org/10.48550/arXiv.2101.06085
https://doi.org/10.48550/arXiv.2105.15203
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1007/978-3-031-20053-3_30
https://doi.org/10.1007/s10044-023-01196-2
https://doi.org/10.1109/ACPR.2015.7486476


Fractal Fract. 2024, 8, 551 32 of 32

55. Lin, Y.; Zheng, L.; Zheng, Z.; Wu, Y.; Hu, Z.; Yan, C.; Yang, Y. Improving person re-identification by attribute and identity learning.
Pattern Recognit. 2019, 95, 151–161. [CrossRef]

56. Guo, H.; Zheng, K.; Fan, X.; Yu, H.; Wang, S. Visual Attention Consistency Under Image Transforms for Multi-Label Image
Classification. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, CA, USA, 15–20 June 2019; pp. 729–739. [CrossRef]

57. Fayyaz, M.; Yasmin, M.; Sharif, M.; Raza, M. J-LDFR: Joint low-level and deep neural network feature representations for
pedestrian gender classification. Neural Comput. Appl. 2021, 33, 361–391. [CrossRef]

58. Cai, L.; Zeng, H.; Zhu, J.; Cao, J.; Wang, Y.; Ma, K.-K. Cascading scene and viewpoint feature learning for pedestrian gender
recognition. IEEE Internet Things J. 2021, 8, 3014–3026. [CrossRef]

59. Jetson TX2 Module. Available online: https://developer.nvidia.com/embedded/jetson-tx2 (accessed on 1 February 2024).
60. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks

via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]
61. Student’s t-test. Available online: https://en.wikipedia.org/wiki/Student’s_t-test (accessed on 21 February 2024).
62. Cohen, J. A power primer. Psychol. Bull. 1992, 112, 1155–1159. [CrossRef] [PubMed]
63. Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patcog.2019.06.006
https://doi.org/10.1109/CVPR.2019.00082
https://doi.org/10.1007/s00521-020-05015-1
https://doi.org/10.1109/JIOT.2020.3021763
https://developer.nvidia.com/embedded/jetson-tx2
https://doi.org/10.1007/s11263-019-01228-7
https://en.wikipedia.org/wiki/Student's_t-test
https://doi.org/10.1037/0033-2909.112.1.155
https://www.ncbi.nlm.nih.gov/pubmed/19565683
https://doi.org/10.1126/science.156.3775.636

	Introduction 
	Related Work 
	Using Visible Light Images 
	Using Visible Light and IR Images 
	Using IR Images 
	Without Body Segmentation 
	With Body Segmentation 


	Proposed Methodology 
	Overall Procedure of the Proposed Method 
	RBSG-Net 
	Semantic Segmentation Network 
	ABAM 
	Gender Recognition Network 


	Experimental Results 
	Experimental Database and Environment 
	Training 
	Evaluation Metric and Fractal Dimension Estimation 
	Testing the Proposed Method with the SYSU-MM01 NIR Dataset 
	Ablation Studies 
	Comparisons of Gender Recognition Accuracy with SOTA Methods 
	Comparisons of Gender Recognition Accuracy with SOTA Methods: 5-Fold Cross-Validation 

	Testing of Proposed Method with DBGender-DB2 Dataset 
	Ablation Study: Comparative Analysis of RBSG-Net with Various Networks 
	Comparisons of Gender Recognition Accuracy with SOTA Methods 

	Comparison of Gender Recognition Accuracy across Heterogeneous Datasets with SOTA Methods 
	Testing of Proposed Method with Visible Light Images 
	Visible Light Datasets and Evaluation Metrics 
	Comparisons of Gender Recognition Accuracy with SOTA Methods 


	Discussion 
	Comparisons of Algorithm Computational Complexity 
	Analysis with Grad-CAM 
	Statistical Analysis 
	Analysis about Correct and Incorrect Cases 
	FD Estimation for Human Body Segmentation 

	Conclusions 
	References

