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Abstract: In this paper, we introduce an innovative approach to multi-focus image fusion by lever-
aging the concepts of fractal dimension and coupled neural P (CNP) systems in nonsubsampled
contourlet transform (NSCT) domain. This method is designed to overcome the challenges posed by
the limitations of camera lenses and depth-of-field effects, which often prevent all parts of a scene
from being simultaneously in focus. Our proposed fusion technique employs CNP systems with a
local topology-based fusion model to merge the low-frequency components effectively. Meanwhile,
for the high-frequency components, we utilize the spatial frequency and fractal dimension-based
focus measure (FDFM) to achieve superior fusion performance. The effectiveness of the method
is validated through extensive experiments conducted on three benchmark datasets: Lytro, MFI-
WHU, and MFFW. The results demonstrate the superiority of our proposed multi-focus image fusion
method, showcasing its potential to significantly enhance image clarity across the entire scene. Our
algorithm has achieved advantageous values on metrics QAB/F, QCB, QCV , QE, QFMI , QG, QMI ,
and QNCIE.

Keywords: multi-focus image; image fusion; fractal dimension; CNP; NSCT

1. Introduction

Multi-focus image fusion (MFIF) is a sophisticated process used in image processing
that involves combining multiple images taken with different focus settings into a single
image where all objects are in focus [1]. This technique is particularly useful in scenarios
where the depth of field is limited and parts of the scene are out of focus in each image. By
integrating these images, multi-focus image fusion produces a composite that is entirely
sharp and clear [2].

The process of multi-focus image fusion involves several key techniques and steps:
(1) Image registration: aligning the multiple images accurately is crucial, as even slight
misalignments can lead to poor fusion results; (2) Focus measurement: this involves
assessing the focus level of different parts of each image, often using clarity or sharpness
metrics; (3) Fusion algorithm: the core of the process, where algorithms decide how to
combine the sharp portions of each input image into the final composite. Techniques vary
from simple averaging to complex wavelet-based methods; (4) Post-processing: enhancing
the fused image to improve visual quality or to prepare it for analysis, including tasks like
contrast adjustment or noise reduction [3,4].

MFIF is not without its challenges. These include handling misalignments, reducing
artifacts that can arise during fusion, and dealing with variations in exposure and color
balance among the source images. Advances in computational photography, machine
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learning, and deep learning have led to more sophisticated fusion algorithms that can
more effectively address these challenges, resulting in higher-quality fused images. Various
algorithms and techniques, including multi-resolution analysis, image decomposition, and
feature-based methods, have been developed to effectively fuse multi-focus images. One
of the key challenges in image fusion is to ensure that important information from both
input images is preserved and enhanced in the fused image, without introducing artifacts
or losing critical details [5–7].

In traditional image fusion algorithms, the multi-scale transforms such as nonsubsam-
pled contourlet transform (NSCT) [8] and nonsubsampled shearlet transform (NSST) [9] are
commonly employed. These are mathematical tools that are used for image analysis and
processing. They offer an enhanced representation of local features and multi-scale analysis
capabilities, making them particularly suitable for tasks like image fusion. Li et al. [10]
introduced the medical image fusion approach using NSST. Lv et al. [11] proposed MFIF via
parameter-adaptive pulse-coupled neural network and fractal dimension in NSST domain.
Li et al. [12] introduced the image fusion algorithm based on spatial frequency and im-
proved sum-modified-Laplacian in NSST domain. Coupled neural P (CNP) systems were
proposed by Peng et al. [13] in 2019, and Li et al. [14] proposed the medical image fusion
method based on coupled neural P systems (CNP) in NSST domain; the experiments show
that the CNP systems achieve excellent results in image fusion. Although the algorithm
achieves good image fusion results, it is only suitable for images of size m × m. For images
of size m× n, due to the necessity of preprocessing the image with NSST to obtain an m×m
or n × n image, followed by decomposition, applying different fusion rules to obtain the
fused image, and finally resizing the image back to m × n, information loss and distortion
occur to varying degrees during this process. Therefore, NSST is more suitable for the
image fusion processing of m × m-sized images. NSCT can directly process images with
size m × n, which can reduce image distortion and information loss. Li et al. [15] proposed
the MFIF method via NSCT and achieved an excellent fusion effect.

To improve the clarity and information complementarity of the fused images, we
propose a novel MFIF method based on fractal dimension and coupled neural P systems
(CNP) in NSCT domain. The main contributions of our paper are as follows:

(1) The coupled neural P systems (CNP) are used to process low-frequency components
in order to obtain better background information;

(2) A fractal dimension-based focus measure (FDFM) combined with spatial frequency
(SF) is used to process high-frequency components, thereby obtaining more detailed
image information;

(3) Through extensive qualitative and quantitative experiments conducted on three
datasets, our method consistently outperforms state-of-the-art (SOTA) techniques,
demonstrating superior performance.

The remainder of the article is structured into six sections. Section 2 provides an
overview of related works. In Section 3, the nonsubsampled contourlet transform is
introduced. Section 4 presents the introduction of CNP systems. The proposed method is
detailed in Section 5. Section 6 covers experimental results and discussions, while Section 7
delves into further discussions.

2. Related Works

In this section, we provide a concise overview of the existing literature on MFIF,
categorizing it into three main approaches: spatial domain-based methods, transform
domain-based methods, and deep learning-based methods [16].

2.1. Spatial Domain-Based Image Fusion

Spatial domain-based fusion methods involve the direct manipulation of pixel values
using specific algorithms designed for image fusion. Among them, image fusion algorithms
based on edge-preserving filtering are the most commonly used. These filters typically
include guided image filtering [17], rolling guidance filtering [18], Gaussian curvature
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filter [19], etc. Fiza et al. [20] proposed a technique for MFIF specifically tailored for
satellite images. It addresses issues such as visual distortion and spatial inconsistencies
at sharp edges by introducing the edge discriminative diffusion filter (EDDF). EDDF
combines anisotropic diffusion (AD) with guided filter (GF) to discriminate between local
and global features, preserving edges while maintaining spatial consistency. The technique
involves transforming source images into detail and base layers to extract low-pass and
high-pass information, processing saliency maps through EDDF to generate weight maps,
and, finally, combining fused detail and base layers to produce the desired fused image.
Quantitative and qualitative tests demonstrate that the proposed technique outperforms
some SOTA alternatives.

Yan et al. [21] introduced a novel MFIF approach, utilizing dictionary learning along-
side a rolling guidance filter to accommodate both registered and mis-registered input
images. Initially, a dictionary is learned from classical multi-focus images blurred by the
rolling guidance filter. Then, a model is proposed for identifying focus regions by applying
the learned dictionary to input images, generating focus feature maps. These maps are
compared to derive an initial decision map, which is optimized and applied to the input
images to produce fused images. Experimental results demonstrate the competitiveness
of the proposed algorithm with the current state of the art, particularly excelling when
handling both well-registered and mis-registered input images.

Adeel et al. [22] introduced a two-stage spatial domain framework for MFIF, which
finds applications in computer vision. Initially, the salient features of focused regions are
detected using Gaussian curvature filter (GCF) and range filtering. Subsequently, morpho-
logical filters refine the initial focus detection map. Experimental results demonstrate the
method’s speed and robustness, outperforming recent multi-focus fusion schemes.

Tang et al. [23] introduced the image fusion technique that utilizes a simple weighted
least squares filter. In their approach, source images are first decomposed into base and
detail layers using this filter. The detail layers are then fused through a sub-window
variance filter. For the base layer, they developed a fusion strategy that integrates visual
saliency mapping with adaptive weight assignment techniques. Although the algorithm
enhances the details, the fusion image as a whole suffers from some distortion.

2.2. Transform Domain-Based Image Fusion

Image fusion approaches via transform domains involve processing the transformed
coefficients of source images using various transforms such as contourlet transform [24,25],
shearlet transform [26,27], gradient domain [28], sparse representation [29,30], etc. Sub-
sequently, these coefficients are inversely transformed back into the spatial domain. This
approach typically comprises three primary stages: image transform, coefficient fusion,
and inverse transform.

Jie et al. [31] proposed a method for enhancing full-field optical angiography (FFOA)
images to achieve full focus, thereby improving its clinical utility. Existing FFOA techniques
suffer from a limited depth of focus, resulting in partially unclear images. The method
utilizes NSCT and contrast spatial frequency to fuse FFOA images effectively. Firstly, source
images are decomposed into low-pass and bandpass images. Then, a sparse representation-
based rule fuses low-pass images, while a contrast spatial frequency rule fuses bandpass
images, considering pixel correlation and gradient relationships. Finally, a fully focused
image is reconstructed. Experimental results demonstrate the superiority of the proposed
method over SOTA approaches in both qualitative and quantitative evaluations, offering
promising prospects for clinical applications in disease prevention and diagnosis.

Lu et al. [32] presented a novel focus measure called the sum of Gaussian-based
fractional order differentiation (SGFD) to improve the accuracy of detecting low-frequency
regions in MFIF. SGFD outperforms traditional focus measures by retaining more low-
frequency information. The fusion process involves initial fusion using the NSST and
SGFD, followed by refinement of the initial decision map through quadtree decomposition.
Residual regions are identified and removed to generate the final fused image. Comparative
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experiments with SOTA approaches demonstrate that the SGFD-based approach excels
in both subjective visual quality and objective metrics, offering promising advancements
in MFIF.

Paul et al. [28] introduced a method for fusing color images that addresses both
multi-exposure and multi-focus scenarios. It achieves this by blending the gradients of the
luminance components of input images, prioritizing the maximum gradient magnitude at
each pixel location. The fused luminance is then obtained through a Haar wavelet-based
image reconstruction approach.

Tang et al. [33] proposed a sparse representation-based fusion approach for image
fusion. Traditional methods often suffer from including redundant information during
dictionary learning, leading to artifacts and increased computational time. To address this,
the proposed method introduces a novel dictionary construction method based on joint
patch grouping and informative sampling. Nonlocal similarity is utilized for joint patch
grouping across all source images, simplifying the calculation by selecting only one class of
informative image patches. Sparse coefficients are obtained using the orthogonal matching
pursuit (OMP) algorithm, and a max-L1 fusion rule is employed for image reconstruction.
Experimental results demonstrate the superiority of the proposed approach in effectively
fusing multi-focus images.

Chen et al. [34] introduced an image fusion approach via a complex sparse repre-
sentation (CSR) model. This model employs hypercomplex signal properties to derive
directional information from real-valued signals by extending them into the complex do-
main. Following this, the directional aspects of the input signal are separated into sparse
coefficients using corresponding directional dictionaries.

2.3. Deep Learning-Based Image Fusion

Deep learning has been widely applied in the field of image processing, including
tasks such as image classification [35], image segmentation [36], object detection [37], image
enhancement [38], image fusion [39], etc. The commonly used deep learning models have
CNNs [40], GANs [41], autoencoders [42], etc. There has been extensive research into
leveraging deep learning techniques for image fusion [43]. This has led to the emergence
of numerous methods that utilize deep learning for MFIF. Zhang et al. [44] introduced
the IFCNN fusion framework, a convolutional neural network (CNN)-based approach
that offers a comprehensive fusion solution. Notably, it can undergo end-to-end training
without necessitating preprocessing steps. Hu et al. [45] proposed a ZMFF method based
on a deep prior network. Zhang et al. [46] introduced a fast unified image fusion network
called PMGI. This network addresses various image fusion tasks like medical image fusion
and MFIF. The key idea is to maintain the proportional relationship between texture and
intensity information from source images. Xu et al. [47] introduced an innovative unified
and unsupervised end-to-end image fusion network (U2Fusion).

Traditional algorithms have the following two advantages compared to deep learning:
(1) Traditional algorithms typically operate based on mathematical models and specific
rules, making their results easier to interpret and control; (2) Researchers can clearly
understand how each step influences the final fusion outcome and can adjust parameters
and methods according to their needs.

3. Nonsubsampled Contourlet Transform

The nonsubsampled contourlet transform (NSCT) is an advanced mathematical tool
used for signal and image analysis, extending the principles of the contourlet transform
but with significant improvements in handling images [48–50]. Developed to overcome
some of the limitations of previous multi-scale and multi-directional transforms, the NSCT
offers a flexible, multi-resolution, multi-direction, and shift-invariant framework for image
decomposition. The NSCT decomposes images into components at multiple scales and
orientations. It performs this through two main stages: a nonsubsampled pyramid (NSP)
structure for capturing point discontinuities and a series of nonsubsampled directional
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filter banks (NSDFB) for linking point discontinuities into linear structures. This approach
is adept at capturing edges and textures in an image, which are essential features in
many image processing tasks. Figure 1a displays an overview of the proposed NSCT. The
structure consists of a bank of filters that splits the 2-D frequency plane in the sub-bands
illustrated in Figure 1b.
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The NSCT requires selecting appropriate scale and directional parameters, which
can significantly impact the final processing results and necessitate experience and ex-
perimentation to optimize. Due to its involvement with multi-scale and multidirectional
data representations, NSCT requires high memory demands, especially when processing
large-scale data.

4. Coupled Neural P Systems

For the fusion of multi-focus images, coupled neural P (CNP) systems are designed as
an array of neurons with local topology, i.e., CNP systems with local topology [13,14].

A CNP system with local topology, of degree m × n, is delineated as follows:

Π = (O, σ11, σ12, · · · , σ1n, · · · , σm1, σm2, · · · , σmn, syn) (1)

where

(1) O = {a} is an alphabet (the objective a is known as the spike);
(2) σ11, σ12, · · · , σmn are an array of m × n coupled neurons of the form

σij =
(

xij, yij, zij, Rij
)
, 1 ≤ i ≤ h, 1 ≤ j ≤ w

where

(a) xij ∈ R is the value of spikes in feeding input unit in neuron σij;
(b) yij ∈ R is the value of spikes in linking input unit in neuron σij;
(c) zij ∈ R is the value of spikes in dynamic threshold unit in neuron σij;
(d) Rij denotes the finite set of spiking rules, of the form E/(ax, ay, az) → ap ,

where E is the firing condition, p ≥ 0, τ ≥ 0, and p ≤ u(1 + v).
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(3) syn = {(ij, kl)|1 ≤ i ≤ h, 1 ≤ j ≤ w, |k − i| ≤ r, |l − j| ≤ r, i ̸= k, j ̸= l}, where r is the
neighborhood radius.

Suppose that I is an input image with size h × w and IBC is the matrix containing the
base components (BC) obtained from the image decomposition method. Figure 2 shows
the relationship between CNP system Π and base components matrix IBC.
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Figure 2. A CNP system Π and the corresponding base component matrix IBC.

In CNP system Π, each coupled neuron only communicates with its neighboring
neurons, i.e., local topology. An r-neighborhood of neurons σij is defined as follows, as
shown in Figure 2:

δr
(
σij

)
= {σkl ||k − i| ≤ r, |l − j ≤ r| } (2)

The spiking rule of neuron σij is defined as follows [14]:

E/(ax, ay, az) → ap (3)

where E is a firing condition denoted as follows [14]:

E ≡ (ni(t) ≥ zi(t)) ∧ (xi(t) ≥ x) ∧ (yi(t) ≥ y) ∧ (zi(t) ≥ z) (4)

where nij(t) = xij(t)
(
1 + yij(t)

)
, which represents a nonlinear modulation mechanism.

According to the spiking mechanism, the state equation for neuron σij can be given by

xij(t + 1) =


xij(t)− x + Cij + ∑

σkl∈δr

ωkl pkl(t), if σij fires

xij(t) + Cij + ∑
σkl∈δr

ωkl pkl(t), otherwise
(5)

yij(t + 1) =


yij(t)− y + ∑

σkl∈δr

ωkl pkl(t), if σij fires

yij(t) + ∑
σkl∈δr

ωkl pkl(t), otherwise
(6)

zij(t + 1) =
{

zij(t)− z + p, if σij fires
zij(t), otherwise

(7)

where pkl(t) is the value of the spikes received by neuron σij from neighboring neuron
σkl and ωkl(t) is the corresponding local weight, and Cij is an external stimulus. p is the
value of spikes generated by neuron σij when it fires. Peng et al. [51] introduced the MFIF
method based on CNP systems in NSCT domain, and the algorithm has achieved good
fusion results.
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5. The Proposed Method

We present a novel approach for MFIF utilizing fractal dimension and coupled neural
P systems in NSCT domain. The main steps can be concluded as follows: NSCT decom-
position, low-frequency coefficient fusion, high-frequency coefficient fusion, and inverse
NSCT transform. Figure 3 illustrates the architecture of the proposed method.
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5.1. NSCT Decomposition

Assume that A and B are the input images, the NSCT is used to decompose the two
images, and the low- and high-frequency components are generated, named as

{
LA, Hl,k

A

}
and

{
LB, Hl,k

B

}
, respectively.

5.2. Low-Frequency Coefficient Fusion

The low-frequency components have the most brightness and energy information; the
fusion strategy for low-frequency components has a significant impact on the final fusion
quality. In this section, the CNP systems-based low-frequency fusion rule is designed.
Suppose that ∏A and ∏B are two CNP systems with local topology; the low-frequency
coefficients of two multi-focus images are regarded as the external inputs of ∏A and ∏B.
Starting from the initial state, the two CNP systems work constantly until iteration number
tmax is reached. Then, they halt. Denoted by TA and TB, the excitation number matrixes
are associated with ∏A and ∏B, i.e., TA =

(
tA
ij

)
h×w

and TB =
(

tB
ij

)
h×w

, where tA
ij (or tB

ij)

is the number of times that σij fires in ∏A (or ∏B). The fusion rules for low-frequency
NSCT coefficients are formulated based on the information provided by the two excitation
number matrices as follows [14]:

LF(i, j) =

{
LA(i, j) if tA

ij ≥ tB
ij

LB(i, j) if tA
ij < tB

ij
(8)

where LA(i, j) and LB(i, j) are the low-frequency coefficients of two source images at
position (i, j), respectively, and LF(i, j) is the fused low-frequency coefficients.
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5.3. High-Frequency Coefficient Fusion

The high-frequency coefficients contain richer texture and detailed information, as
well as some of the image’s noise. Fractal and fractional have extensive applications
in image processing [52–63]. In this section, the spatial frequency (SF) [64] and fractal
dimension-based focus measure (FDFM) [52] are defined as follows:

SFHl,k
A (i, j) = ∑

i∈M,j∈N

(
Hl,k

A (i, j)− Hl,k
A (i − 1, j)

)2
+

(
Hl,k

A (i, j)− Hl,k
A (i, j − 1)

)2
(9)

SFHl,k
B (i, j) = ∑

i∈M,j∈N

(
Hl,k

B (i, j)− Hl,k
B (i − 1, j)

)2
+

(
Hl,k

B (i, j)− Hl,k
B (i, j − 1)

)2
(10)

FDFMHl,k
A (i, j) = g

Hl,k
A

max(i, j)− g
Hl,k

A
min(i, j) (11)

FDFMHl,k
B (i, j) = gHl,k

B
max(i, j)− gHl,k

B
min(i, j) (12)

where gX(i,j)
max and gX

min(i, j) are the maximum and minimum intensities, respectively, over

a 3 × 3 window centered at the (i, j)th pixel of X ∈
{

Hl,k
A , Hl,k

B

}
. FDFM can measure such

small activity levels, which also affect the fusion results.
The fused high-frequency coefficients are generated by

Hl,k
F (i, j) =


Hl,k

A (i, j) if SFHl,k
A (i, j)× FDFMHl,k

A (i, j)

≥ SFHl,k
B (i, j)× FDFMHl,k

B (i, j)
Hl,k

B (i, j) else

(13)

where Hl,k
F (i, j) shows the fused high-frequency coefficients.

5.4. Inverse NSCT Transform

The final fused image F can be generated by using inverse NSCT transform performed
on the fused low- and high-frequency coefficients

{
LF, Hl,k

F

}
.

The main steps of the proposed method can be summarized as in Algorithm 1.

Algorithm 1 Proposed MFIF method

Input: the source images: A and B
Parameters: The number of NSCT decomposition levels: L, the number of directions at each
decomposition level: K(l), l ∈ [1, L]
Main step:
Step 1: NSCT decomposition
For each source image X ∈ {A, B}

Perform NSCT decomposition on X to generate
{

LX , Hl,k
X

}
, l ∈ [1, L], k ∈ [1, K(l)];

End
Step 2: Low-frequency components fusion
For each source image X ∈ {A, B}

Calculate the CNP for LX using Equations (1)–(7);
End
Merge LA and LB using Equation (8) to generate LF;
Step 3: High-frequency components fusion
For each level l = 1 : L

For each direction k = 1 : K(l)
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Algorithm 1 Cont.

For each source image X ∈ {A, B}
Calculate the SF for Hl,k

X (i, j) using Equations (9) and (10);
Calculate the FDFM for Hl,k

X (i, j) using Equations (11) and (12);
End
Merge Hl,k

A and Hl,k
B using Equation (13);

End
End
Step 4: Inverse NSCT
Perform inverse NSCT on

{
LF, Hl,k

F

}
to generate F;

Output: the fused image F.

6. Experimental Results and Discussion
6.1. Experimental Setup

In this section, the classical Lytro [65], MFI-WHU [66], and MFFW [67] datasets are
used in the experiments, as shown in Figure 4. Eight image fusion methods, named
GD [28], PMGI [46], MFFGAN [66], LEGFF [68], U2Fusion [47], CBFM [69], FUFusion [70],
and EgeFusion [23], are used to compare. The metrics QAB/F [64,71], QCB [72], QCV [72],
QE [72], QFMI [73], QG [72], QMI [64], and QNCIE [72] are used to evaluate the fusion
results. The source code of these compared methods is available or shared by the authors,
and the relevant parameter settings are set according to the original papers. In our method,
the NSCT decomposition levels is 4, and the corresponding directions are 2, 4, 8, and 8. The
parameters in CNP systems are set to imax, z0 = 0.3, r = 7, and p = 1. W7×7 =

{
ωij

}
7×7 is

determined as follows: (i) ω44 = 0; (ii) ωij = 1/sqrt
(
(i − 4)2 + (j − 4)2

)
for i ̸= 4, j ̸= 4,

1 ≤ i ≤ 7, 1 ≤ j ≤ 7.
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6.2. Fusion Results and Discussion

(1) Results on the Lytro Dataset

We conduct qualitative and quantitative evaluations to evaluate the performance of
different image fusion methods. Figure 5 displays the fused images of Data 1 from the
Lytro dataset. The fused image generated by GD exhibits over-brightness in certain areas,
leading to the loss of some fine details and the presence of artifacts. The PMGI algorithm
results in severe distortion, with the visual effect of the image appearing dim and blurry,
and a significant loss of information. The brightness of the image generated by MFFGAN is
insufficient, especially in areas such as the hair. The LEGFF algorithm achieved a relatively
good fusion result, but there is slight darkness observed in the brightness of the hair section.
The U2Fusion algorithm generated an image with some dim areas, particularly noticeable
in regions like the hat and hair, as well as the watch section, where usable information is
not observable. The CBFM generates a fused image that darkens the area around the arm.
The FUFusion produces a blurry fused image, making it difficult to obtain some image
information. The EgeFusion results in a significant distortion and loss of image information
in the fused image. Compared to other algorithms, our method demonstrates a superior
fusion result, featuring higher clarity and moderate brightness. Information pertaining to
arm, watch, clothing, hat, golf club, and grass in the image is distinctly observable.
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Figure 5. Visual comparison for Data 1 in the Lytro dataset. (a) GD; (b) PMGI; (c) MFFGAN;
(d) LEGFF; (e) U2Fusion; (f) CBFM; (g) FUFusion; (h) EgeFusion; (i) Proposed.

Table 1 presents the numerical values of various indicators corresponding to different
algorithms depicted in Figure 5. These indicators serve as quantitative metrics for evaluat-
ing the performance of each algorithm in the context of the depicted data. By examining
these values, we gain insights into the effectiveness of each algorithm in achieving the
desired objectives. From Table 1, it is evident that our algorithm has achieved optimal
values for the eight indicators, with respective values of QAB/F (0.7524), QCB (0.7745), QCV
(6.5508), QE (0.8862), QFMI (0.9380), QG (0.7382), QMI (6.5466), and QNCIE (0.8245).

Table 1. Quantitative comparative analysis of different methods for Data 1 in the Lytro dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.7220 0.6684 63.5814 0.8144 0.9222 0.6985 3.1161 0.8096

PMGI 2020 0.5466 0.6070 70.2785 0.6316 0.9169 0.5156 5.1347 0.8169

MFFGAN 2021 0.6860 0.7026 23.3439 0.8451 0.9296 0.6599 5.5783 0.8190

LEGFF 2022 0.6923 0.6857 38.6156 0.8205 0.9306 0.6658 4.8919 0.8158

U2Fusion 2022 0.6575 0.6164 56.5810 0.7952 0.9206 0.6338 5.2894 0.8176

CBFM 2023 0.7201 0.7403 13.3863 0.8720 0.9334 0.6974 5.4462 0.8184

FUFusion 2024 0.7202 0.6652 47.2751 0.8146 0.9259 0.6967 5.6856 0.8197

EgeFusion 2024 0.3120 0.3356 468.3896 0.4318 0.8892 0.3080 2.6294 0.8084

Proposed 0.7524 0.7745 6.5508 0.8862 0.9380 0.7382 6.5466 0.8245

Figure 6 displays the fused images of Data 2 from the Lytro dataset. The image clarity
obtained by the GD and PMGI algorithms is not high. The MFFGAN, LEGFF, and U2Fusion
methods produce unevenly fused images, in which some regions are clear while others
are dark, such as the neck area being too dim, obscuring detailed information. The fusion
image generated by CBFM is dark and exhibits low brightness and clarity, resulting in
a significant loss of information. The fused image produced by the FUFusion method
is overall blurry, with a severe loss of detailed information. The EgeFusion algorithm
produces an image with significant distortion, although some sharpening is applied to
enhance detailed information; this sharpening also results in varying degrees of block
effects in the image. Compared to other algorithms, our algorithm achieved the best fusion
result, including image brightness, contrast, etc., allowing for a genuine observation of
people and objects in the image.

Table 2 presents the numerical values of various indicators corresponding to different
algorithms depicted in Figure 6. By analyzing the data in Table 2, we can conclude that our
algorithm has achieved the optimal values in all eight indicators, with values as follows:
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QAB/F (0.7445), QCB (0.6870), QCV (5.3153), QE (0.8672), QFMI (0.8732), QG (0.7369), QMI
(7.6750), and QNCIE (0.8339).
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Figure 6. Visual comparison for Data 2 in the Lytro dataset. (a) GD; (b) PMGI; (c) MFFGAN;
(d) LEGFF; (e) U2Fusion; (f) CBFM; (g) FUFusion; (h) EgeFusion; (i) Proposed.

Figure 7 depicts a line chart of the metrics for different data in the Lytro dataset (20 sets
of data were used in this experiment), allowing for an observation of fluctuations in the
indicator data. Additionally, we have computed the average indicators, as shown in both
Figure 7 and Table 3. Considering that a lower value of QCV indicates better performance,
we take its negative value (i.e., −QCV) to illustrate the sub-figure of QCV . The horizontal
axis represents the number of image groups in the dataset, and the vertical axis represents
the metric value. From the Figure 7 and Table 3, we can observe that our method has
achieved the optimal average values for all the indicators, with values as follows: QAB/F
(0.7390), QCB (0.7388), QCV (31.4085), QE (0.8772), QFMI (0.8989), QG (0.7362), QMI (6.9683),
and QNCIE (0.8296).
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Table 2. Quantitative comparative analysis of different methods for Data 2 in the Lytro dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.6823 0.6135 85.4217 0.7559 0.8645 0.6660 4.2116 0.8156

PMGI 2020 0.4798 0.5977 53.3298 0.5816 0.8573 0.4592 6.3071 0.8251

MFFGAN 2021 0.6609 0.6291 28.2393 0.7931 0.8651 0.6440 6.4491 0.8260

LEGFF 2022 0.6770 0.6466 22.7596 0.7920 0.8680 0.6603 5.8173 0.8225

U2Fusion 2022 0.5951 0.4969 168.9820 0.6838 0.8619 0.5786 6.1325 0.8242

CBFM 2023 0.7116 0.6634 31.8620 0.8348 0.8690 0.7019 5.9728 0.8234

FUFusion 2024 0.7226 0.6400 16.7184 0.8511 0.8671 0.7088 7.0218 0.8294

EgeFusion 2024 0.2492 0.3688 490.2211 0.3210 0.8429 0.2419 3.2940 0.8127

Proposed 0.7445 0.6870 5.3153 0.8672 0.8732 0.7369 7.6750 0.8339
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Table 3. Quantitative average comparative analysis of different methods on the Lytro dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.7034 0.6115 123.5691 0.7874 0.8887 0.6987 3.8521 0.8139

PMGI 2020 0.3901 0.5656 98.3494 0.4736 0.8815 0.3857 5.8641 0.8225

MFFGAN 2021 0.6642 0.6457 42.5655 0.8409 0.8915 0.6592 6.0604 0.8237

LEGFF 2022 0.6810 0.6751 53.0073 0.8195 0.8937 0.6754 5.6138 0.8214

U2Fusion 2022 0.6143 0.5682 97.5910 0.7835 0.8844 0.6093 5.7765 0.8221

CBFM 2023 0.7137 0.7018 41.5959 0.8626 0.8956 0.7101 5.7967 0.8223

FUFusion 2024 0.6906 0.6346 128.5882 0.7972 0.8877 0.6862 6.4774 0.8263

EgeFusion 2024 0.3576 0.4034 340.4188 0.5032 0.8472 0.3541 3.2191 0.8120

Proposed 0.7390 0.7388 31.4085 0.8772 0.8989 0.7362 6.9683 0.8296

(2) Results on the MFI-WHU Dataset

Figure 8 depicts the fused images of Data 1 from the MFI-WHU dataset. The images
produced by GD exhibit some slight pseudo-shadow artifacts. The PMGI algorithm gener-
ates blurry fused images; for instance, the details of the roof and mural cannot be accurately
captured. The MFFGAN and U2Fusion algorithms achieve higher brightness fusion results
in certain regions, such as the glass display area. However, there are also areas with lower
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brightness. For instance, MFFGAN exhibits shadows around the base of the display cabinet,
while U2Fusion produces significant shadowing along the edges of the roof and the bench,
hindering the retrieval of complete information. The fused image produced by LEGFF
has a higher clarity. The fused images produced by the CBFM and FUFusion algorithms
have some areas with shadows, such as on the side of a bench. Although the EgeFusion
algorithm enhances the texture information in the image, it also introduces some degree
of distortion. Upon comprehensive comparison, our algorithm outperforms others in the
fusion experiment, enhancing the overall fusion effect by reducing pseudo-shadows and
dark areas, while simultaneously improving the brightness and clarity of the fused image.
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Figure 8. Visual comparison for Data 1 in the MFI-WHU dataset. (a) GD; (b) PMGI; (c) MFFGAN;
(d) LEGFF; (e) U2Fusion; (f) CBFM; (g) FUFusion; (h) EgeFusion; (i) Proposed.

Table 4 presents the numerical values of various indicators corresponding to dif-
ferent algorithms depicted in Figure 8. From Table 4, it is evident that our algorithm
has achieved optimal values for the eight indicators, with respective values of QAB/F
(0.7281), QCB (0.8256), QCV (6.4076), QE (0.8534), QFMI (0.9000), QG (0.7288), QMI (9.0964),
and QNCIE (0.8476).

Figure 9 depicts the fused images of Data 2 from the MFI-WHU dataset. The GD
method produced a fused image with low clarity. The PMGI method generated a low-
quality fused image with varying degrees of shadowing in objects such as the vehicle,
windowsill, sky, and trees. The images produced by the MFFGAN and LEGFF algorithms
cause the windowsill area to become darker. The U2Fusion method generated fused image
with uneven brightness distribution, such as a darker area in the windowsill region and a
brighter area in the vehicle region. The fused images produced by the CBFM and FUFusion
algorithms have relatively low brightness. The EgeFusion algorithm causes distortion
in the fused image. Through comprehensive comparison, our algorithm produces the
optimal fusion result, with balanced brightness and high clarity, which are beneficial for
information retrieval.
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Table 4. Quantitative comparative analysis of different methods for Data 1 in the MFI-WHU dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.6739 0.6571 82.3636 0.7953 0.8906 0.6829 4.1802 0.8180

PMGI 2020 0.3769 0.6528 25.6514 0.4425 0.8883 0.3772 7.0843 0.8320

MFFGAN 2021 0.6371 0.6336 37.0591 0.7936 0.8950 0.6337 6.9928 0.8315

LEGFF 2022 0.6253 0.6348 37.4732 0.7451 0.8959 0.6345 6.2296 0.8271

U2Fusion 2022 0.5571 0.4815 140.7225 0.7173 0.8867 0.5574 6.2829 0.8273

CBFM 2023 0.6846 0.7014 28.2899 0.8218 0.8963 0.6835 6.5658 0.8290

FUFusion 2024 0.7024 0.7546 24.4700 0.8452 0.8970 0.7039 8.0555 0.8390

EgeFusion 2024 0.2691 0.3308 453.2295 0.3956 0.8557 0.2720 3.1227 0.8148

Proposed 0.7281 0.8256 6.4076 0.8534 0.9000 0.7288 9.0964 0.8476
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Figure 9. Visual comparison for Data 2 in the MFI-WHU dataset. (a) GD; (b) PMGI; (c) MFFGAN;
(d) LEGFF; (e) U2Fusion; (f) CBFM; (g) FUFusion; (h) EgeFusion; (i) Proposed.

Table 5 presents the numerical values of various indicators corresponding to different
algorithms depicted in Figure 9. From Table 5, it is evident that our algorithm has achieved
optimal values for seven indicators, with respective values of QAB/F (0.7408), QCB (0.8250),
QE (0.8550), QFMI (0.8795), QG (0.7409), QMI (7.8104), and QNCIE (0.8348). The FUFusion
algorithm achieved the optimal value on the QCV metric, with a value of 30.6077. Our
algorithm ranked second in the QCV metric, with a value of 38.0683.

Figure 10 depicts a line chart of the metrics of different data in the MFI-WHU dataset
(30 sets of data were used in this experiment), allowing for the observation of fluctuations
in the indicator data. Additionally, we have computed the average indicators, as shown in
both Figure 10 and Table 6. We can observe that our algorithm has achieved optimal values
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for seven indicators, with respective values of QAB/F (0.7296), QCB (0.8072), QE (0.8453),
QFMI (0.8772), QG (0.7254), QMI (7.8107), and QNCIE (0.8371). The FUFusion algorithm
achieved the optimal value on the QCV metric, with a value of 23.7140. Our algorithm
ranked second in the QCV metric, with a value of 36.4954.

Table 5. Quantitative comparative analysis of different methods for Data 2 in the MFI-WHU dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.6876 0.5795 137.2797 0.7862 0.8655 0.6842 3.9284 0.8140

PMGI 2020 0.5906 0.4640 97.4159 0.6549 0.8559 0.5880 5.1975 0.8190

MFFGAN 2021 0.6536 0.5945 64.3859 0.7661 0.8695 0.6497 5.3730 0.8198

LEGFF 2022 0.6546 0.5709 58.2280 0.7660 0.8744 0.6462 4.8070 0.8173

U2Fusion 2022 0.6053 0.5280 86.2756 0.7221 0.8578 0.6035 5.1287 0.8187

CBFM 2023 0.7031 0.6458 59.4391 0.8212 0.8757 0.7015 5.3351 0.8196

FUFusion 2024 0.7070 0.7063 30.6077 0.8411 0.8784 0.7061 5.9021 0.8224

EgeFusion 2024 0.3031 0.2703 653.9751 0.3296 0.8315 0.2953 2.8712 0.8110

Proposed 0.7408 0.8250 38.0683 0.8550 0.8795 0.7409 7.8104 0.8348
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ages produced by the GD, PMGI, and FUFusion algorithms are blurry and have lower 
clarity. The fused images produced by the MFFGAN and LEGFF methods cause the center 
of the rose to appear darker, with shadowing present. The U2Fusion causes the piano keys 
and the rose in the fused image to appear darker. The fused images produced by the 
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Figure 10. The line chart illustrates the metrics of various data in the MFI-WHU dataset.

Table 6. Quantitative average comparative analysis of different methods on the MFI-WHU dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.6752 0.6301 105.0418 0.7754 0.8648 0.6686 3.6940 0.8136

PMGI 2020 0.4237 0.5933 62.8111 0.5061 0.8558 0.4177 5.4884 0.8210

MFFGAN 2021 0.6427 0.6329 45.6960 0.7826 0.8684 0.6367 5.6832 0.8222

LEGFF 2022 0.6190 0.6060 71.1462 0.7067 0.8692 0.6106 4.8291 0.8183

U2Fusion 2022 0.5502 0.5156 119.8639 0.6970 0.8565 0.5447 5.1498 0.8194

CBFM 2023 0.6974 0.7064 59.4521 0.8174 0.8707 0.6922 5.6757 0.8224

FUFusion 2024 0.7038 0.7443 23.7140 0.8337 0.8753 0.6992 6.6901 0.8284

EgeFusion 2024 0.2874 0.3277 537.7216 0.3757 0.8255 0.2841 2.8055 0.8111

Proposed 0.7296 0.8072 36.4954 0.8453 0.8772 0.7254 7.8107 0.8371

(3) Results on the MFFW Dataset

Figure 11 depicts the fused images of Data 1 from the MFFW dataset. The fused
images produced by the GD, PMGI, and FUFusion algorithms are blurry and have lower
clarity. The fused images produced by the MFFGAN and LEGFF methods cause the center
of the rose to appear darker, with shadowing present. The U2Fusion causes the piano keys
and the rose in the fused image to appear darker. The fused images produced by the CBFM
and FUFusion algorithms exhibit varying degrees of artifacts. Although the EgeFusion
algorithm enhances the texture information in the fused image, it also introduces a certain
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degree of distortion. By comparison with other algorithms, our method achieves a superior
fusion result, attaining effective information complementarity.

Table 7 presents the numerical values of various indicators corresponding to different
algorithms depicted in Figure 11. From Table 7, it is evident that our algorithm has achieved
optimal values for six indicators, with respective values of QCB (0.6155), QCV (33.3908),
QE (0.8290), QFMI (0.8987), QMI (6.6801), and QNCIE (0.8290). The GD algorithm achieved
optimal values for the QAB/F and QG metrics, with values of 0.7297 and 0.6829, respectively.

Figure 12 depicts a line chart of the metrics of different data in the MFFW dataset
(13 sets of data were used in this experiment), allowing for the observation of fluctuations
in the indicator data. Additionally, we have computed the average indicators, as shown in
both Figure 12 and Table 8. We can observe that our algorithm has achieved optimal values
for five indicators, with respective values of QAB/F (0.6377), QCV (116.0756) QE (0.8048),
QFMI (0.8799), and QG (0.6224). The CBFM algorithm achieved the optimal value for the
QCB metric, with a value of 0.6408. Our algorithm ranked second in the QCB metric, with
a value of 0.6362. The FUFusion algorithm achieved the optimal value on the QMI and
QNCIE metrics, with values of 5.3456 and 0.8196, respectively. Our method ranked second
in these two metrics, with values of 5.0505 and 0.8180, respectively.
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Figure 11. Visual comparison for Data 1 in the MFFW dataset. (a) GD; (b) PMGI; (c) MFFGAN;
(d) LEGFF; (e) U2Fusion; (f) CBFM; (g) FUFusion; (h) EgeFusion; (i) Proposed.

Table 7. Quantitative comparative analysis of different methods for Data 1 in the MFFW dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.7297 0.4875 110.5392 0.6970 0.8882 0.6829 4.7958 0.8195

PMGI 2020 0.4084 0.4709 61.0451 0.3863 0.8842 0.3766 6.5896 0.8282

MFFGAN 2021 0.6626 0.5677 57.0983 0.7777 0.8923 0.6165 6.3993 0.8272

LEGFF 2022 0.7001 0.5947 60.1930 0.7886 0.8968 0.6457 6.1499 0.8258

U2Fusion 2022 0.5914 0.5325 101.9227 0.6879 0.8790 0.5539 6.2297 0.8262

CBFM 2023 0.7037 0.6146 51.8537 0.8237 0.8933 0.6588 6.0571 0.8254

FUFusion 2024 0.6992 0.5522 76.2735 0.7652 0.8897 0.6479 6.6305 0.8285

EgeFusion 2024 0.3877 0.4132 365.6116 0.4142 0.8406 0.3611 4.2145 0.8173

Proposed 0.7013 0.6155 33.3908 0.8290 0.8987 0.6571 6.6801 0.8290
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Figure 12. The line chart illustrates the metrics of various data in the MFFW dataset.

Table 8. Quantitative average comparative analysis of different methods on the MFFW dataset.

Year QAB/F QCB QCV QE QFMI QG QMI QNCIE

GD 2016 0.6279 0.5557 217.9965 0.7011 0.8730 0.6114 3.6107 0.8122

PMGI 2020 0.3807 0.5057 275.9272 0.4245 0.8675 0.3675 5.0472 0.8178

MFFGAN 2021 0.5905 0.5851 138.1153 0.7557 0.8742 0.5744 5.0498 0.8179

LEGFF 2022 0.6294 0.6032 172.4173 0.7386 0.8775 0.6165 4.8088 0.8169

U2Fusion 2022 0.5537 0.5499 228.0064 0.7076 0.8690 0.5388 4.8894 0.8171

CBFM 2023 0.6352 0.6408 126.1058 0.7912 0.8748 0.6203 4.8905 0.8171

FUFusion 2024 0.5987 0.5779 226.8354 0.6974 0.8718 0.5817 5.3456 0.8196

EgeFusion 2024 0.3517 0.4213 443.4456 0.4581 0.8380 0.3439 3.3785 0.8115

Proposed 0.6377 0.6362 116.0756 0.8048 0.8799 0.6224 5.0505 0.8180

6.3. Application Extension

In this section, we extend the proposed algorithm to the application of multi-modal
medical image fusion. We utilized two medical datasets from the Whole Brain Atlas [74].
When processing color medical images (such as magnetic resonance (MR) and positron
emission tomography (PET)), the PET images need to be converted between the RGB and
YUV color spaces. The Y channel of the PET image is fused with the MR image, and then
the fused Y channel is converted back to the RGB space along with the U and V channels of
the PET image to obtain the final color fusion image. The corresponding schematic diagram
is shown in Figure 13. From the experimental results shown in Figure 14, it is evident that
our algorithm performs exceptionally well for medical image fusion, achieving significantly
enhanced information complementarity in the fused images.



Fractal Fract. 2024, 8, 554 22 of 26Fractal Fract. 2024, 8, x FOR PEER REVIEW 22 of 26 
 

 

 
Figure 13. Structure of the proposed method for multi-modal medical images in the YUV color 
space. 

  

  

  
(a) (b) (c) 

Figure 14. The fusion results on medical images. (a) source A; (b) source B; (c) Proposed. 

Figure 13. Structure of the proposed method for multi-modal medical images in the YUV color space.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 22 of 26 
 

 

 
Figure 13. Structure of the proposed method for multi-modal medical images in the YUV color 
space. 

  

  

  
(a) (b) (c) 

Figure 14. The fusion results on medical images. (a) source A; (b) source B; (c) Proposed. Figure 14. The fusion results on medical images. (a) source A; (b) source B; (c) Proposed.



Fractal Fract. 2024, 8, 554 23 of 26

7. Conclusions

This paper presents a novel approach to multi-focus image fusion that integrates
fractal dimension and CNP systems in NSCT domain. Our fusion technique utilizes CNP
systems with a local topology-based fusion model to effectively merge low-frequency
components. Additionally, for high-frequency components, we employ a focus measure
based on spatial frequency and FDFM to achieve superior fusion performance. Extensive
experiments conducted on three classic datasets (Lytro, MFI-WHU, and MFFW), validate
the effectiveness of the proposed method. In security surveillance, fusing images with
different focal points can enhance the detail and clarity of the monitoring footage, im-
proving target recognition capabilities. Furthermore, we have extended and applied this
method to the field of medical image fusion, achieving the complementary integration of
multi-modal medical image information. The number of decomposition levels in NSCT
affects the effectiveness of image fusion. However, too many levels increase algorithm
complexity. Therefore, choosing an optimal number of decomposition levels is our research
focus. In future work, we will attempt to improve this algorithm and expand its application
to the fusion of SAR (synthetic aperture radar) and optical images [48]. Additionally, the
application of image fusion in multimodal finger knuckle print identification and image
change detection are also worthwhile directions to explore [75–79].
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