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Abstract: The sampling theorem for the offset linear canonical transform (OLCT) of bandlimited
functions in polar coordinates is an important signal analysis tool in many fields of signal processing
and optics. This paper investigates two sampling theorems for interpolating bandlimited and
highest frequency bandlimited functions in the OLCT and offset linear canonical Hankel transform
(OLCHT) domains by polar coordinates. Based on the classical Stark’s interpolation formulas,
we derive the sampling theorems for bandlimited functions in the OLCT and OLCHT domains,
respectively. The first interpolation formula is concise and applicable. Due to the consistency of
the OLCHT order, the second interpolation formula is superior to the first interpolation formula in
computational complexity.
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1. Introduction

The offset linear canonical transform (OLCT) is a time-shifted and frequency-modulated
version of the linear canonical transform (LCT) and is a powerful tool in signal processing
and optics [1–3]. OLCT, also known as special affine Fourier transform (FT) [4] or inhomo-
geneous regular transform [5], is a class of linear integral transforms with six parameters
(a, b, c, d, τ, η). Because it adds two parameters of time shift and frequency modulation on
the basis of the LCT [6–8], OLCT has greater degrees of freedom and flexibility in applica-
tions such as sampling and time-frequency analysis [3,9]. Therefore, an in-depth study of
the theoretical problems of the OLCT, such as sampling and filtering [10–13], can further
enrich the linear canonical theory and even the theoretical system of signal processing
based on linear transformation.

The sampling theorem converts analog signals into digital signals [14], which plays a
fundamental role in signal processing. In recent years, the sampling theorem of angular
periodic functions in polar coordinates has had a wide range of application prospects in
the fields of computed tomography (CT) and magnetic resonance imaging (MRI) and has
attracted much attention from scholars [15–18]. According to the existing research results,
a large number of interpolation formulas for angular periodic functions with different
bandwidth constraints have appeared in the literature [19–23] from samples on uniform or
nonuniform polar lattices. The most famous of these is Stark’s work [20], which derived
the uniform sampling theorem for bandlimited functions in the two-dimensional FT and
Hankel transform (HT) domains in polar coordinates. Generalizations on the basis of this
result and [24] provide the azimuthal jitter sampling theorem for bandlimited functions in
the FT and HT domains.

Due to wider applicability, people extend the sampling theorem from the traditional
FT to the LCT. Thus far, the sampling theory of the LCT in polar coordinates has been
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well developed [25–27]. Note that the interpolation formulations can only produce perfect
reconstructions if f (r, θ) is bandlimited in the LCT or LCHT domain. However, in practical
situations, especially in medical diagnosis, most of f (r, θ) are non-bandlimited functions
in the LCT or linear canonical Hankel transform (LCHT) domain. Due to the higher
degree of freedom of the OLCT, the above functions can be bandwidth-limited in the OLCT
and OLCHT domains. Therefore, it is more efficient to explore the generalization of the
sampling theorem in the LCT and LCHT domains in polar coordinates than the OLCT
and OLCHT domains, respectively. The high theoretical value is also a supplement and
improvement to the linear canonical theoretical system.

For the above reasons, the sampling theory of the OLCT in polar coordinates is a
challenging problem, and more rigorous mathematical logic is required to develop this
theory. As the OLCT has been applied in polar coordinates for a relatively short period of
time, the theoretical system based on OLCT is not yet perfect, and its sampling and other
related theories require further investigation. Therefore, the purpose of this paper is to
study two kinds of sampling theorems for interpolating angular periodic functions and
the highest frequency bandlimited functions with different bandwidth constraints at the
radius and azimuth in the OLCT and OLCHT domains by polar coordinates. The main
mathematical idea is to first interpolate the bandwidth-limited radius of the function in the
OLCT or OLCHT domain, and then interpolate within the function’s bandwidth-limited
range to the highest frequency. Due to the consistency of the order of the OLCHT, the
interpolation formula in the OLCHT domain is superior to the interpolation formula in the
OLCT domain in terms of computational complexity.

The paper is organized as follows. Section 2 presents our previous research work on
polar coordinates. Section 3 gives the definitions of bandlimited functions in the OLCT or
OLCHT domain and the related results. Section 4 derives the sampling theorem based on
bandlimited functions for the OLCT in polar coordinates. Section 5 derives the sampling
theorem based on bandlimited functions in the OLCHT domain. Section 6 discusses the
potential application of sampling theorems for the OLCT and OLCHT. Section 7 draws
conclusions.

2. Preliminaries

In a recent work [28], we introduced knowledge related to the OLCT and OLCHT in
polar coordinates. In order to facilitate an in-depth study of the integral transformation of
the OLCT, we provide some mathematical definitions in polar coordinates.

2.1. Offset Linear Canonical Transform in Polar Coordinates

Assumption 1. Suppose function f (r, θ) satisfies the Dirichlet condition, is angularly periodic in
2π, and has a Fourier series expansion

f (r, θ) =
+∞

∑
n=−∞

fn(r)einθ . (1)

Definition 1. The two-dimensional FT of function f (r, θ) in polar coordinates is defined by [20,24,29]

F(ρ, ϕ) = F [ f ](ρ, ϕ) =
1

2π

∫ +∞

0

∫ π

−π
f (r, θ)e−irρ cos(θ−ϕ)rdrdθ. (2)

Definition 2. Let parameters A = (a, b; c, d), τ = (τ1, τ2), and η = (η1, η2) satisfy a, b, c, d,
τ1, τ2, η1, η2 ∈ R and det(A) = 1. The OLCT of parameters A, τ, and η of f (r, θ) in polar
coordinates is defined by [28]

FA,τ,η(ρ, ϕ) = OA,τ,η
L [ f ](ρ, ϕ) =

∫ +∞

0

∫ π

−π
f (r, θ)PA,τ,η(r, θ; ρ, ϕ)rdrdθ, (3)
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where

PA,τ,η = KA,τ,η ei
[

a
2b r2− rρ

b cos(θ−ϕ)+ d
2b ρ2+ r|τ|

b sin(θ+φ1)−
ρ|dτ−bη|

b sin(ϕ+φ2)
]
, (4)

is the kernel function, and

KA,τ,η =
1

2πb
ei d|τ|2

b , (5)

where |τ|2 = τ2
1 + τ2

2 , |η|2 = η2
1 + η2

2 , tan φ1 =
τ1

τ2
, tan φ2 =

dτ1 − bη1

dτ2 − bη2
, τ2 ̸= 0, and

dτ2 − bη2 ̸= 0. If A = (0, 1;−1, 0), τ = 0, and η = 0, the OLCT reduces to the FT in
polar coordinates.

It is easy to know that if b = 0, the OLCT of the signal reduces to a time-scaled
version multiplied by a linear chirp [1]. Without loss of generality, we assume b > 0 in the
following sections.

Remark 1. It follows that there is a relation between the FT and OLCT in polar coordinates

FA,τ,η(ρ, ϕ) =
ℓ1

b
ei
[

d
2b ρ2− ρ|dτ−bη|

b sin(ϕ+φ2)
]
F[ f̃ ]

(ρ

b
, ϕ

)
, (6)

where f̃ (r, θ) = ei
[

a
2b r2+ r|τ|

b sin(θ+φ1)
]

f (r, θ), φ1 and φ2 are given by (4), and

ℓ1 = ei d|τ|2
b . (7)

The inversion formula of the OLCT with parameters A−1, ξ, and γ in polar coordi-
nates takes

f (r, θ) = OA−1,ξ,γ
L [FA,τ,η](r, θ), (8)

where A−1 = (d,−b;−c, a), ξ = bη− dτ, and γ = cτ − aη.

2.2. Offset Linear Canonical Hankel Transform in Polar Coordinates

Definition 3. The vth-order Hankel transform (HT) of f (r) in polar coordinates is defined
by [20,24,29]

Hv[ f ](ρ) =
∫ +∞

0
f (r)Jv(ρr)rdr, (9)

where Jv is the vth-order Bessel function of the first kind, and the corresponding inversion formula is

f (r) = Hv[Hv[ f ] ](r) =
∫ +∞

0
Hv[ f ](ρ)Jv(rρ)ρdρ. (10)

Definition 4. The vth-order OLCHT of f (r) with the parameters matrix A, τ, and η of f (r) in
polar coordinates is defined by [28]

HA,τ,η
v [ f ](ρ) =

ivℓ1eim(φ1−φ2)

b
λ1ei d

2b ρ2
∫ +∞

0
λ2ei a

2b r2
f (r)Jv

( rρ

b

)
rdr, (11)

where Jv is the vth-order Bessel function of the first kind and order v ≥ − 1
2 , φ1 and φ2 are given

by (4), ℓ1 is given by (7), and

λ1 =
+∞

∑
m=−∞

Jm

(
ρ|dτ − bη|

b

)
, λ2 =

+∞

∑
m=−∞

Jm

(
r|τ|

b

)
, (12)
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where |τ|2 = τ2
1 + τ2

2 and |η|2 = η2
1 + η2

2 . If A = (0, 1;−1, 0), τ = 0, and η = 0, the OLCHT
reduces to the HT.

Remark 2. The relationship between the HT and OLCHT is as follows

HA,τ,η
v [ f ](ρ) =

ivλ1ℓ1eim(φ1−φ2)

b
ei d

2b ρ2
Hv[ f̃ ]

(ρ

b

)
, (13)

where φ1 and φ2 are given by (4), ℓ1 is given by (7), λ1 and λ2 are given by (12), and

f̃ (r) = λ2ei a
2b r2

f (r). (14)

The inversion formula of vth-order OLCHT with parameters A, τ, and η in polar
coordinates takes

f (r) = H−A−1,−ξ,−γ
v

[
HA,τ,η

v [ f ]
]
(r)

= iv ℓ2eim(φ2−φ1)

b
λ2e−i a

2b r2
∫ +∞

0
λ1e−i d

2b ρ2
HA,τ,η

v [ f ](ρ)Jv

(ρr
b

)
ρdρ,

(15)

where λ1 and λ2 are given by (12), and ℓ2 = e−i a|bη−dτ|2
b .

3. Bandlimited Functions in the OLCT and OLCHT Domains

Based on the above basic mathematical knowledge, we next study Ω bandlimited
functions f (r, θ) and related conclusions in the OLCT and OLCHT domains.

3.1. Relationship between the OLCT and OLCHT in Polar Coordinates

To facilitate the proof of the sampling theorem below, we give the definitions of ΩFT
bandlimited functions f (r, θ) in the FT domain [20,24] .

Definition 5. Let f (r, θ) satisfy Assumption 1, then it is ΩFT−bandlimited in the FT domain to
the highest frequency ωm = K

2π if its Fourier expansion takes [20,24]

f (r, θ) =
K

∑
n=−K

fn(r)einθ . (16)

Definition 6. Let f (r, θ) satisfy Assumption 1 and b > 0, then it is Ω−bandlimited in the OLCT
domain with the parameters A, τ, and η, if FA,τ,η(ρ, ϕ) = 0 for ρ ≥ Ω, where FA,τ,η(ρ, ϕ) is the
OLCT of f (r, θ) in polar coordinates.

Definition 7. Let f (r) ∈ L2(R) and b > 0. f (r) is Ω−bandlimited isotropic function in
the OLCHT domain with the parameters A, τ, and η, if HA,τ,η

v [ f ](ρ) = 0 for ρ ≥ Ω, where
HA,τ,η

v [ f ](ρ) is the vth-order OLCHT of f (r) in polar coordinates.

Lemma 1. Let f (r, θ) satisfy Assumption 1 and b > 0. Then, the Fourier series expansion of the
OLCT of f (r, θ) has a form

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

HA,τ,η
2n [ fn](ρ)einϕ, (17)

where FA,τ,η(ρ, ϕ) is the OLCT of f (r, θ) in polar coordinates, HA,τ,η
2n [ f ](ρ) is the 2nth-order

OLCHT of f (r).
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Proof. By (3) and (16), we obtain

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

fn(r)einθ
∫ +∞

0

∫ π

−π
PA,τ,η(r, θ; ρ, ϕ)rdrdθ

=
+∞

∑
n=−∞

einθ
∫ +∞

0

∫ π

−π

ℓ1

2πb
ei[ a

2b r2− rρ
b cos(θ−ϕ)+ d

2b ρ2]

× ei
[

r|τ|
b sin(θ+φ1)−

ρ|dτ−bη|
b sin(ϕ+φ2)

]
fn(r)rdrdθ,

(18)

In view of the exponent expansion formula [30] (p. 973), we obtain

ei r|τ|
b sin(θ+φ1) =

+∞

∑
m=−∞

Jm

(
r|τ|

b

)
eim(θ+φ1), (19)

e−i ρ|dτ−bη|
b sin(ϕ+φ2) =

+∞

∑
m=−∞

Jm

(
ρ|dτ − bη|

b

)
e−im(ϕ+φ2). (20)

From (19) and (20), we have

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

einθ
∫ +∞

0

∫ π

−π

ℓ1

2πb
ei[ a

2b r2− rρ
b cos(θ−ϕ)+ d

2b ρ2] fn(r)rdrdθ

× λ1λ2 eim(θ−ϕ)eim(φ1−φ2)

=
+∞

∑
n=−∞

einθ
∫ +∞

0

∫ π

−π

ℓ1

2πb
ei[ a

2b r2− rρ
b sin( π

2 +θ−ϕ)+ d
2b ρ2] fn(r)drdθ

× λ1λ2 eim(θ−ϕ)eim(φ1−φ2),

(21)

where

λ1 =
+∞

∑
m=−∞

Jm

(
ρ|dτ − bη|

b

)
, λ2 =

+∞

∑
m=−∞

Jm

(
r|τ|

b

)
. (22)

It follows from a celebrated formula [27]

Jn(z) =
1

2π

∫ +π

−π
ei(nθ−z sin θ)dθ, eiπ = −1, (23)

that

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

einθ
∫ +∞

0

∫ π

−π

ℓ1

2πb
ei[ a

2b r2− rρ
b sin( π

2 +θ−ϕ)+ d
2b ρ2] fn(r)rdrdθ

× λ1λ2 eim(θ−ϕ)eim(φ1−φ2)

=
+∞

∑
n=−∞

∫ +∞

0

ℓ1

b
ei[ a

2b r2+ d
2b ρ2]λ1λ2 einθ+im(θ−ϕ)eim(φ1−φ2)

×
{

1
2π

∫ π

−π
ei[(m+n)( π

2 +θ−ϕ)− rρ
b sin( π

2 +θ−ϕ)]dθ

}
fn(r)rdr

× e−i[(m+n)( π
2 +θ−ϕ)]

=
+∞

∑
n=−∞

∫ +∞

0

ℓ1

b
ei[ a

2b r2+ d
2b ρ2]λ1λ2 Jm+n(

rρ

b
) fn(r)rdr

× eim(φ1−φ2)−i π
2 (m+n)+inϕ

=
+∞

∑
n=−∞

im+nℓ1eim(φ1−φ2)

b
λ1ei d

2b ρ2
∫ +∞

0
λ2ei a

2b r2
fn(r)Jm+n(

rρ

b
)einϕrdr.

(24)



Fractal Fract. 2024, 8, 559 6 of 15

From (11), we have

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

HA,τ,η
m+n [ fn](ρ)einϕ. (25)

Let m = n, and we obtain

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

HA,τ,η
2n [ fn](ρ)einϕ. (26)

which completes the proof.

Remark 3. Lemma 1 summarizes that the nth coefficient of the Fourier series of the OLCT of f (r, θ)
is the 2nth order OLCHT of the nth coefficient of the Fourier series of f (r, θ). If A = (a, b; c, d) ∈
R2×2, τ = 0, and η = 0, the Lemma 1 degenerates into the relation of the LCT [27].

Remark 4. When n → ∞, (17) in Lemma 1 and Theorem 1 of [28] are essentially the same.

Lemma 2. Let f (r, θ) be Ω−bandlimited in the OLCT domain with parameters A, τ, and η
satisfying Assumption 1 and b > 0. Then all of the coefficients of the Fourier series of the OLCT
FA,τ,η(ρ) are zero outside a circle of radius ρ = Ω, i.e.,

HA,τ,η
n [ fn](ρ) = 0, for ρ ≥ Ω, (27)

where n = 0,±1,±2, · · · .

Proof. From (17) in Lemma 1, and if FA,τ,η(ρ, ϕ) is a periodic function of ϕ, we can use the
Parseval formula [31]

1
2π

∫ π

−π
|FA,τ,η(ρ, ϕ)|2dϕ =

+∞

∑
n=−∞

|HA,τ,η
2n [ fn](ρ)|2. (28)

However, if FA,τ,η(ρ, ϕ) = 0 for ρ ≥ Ω, then the left-hand side of (28) gives

+∞

∑
n=−∞

|HA,τ,η
2n [ fn](ρ)|2 = 0, for ρ ≥ Ω. (29)

Here, (29) implies that
HA

n [ fn](ρ) = 0, for ρ ≥ Ω.

which completes the proof.

3.2. Sampling of Bandlimited Isotropic Functions in the OLCHT Domain

Definition 8. Let f (r, θ) satisfy Assumption 1 and b > 0. Then, it is Ω−bandlimited in the
OLCHT domain, if all of the coefficients of its Fourier series are Ω−bandlimited isotropic in the
OLCHT domain with the parameters A, τ, and η, i.e.,

HA,τ,η
v [ fn](ρ) = 0, for ρ ≥ Ω,

where n = 0,±1,±2, · · · .

Lemma 3. Let f (r) ∈ L2(R) be Ω−bandlimited isotropic in the OLCHT domain with the
parameters A, τ, η, and b > 0, then the function f (r) can be reconstructed at sampling point
αvj ∈ R by
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f (r)=(−1)vς e−i a
2b r2

+∞

∑
m=−∞

∞

∑
j=1

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
Jm

( |τ|αvj

b

)
ei a

2b α2
vj f (αvj)ϑvj(r), (30)

where µ1 = |τ|, µ2 = |dτ − bη|, and

ϑvj(r) =
2b

[
µ2 + αvj

]
Jv

(
Ωr
b

)
ΩJv+1(zvj)

[
α2

vj − r2 + 2µ2
(
αvj − r

)] ,

ϑvj(r) denotes the vjth interpolating function with the sample at αvj, αvj =
bzvj
Ω , zvj ∈ R is the jth

zero of Jv(z), ς = e
i
(

d|τ|2−a|bη−dτ|2
b

)
.

Proof. From (13), because f (r) is Ω−bandlimited isotropic in the OLCHT domain, f̃ (r) is
a Ω

b −bandlimited isotropic function, such that

Hv[ f̃ ](ρ) = 0 for ρ ≥ Ω
b

. (31)

From (31), Hv[ f̃ ](ρ) can be expanded into a Fourier–Bessel series according to [20]

Hv[ f̃ ](ρ) =


∞
∑

j=1
ε j Jv(αvjρ), 0 < ρ < Ω

b

0, ρ ≥ Ω
b

(32)

where

ε j =
2b2

Ω2 J2
v+1(zvj)

∫ Ω
b

0
Hv[ f̃ ](ρ)Jv(αvjρ)ρdρ =

2b2 f̃ (αvj)

Ω2 J2
v+1(

αvjΩ
b )

. (33)

Therefore, from (13) and (32), we have

HA,τ,η
v [ f̃ ](ρ) =


ivλ1ℓ1eim(φ1−φ2)

b ei d
2b ρ2 ∞

∑
j=1

ε j Jv(
αvjρ

b ), 0 < ρ < Ω

0, ρ ≥ Ω
(34)

where ℓ1 is defined as (7), λ1 is given by (12).
According to (15), the inverse vth-order OLCHT of (34) enables us to write

f (r) = (−1)v ℓ1ℓ2

b2 e−i a
2b r2

∫ Ω

0

+∞

∑
m=−∞

Jm

(µ1r
b

)
ρdρ

∞

∑
j=1

ε j J2
m

(µ2ρ

b

)
Jv(

αvjρ

b
)Jv

( rρ

b

)
︸ ︷︷ ︸

ξ

,
(35)

where µ1 = |τ| and µ2 = |dτ − bη|.
From (23), we have

Jm

(µ2ρ

b

)
=

1
2π

∫ 2π

0
ei(mθ− µ2ρ

b sin θ)dθ, (36)

Jv

(
αvjρ

b

)
=

1
2π

∫ 2π

0
ei
(

vθ−
αvjρ

b sin θ
)

dθ. (37)
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Multiplying (36) by (37), we obtain

Jm

(µ2ρ

b

)
Jv

(
αvjρ

b

)
=

1
2π

∫ 2π

0
ei
(

vθ−
αvjρ

b sin θ
)

ei(mθ− µ2ρ
b sin θ)dθ · 1

2π

∫ 2π

0
dθ

=
1

2π

∫ 2π

0
e

i
[
(m+v)θ−

(
µ2ρ+αvjρ

b

)
sin θ

]
dθ

= Jm+v

(
µ2ρ + αvjρ

b

)
.

(38)

Similarly

Jm

(µ2ρ

b

)
Jv

( rρ

b

)
= Jm+v

(
µ2ρ + rρ

b

)
. (39)

Using (38) and (39), so

ξ = Jm+v

(
µ2ρ + αvjρ

b

)
Jm+v

(
µ2ρ + rρ

b

)
. (40)

It then follows from a well-known equation [25,32]∫ Ω

0
Jm+v

(
µ2ρ + αvjρ

b

)
Jm+v

(
µ2ρ + rρ

b

)
ρdρ

=
bΩ

(
µ2 + αvj

)
α2

vj − r2 + 2µ2
(
αvj − r

) Jm+v

(
µ2Ω + rΩ

b

)
Jm+v+1

(
µ2Ω + αvjΩ

b

)
.

(41)

Using the relation (40), we obtain

Jm+v+1

(
µ2Ω + αvjΩ

b

)
Jm+v

(
Ω

µ2Ω + rΩ
b

)
= J2

m

(
µ2Ω

b

)
Jv+1

(
αvjΩ

b

)
Jv

(
rΩ
b

)
. (42)

Applying (14), (35), (41), and (42), thus

f (r) = (−1)vςe−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

) ∞

∑
j=1

Jm

( |τ|αvj

b

)

× ei a
2b α2

vj f (αvj)
2b

[
µ2 + αvj

]
Jv

(
rΩ
b

)
ΩJv+1(

αvjΩ
b )

[
α2

vj − r2 + 2µ2
(
αvj − r

)] ,

(43)

where ς = ℓ1ℓ2 = e
i
(

d|τ|2−a|bη−dτ|2
b

)
.

4. Sampling Theorems in the OLCT Domain

For simplicity, we denote by HOLCT the space of all functions that are Ω−bandlimited
in the OLCT domain and angularly bandlimited to the highest frequency ωp = K

2π , and
by HOLCHT the space of all functions that are Ω−bandlimited in the OLHCT domain and
angularly bandlimited to the highest frequency ωp = K

2π .

Lemma 4. Let f (r, θ) be Ω−bandlimited in the OLCT domain with parameters A, τ, and η
satisfying Assumption 1 and b > 0. Then, the nth Fourier coefficients fn(r) can be reconstructed at
sampling point αnj ∈ R by
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fn(r) = (−1)nς e−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
×

∞

∑
j=1

Jm

( |τ|αnj

b

)
ei a

2b α2
nj fn(αnj)ϑnj(r),

(44)

where αnj =
bznj
Ω , znj ∈ R is the jth zero of Jn(z), and

ϑnj(r) =
2b

[
µ2 + αnj

]
Jn

(
Ωr
b

)
ΩJn+1(znj)

[
α2

nj − r2 + 2µ2
(
αnj − r

)] ,

here, ς, µ1, and µ2 are the same as those stated.

Proof. Let v = n in Lemma 3, and we obtain

f (r) = (−1)nς e−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
×

∞

∑
j=1

Jm

( |τ|αnj

b

)
ei a

2b α2
nj f (αnj)ϑnj(r),

(45)

Following from Lemma 2, we can directly obtain

fn(r) = (−1)nς e−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
×

∞

∑
j=1

Jm

( |τ|αnj

b

)
ei a

2b α2
nj fn(αnj)ϑnj(r).

(46)

which completes the proof.

The sampling theorem for the FT in polar coordinates is mentioned in [19,20,24]. Let
us review the classical Stark’s interpolation formula [19,20].

Lemma 5. Let f (r, θ) be ΩFT−bandlimited in the FT domain to the highest frequency ωp = K
2π ,

satisfying Assumption 1, and b > 0. Then, it can be uniform reconstruction at azimuthal sampling
point

(
r, 2πl

2K+1

)
∈ R2, l = 0, 1, · · · , 2K ∈ N by [19,20]

f (r, θ) =
2K

∑
l=0

f
(

r,
2πl

2K + 1

)
ol(θ), (47)

where

ol(θ) = o
(

θ − 2πl
2K + 1

)
=

sin
[

2K+1
2

(
θ − 2πl

2K+1

)]
(2K + 1) sin

[
1
2

(
θ − 2πl

2K+1

)] , (48)

denotes the lth interpolating function in azimuth with the sample at 2πl
2K+1 .

Given that the OLCT is a generalized version of the LCT in polar coordinates, it is of
great significance and value to study the sampling theorem in the field of the OLCT. The
following theorem is obtained by combining Lemmas 4 and 5.
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Theorem 1. Let f (r, θ) ∈ HOLCT satisfy Assumption 1 and b > 0. Then, it can be reconstructed
at the normalized zeros αnj ∈ R and at the uniformly spaced points 2πl

2K+1 ∈ R by

f (r, θ) =
(−1)nς

2K + 1
e−i a

2b r2
+∞

∑
m=−∞

K

∑
n=−K

∞

∑
j=1

2K

∑
l=0

ei a
2b α2

nj f
(

αnj,
2πl

2K + 1

)

× Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
Jm

( |τ|αnj

b

)
ϑnj(r)e

in(θ− 2πl
2K+1 ).

(49)

where ς, µ1, µ2, αnj, and ϑnj(r) are the same as those stated.

Proof. By (16), we obtain

fn(r) =
1

2π

∫ π

−π
f (r, θ)e−inθdθ, (50)

and

fn(αnj) =
1

2π

∫ π

−π
f
(
αnj, θ

)
e−inθdθ. (51)

From (47), it follows that

fn(αnj) =
1

2π

2K

∑
l=0

f
(

αnj,
2πl

2K + 1

) ∫ π

−π
ol(θ)e−inθdθ, −K ≤ n ≤ K. (52)

Following from [19,20], we obtain∫ π

−π
ol(θ)e−inθdθ =

2π

2K + 1
e−in 2πl

2K+1 , −K ≤ n ≤ K. (53)

It follows from (52) that

fn(αnj) =
1

2K + 1

2K

∑
l=0

f
(

αnj,
2πl

2K + 1

)
e−in 2πl

2K+1 , −K ≤ n ≤ K. (54)

By substituting this result into (44), we obtain

fn(r) =
(−1)nς

2K + 1
e−i a

2b r2
+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

) ∞

∑
j=1

Jm

( |τ|αnj

b

)

× ei a
2b α2

nj ϑnj(r)
2K

∑
l=0

f
(

αnj,
2πl

2K + 1

)
e−in 2πl

2K+1 ,

(55)

for all −K ≤ n ≤ K.

Hence,

f (r, θ) =
K

∑
n=−K

fn(r)einθ (−1)nς

2K + 1
e−i a

2b r2
+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)

×
K

∑
n=−K

∞

∑
j=1

Jm

( |τ|αnj

b

)
ei a

2b α2
nj ϑnj(r)

2K

∑
l=0

f
(

αnj,
2πl

2K + 1

)
ein(θ− 2πl

2K+1 ).

(56)

which completes the proof.

Remark 5. The sampling points αnj are usually referred to as the scaled jth zero of Jv(z), where

αvj =
bzvj
Ω , zvj is the jth zero of Jv(z). According to (49) in Theorem 1, it is clear that the required

number of samples is
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[(2K + 1)N]2,

where the number of normalized zeros takes (2K + 1)N(N → ∞).

Remark 6. When A = (0, 1;−1, 0), τ = 0, and η = 0, Theorem 1 reduces the classical interpola-
tion formula of the FT in polar coordinates [20]. When A = (a, b; c, d) ∈ R2×2, τ = 0, and η = 0,
Theorem 1 reduces the sampling theorem of the LCT in polar coordinates [27]. As evidenced in [33],
not all f (r, θ) are bandlimited in practical applications. Consequently, our research results can be
used to deal with non-bandlimited functions in the FT or LCT domains.

Corollary 1. Let f (r, θ) ∈ HOLCT satisfy Assumption 1 and b > 0. Then, the OLCT FA,τ,η(ρ, ϕ)
of f (r, θ) can be reconstructed at the normalized zeros αnj ∈ R and at the uniformly spaced points

2πl
2K+1 ∈ R by

FA,τ,η(ρ, ϕ) =
(−1)nς

2K + 1
ei d

2b ρ2
+∞

∑
m=−∞

K

∑
n=−K

∞

∑
j=1

2K

∑
l=0

e−i d
2b α2

nj Jm

(µ2ρ

b

)
J2
m

(
µ1Ω

b

)

× Jm

( |τ|αnj

b

)
FA,τ,η

(
αnj,

2πl
2K + 1

)
ϑnj(ρ)e

in(ϕ− 2πl
2K+1 ),

(57)

where ς, µ1, µ2, αnj, and ϑnj(ρ) are the same as those stated.

Proof. Because of the inversion formula of the OLCT, we obtain

OA−1,ξ,γ
L [FA,τ,η](r, θ) = 0 for ρ ≥ Ω,

which implies that FA,τ,η ∈ HOLCT with A−1, ξ, and γ.

Following from Remark 4, we can directly obtain

FA,τ,η(ρ, ϕ) =
+∞

∑
n=−∞

HA,τ,η
n [ fn](ρ)einϕ. (58)

According to (58), it implies that FA,τ,η satisfies Assumption 1, and

FA,τ,η(ρ, ϕ) =
K

∑
n=−K

HA,τ,η
−n [ f−n](ρ)einϕ. (59)

By using Theorem 1, we obtain

FA,τ,η(ρ, ϕ) =
(−1)nς

2K + 1
ei d

2b ρ2
+∞

∑
m=−∞

K

∑
n=−K

∞

∑
j=1

2K

∑
l=0

e−i d
2b α2

nj Jm

(µ2ρ

b

)
J2
m

(
µ1Ω

b

)

× Jm

( |τ|αnj

b

)
FA,τ,η

(
αnj,

2πl
2K + 1

)
ϑnj(ρ)e

in(ϕ− 2πl
2K+1 ).

(60)

which completes the proof.

Remark 7. When A = (0, 1;−1, 0), τ = 0, and η = 0, Corollary 1 becomes the interpolation
formula of the LCT [27] (Corollary 2).

5. Sampling Theorem in the OLCHT Domain

Inspired by the classical interpolation formula [19,20], this section mainly studies
the sampling theorem for f (r, θ) ∈ HOLCHT from samples at the normalized zeros αnj

in radius and at the uniformly spaced points 2πl
2K+1 in azimuth in the OLCHT domain in

polar coordinates.
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Lemma 6. Let f (r, θ) be Ω−bandlimited in the OLCHT domain with parameters A, τ, and η
satisfying Assumption 1 and b > 0. Then, the nth Fourier coefficients fn(r) can be reconstructed at
sampling point αvj ∈ R by

fn(r) = (−1)vς e−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
×

∞

∑
j=1

Jm

( |τ|αvj

b

)
ei a

2b α2
vj fn(αvj)ϑvj(r),

(61)

where ς, µ1, µ2, αvj, and ϑnj(r) are the same as those stated.

Proof. Replacing f (r) in Lemma 3 with fn(r), we can directly obtain

fn(r) = (−1)vς e−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
×

∞

∑
j=1

Jm

( |τ|αvj

b

)
ei a

2b α2
vj fn(αvj)ϑvj(r).

(62)

which completes the proof.

According to Lemmas 5 and 6, an interpolation formula is obtained in the OLCHT
domain. This interpolation formula is essentially different from Theorem 1 due to the
consistency of the OLCHT order, where the sampling points are normalized zeros of the
Bessel function on radius. Theorem 2 better reduces the number of normalized zeros.

Theorem 2. Let f (r, θ) ∈ HOLCHT satisfy Assumption 1 and b > 0. Then, it can be reconstructed
at the normalized zeros αvj ∈ R and at the uniformly spaced points 2πl

2K+1 ∈ R by

f (r, θ) = (−1)vςe−i a
2b r2

∞

∑
j=1

2K

∑
l=0

+∞

∑
m=−∞

ei a
2b α2

vj Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)

× Jm

( |τ|αvj

b

)
ϑvj(r) f

(
αvj,

2πl
2K + 1

)
ol(θ),

(63)

where ς, µ1, µ2, αvj, ϑvj(r), and ol(θ) are the same as those stated.

Proof. Replacing αnj in (54) with αvj, we have

fn(αvj) =
1

2K + 1

2K

∑
l=0

f
(

αvj,
2πl

2K + 1

)
e−in 2πl

2K+1 , −K ≤ n ≤ K. (64)

Using (61), we obtain

fn(r) =
(−1)vς

2K + 1
e−i a

2b r2
+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

) ∞

∑
j=1

Jm

( |τ|αvj

b

)

× ei a
2b α2

vj ϑvj(r)
2K

∑
l=0

f
(

αvj,
2πl

2K + 1

)
e−in 2πl

2K+1 ,

(65)

for all −K ≤ n ≤ K.
By the following triangle sum formula [20,25]

(2K + 1)ol(θ) =
K

∑
n=−K

ein(θ− 2πl
2K+1 ). (66)

Applying (16) and (66), we obtain
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f (r, θ) =
K

∑
n=−K

fn(r)einθ

= (−1)vςe−i a
2b r2

+∞

∑
m=−∞

Jm

(µ1r
b

)
J2
m

(
µ2Ω

b

)
ei a

2b α2
vj

×
∞

∑
j=1

2K

∑
l=0

Jm

( |τ|αvj

b

)
ϑvj(r) f

(
αvj,

2πl
2K + 1

)
ol(θ).

(67)

which completes the proof.

Remark 8. The sampling points αnj are usually referred to as the scaled jth zero of Jv(z), where

αvj =
bzvj
Ω , zvj is the jth zero of Jv(z). According to (63) in Theorem 2, it is clear that the required

number of samples is
(2K + 1)N2,

where the number of normalized zeros takes N(N → ∞).

Remark 9. When A = (0, 1;−1, 0), τ = 0, and η = 0, Theorem 2 reduces the classical recon-
struction formula of the HT [20]. When A = (a, b; c, d) ∈ R2×2, τ = 0, and η = 0, Theorem 2
reduces the sampling theorem of the LCT [27].

Remark 10. It is emphasized here that the interpolation Formula (63) is essentially different
from (49) in Theorem 1 because the transform domain in which the reconstructed object is located is
different. By comparing (49) and (63), it is obvious that the second interpolation formula is better
than in the first interpolation formula in terms of computational complexity.

Corollary 2. Let f (r, θ) ∈ HOLHCT satisfy Assumption 1 and b > 0. Then, the OLCT
FA,τ,η(ρ, ϕ) of f (r, θ) can be reconstructed at the normalized zeros αnj ∈ R and at the uniformly
spaced points 2πl

2K+1 ∈ R by

FA,τ,η(ρ, ϕ) = (−1)vςei d
2b ρ2

∞

∑
j=1

2K

∑
l=0

+∞

∑
m=−∞

e−i a
2b α2

vj Jm

(µ2ρ

b

)
J2
m

(
µ1Ω

b

)

× Jm

( |τ|αvj

b

)
ϑvj(ρ)FA,τ,η

(
αvj,

2πl
2K + 1

)
ol(ϕ),

(68)

where ς, µ1, µ2, αvj, ϑvj(ρ), and ol(ϕ) are the same as those stated.

Proof. According to (58), it implies that FA,τ,η satisfies Assumption 1, and

FA,τ,η(ρ, ϕ) =
K

∑
n=−K

HA,τ,η
−n [ f−n](ρ)einϕ. (69)

By using Theorem 2, we have

FA,τ,η(ρ, ϕ) = (−1)vςei d
2b ρ2

∞

∑
j=1

2K

∑
l=0

+∞

∑
m=−∞

e−i a
2b α2

vj Jm

(µ2ρ

b

)
J2
m

(
µ1Ω

b

)

× Jm

( |τ|αvj

b

)
ϑvj(ρ)FA,τ,η

(
αvj,

2πl
2K + 1

)
ol(ϕ).

(70)

which completes the proof.

Remark 11. When A = (a, b; c, d) ∈ R2×2, τ = 0, and η = 0, Theorem 2 becomes the classical
result [27] (Corollary 3).
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Remark 12. The difference between Theorem 2 and Corollary 2 is the reconstructed function.
Theorem 2 is the original function, while Corollary 2 is the OLCT version in polar coordinates,
which leads to the conclusions being applicable to different fields of application.

6. Potential Application

Two-dimensional sampling is a general technique applicable to various fields such
as medical imaging, astronomy, radar, and crystallography. There exist numerous diverse
sampling methods in these domains, among which polar coordinate sampling proves to
be an effective approach. In this paper, we propose two new sampling theorems for the
OLCT and OLCHT in polar coordinates. They can serve as a theoretical foundation for
applications in the fields of CT and image reconstruction.

On the one hand, the results in Theorems 1 and 2 show that it is feasible to reconstruct
a bandlimited (or space-limited) image from uniformly spaced samples. The interpola-
tion function is a Bessel function, and the sample points are proportional to the zeros
of the Bessel function. Bessel function subroutines are available in most scientific pro-
gram libraries. Even if these are not readily accessible, expressions based on polynomial
approximations can be employed.

On the other hand, CT image reconstruction based on the OLCT in polar coordinates
also has an application basis. Reference [28] presents a numerical experiment on the utiliza-
tion of the OLCT in CT image reconstruction, which requires the use of two-dimensional
interpolation. This paper primarily focuses on the theoretical proof of sampling theorems
for the OLCT and OLCHT, and practical applications will be presented in another article.

7. Conclusions

This paper studies the sampling theorems of bandlimited functions in the OLCT and
OLCHT domains in polar coordinates, that is, interpolating uniform samples in radius and
interpolating the highest frequency range samples in azimuth, where the sampling points
are normalized zeros of the Bessel function on radius. The first interpolation formula is a
generalization of the FT and LCT domains, which is more general. The second interpolation
formula is superior to the first interpolation formula in terms of computational complexity
due to the consistency of the OLCHT order.
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