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Abstract: It is of practical significance to realize a stable and controllable financial system by using
chaotic synchronization theory. In this paper, the dynamics and synchronization are studied for a
class of fractional-order chaotic financial systems. First, the stability and dynamics of the fractional-
order chaotic financial system are analyzed by using the phase trajectory diagram, time series
diagram, bifurcation diagram, and Lyapunov exponential diagram. Meanwhile, we obtain the range
of each parameter that puts the system in a periodic state, and we also reveal the relationship of the
derivative order and the chaotic behaviors. Then, the adaptive control strategy is designed to achieve
synchronization of the chaotic financial system. Finally, the theoretical results and control method are
verified by numerical simulations.

Keywords: dynamics analysis; chaotic financial systems; fractional order; synchronization

1. Introduction

Over the years, financial markets have experienced increasing complexity and un-
certainty, a phenomenon widely recognized as being caused by the nonlinear interaction
effects of the financial system. There are multiple subsystems in financial markets, such as
production, money, securities, and labor markets, each interacting with each other, resulting
in market behavior that exhibits highly complex dynamic characteristics. This nonlinear
cross-coupling effect often manifests itself as a chaotic phenomenon, which poses a great
theoretical challenge in macroeconomics and financial systems. Since the phenomenon of
chaos was first discovered, it has had a profound impact on mainstream economic theory,
prompting researchers to explore this complex dynamic behavior through mathematical
modeling [1–7]. For instance, the authors in [1] proposed a method of modeling the inter-
action between factors in a financial system by using a set of differential equations. Then,
the authors in [2–4] studied the external or internal shocks based on the system as well
as the contagion effect of the system, and authors in [5–7] discussed the chaotic dynamic
behaviors as well as the synchronization problem of a class of chaotic financial systems.
Building upon these foundational studies, the exploration of chaotic dynamics in financial
systems has revealed that chaotic behavior, while often viewed as a source of instability,
also provides a window into understanding the inherent complexity of market behavior.

It is worth noting that the above studies are limited to financial systems of the integer
order. However, complex interactions in financial markets are often accompanied by
nonlinear properties and memory effects, which make the behavior of the market difficult
to be fully described by traditional integer-order models. Fractional-order calculus has
received increasing attention in modeling financial systems in recent years. Fractional
orders have more obvious advantages than integer orders in terms of genetic representation
and memorability, which not only can more accurately simulate the complex dynamic
behavior of financial markets but also provides a more flexible and powerful tool for the
regulation of chaotic behavior [8,9]. Therefore, using fractional-order calculus instead
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of integer-order calculus for modeling chaotic financial systems is a good approach [10].
Recently, lots of developments have emerged for fractional-order financial systems. In [11],
the investment incentives was introduced in an integer-order chaotic financial system to
achieve a four-dimensional fractional-order chaotic financial system. Further, in [12–15], the
authors addressed the nonlinear dynamics and the chaotic behaviors for fractional-order
financial systems.

Unfortunately, chaotic behavior in financial systems not only leads to high market
uncertainty but also increases the risk of financial crisis outbreak [16]. The synchroniza-
tion phenomenon, especially in fractional-order chaotic systems, can help reduce the
instability of financial systems and thus improve the controllability and soundness of the
market [17–19]. An important application of fractional-order synchronization control in
economic and financial systems is to ensure that multiple interconnected financial markets
or institutions operate in a coordinated manner under similar dynamic behaviors, which
plays an important role in preventing systemic risk and financial crises [20]. Recently,
the problem of synchronization has made significant progress in [21,22]. In particular,
fractional-order financial systems have gradually become an important tool for studying
financial chaotic behavior and synchronization problems due to their ability to better
capture the long-term dependence and memory effects in financial systems [23–26]. The
authors in [27,28] discussed the adaptive synchronization problem of fractional-order fi-
nancial systems with uncertainty. The results also have been extended to the fixed-time
synchronization by using the finite-time stability theory and nonlinear control method
in [29].

However, the study of the dynamics of fractional-order financial systems still faces
two major challenges: first, how to reveal the relationship between derivative order and
chaotic behavior, and second, how to achieve synchronization control in systems with
unknown parameters. These issues not only affect the depth of theoretical research but also
directly relate to how to apply these control methods in real financial markets to cope with
complex market dynamics. Therefore, further exploration of these issues has important
research and application value.

Based on the above discussions, this paper focuses on the development of dynamics
analysis and adaptive synchronization of fractional-order chaotic financial systems. The
main contributions lie in the following two aspects.

(1) The dynamics analysis of a fractional-order financial system is studied, including the
stability, bifurcation, and chaotic behavior of the system. This paper delves into the
relationship between the variation in derivative order, system parameters and chaotic
behavior, revealing how fractional-order systems can more accurately simulate the
complex dynamic features in financial markets.

(2) The synchronization problem of fractional-order financial systems with unknown
parameters is investigated using an adaptive control method. The designed method is
not only applicable to the fractional-order financial system studied in this paper, but
also can be extended to the synchronization study of other fractional-order systems
with unknown parameters, which broadens the application scope of the method.

The rest of this paper is arranged as follows. Section 2 shows the chaotic financial
model. Section 3 describes the dynamical analysis of chaotic financial system and its
simulation verification. Then, we design an adaptive synchronization control strategy to
achieve the synchronization of chaotic financial systems in Section 4. We confirm the works
in Section 5 through numerical simulations. We conclude the entire paper in Section 6.

2. Model and Preliminaries

According to [30], a financial model consisting of a production sub-block, a monetary
sub-block, a securities sub-block and a labor sub-block is given as follows:
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ẋ = z + (y − a)x
ẏ = 1 − by − x2

ż = −x − cz
(1)

where x, y, and z are the interest rate, the investment demand, and the price indicator,
respectively. The parameters of a > 0, b > 0 and c > 0 are the amount of savings, the unit
cost of investment, and the elasticity of demand for the commodity, respectively.

In traditional integer-order systems like (1), the time evolution of these variables is
described by ordinary differential equations. However, real-world financial systems often
exhibit complex behaviors such as memory effects and long-term dependencies, which can-
not be fully captured by integer-order models. To address this limitation, fractional-order
calculus provides a more flexible framework by introducing noninteger-order derivatives,
which better represent the hereditary and memory properties of financial systems. Fol-
lowing the work of [31], the above integer-order financial system can be extended to a
fractional-order system as follows:

Dαx1 = z1 + (y − a)x1

Dαy1 = 1 − by1 − x2
1

Dαz1 = −x1 − cz1

(2)

where Dα represents the fractional derivative of order with 0 < α < 1, which depends on
both theoretical considerations and empirical data. x1, y1, and z1 are the interest rate, the
investment demand, and the price indicator, respectively.

To investigate the stability of the financial system, it is important to understand the
definition and lemmas related to Caputo fractional-order derivatives.

Definition 1. The Caputo derivative of the fractional-order α of the function (t) is defined as

c
t0

Dα
t χ(t) =

1
Γ(m − α)

∫ t

t0

χ(m)(τ)

(t − τ)α−m+1 dτ (3)

where χ ∈ Cn([t0, ∞), R) and m − 1 < α ≤ m. In particular, when 0 < α < 1, we obtain

c
t0

Dα
t χ(t) =

1
Γ(1 − α)

∫ t

t0

x′(τ)
(t − τ)α

dτ. (4)

Lemma 1 ([8]). Suppose a fractional-order system

Dαχ(t) = W(χ, t) (5)

where W(χ, t) fulfills the Lipschitz condition with a Lipschitz constant ϱ > 0 and system order
0 < α < 1. If there exists a Lyapunov function V(x) and a K-class function αi(i = 1, 2, 3) that
satisfy α1(χ) ⩽ V(χ) ⩽ α2(χ), DβV(χ) ⩽ −α3(χ) for β ∈ (0, 1), then the fractional-order
nonlinear system is asymptotically stable.

Lemma 2 ([9]). If w(t) ∈ R is a continuously derivable function, then 1
2 Dαw2(t) ⩽ w(t)Dαw(t) for

t ≥ t0 with 0 < α < 1.

Lemma 3 ([32]). If ν is a constant and order β > 0, the Caputo fractional-order derivative satisfies
Dβν = 0.

Lemma 4 ([32]). The Caputo fractional-order derivative satisfies the following linear characteristic
Dα[ν1W1(t) + ν2W2(t)] = a1DαW1(t) + a2DαW2(t), as functions W1(t) and W2(t), and ν1 and
ν2 are constants.
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3. Dynamical Behavior Analysis

Fractional-order financial systems have rich dynamical behaviors, deserving fur-
ther investigation. The fractional-order system can be considered a generalization of the
integer-order system. In the case that one financial system has chaotic attractors, then
the financial market will be out of control. Thus, the instability and complicacy make
the market uncertain, and the probability of financial risk increases. The operation and
development of the financial market can be macro-regulated by adjusting the system order
of the fractional-order chaotic financial system. In this way, the order of the system can
realize the accurate portrayal of the operation of the financial market. At the same time, the
adjustment of system parameters can realize the avoidance and elimination of financial
system chaos. Thus, the goal of avoiding financial risks and even financial crises can
be realized.

This subsection analyzes the dynamics of chaotic financial systems. The stability
analysis of the system equilibrium point is carried out by using fractional-order stability
theory, in order to determine whether the chaotic financial system has chaotic characteristics.
The Lyapunov exponential method, phase diagram, bifurcation diagram method, and other
methods are used to qualitatively and quantitatively analyze the dynamics of the system
by choosing different parameters a, b, and c and different orders α.

When c − b − abc > 0, it is easy to obtain that system (2) has three equilibrium points:

p1 =
(

0, 1
b , 0
)

,

p2 =

(√
c − b − abc

c
,

1 + ac
c

,−1
c

√
c − b − abc

c

)
,

p3 =

(
−
√

c−b−abc
c , 1+ac

c , 1
c

√
c−b−abc

c

)
.

Let a = 1, b = 0.2, c = 1, then the equilibrium points are p1(0, 5, 0), p2

(√
3
5 , 2,−

√
3
5

)
and p3

(
−
√

3
5 , 2,

√
3
5

)
, respectively. Additionally, take the value α = 0.98.

The Jacobian matrix corresponding to system (2) at the equilibrium point
p∗ = (υ∗, ϕ∗, φ∗) is

∆ =

[ ϕ∗ − a υ∗ 1
−2υ∗ −b 0
−1 0 −c

]
. (6)

The characteristic polynomial of the matrix ∆ is

|λE − ∆| = λ3 + A1λ2 + A2λ + A3 = 0 (7)

where A1 = a + b + c − ϕ∗, A2 = ab + bc + ac − (b + c)ϕ∗ + 2(υ∗)2 + 1, A3 = abc −
bcϕ∗ + 2c(υ∗)2 + b. Bringing a = 1, b = 0.2, c = 1 into (6) yields the characteristic root
corresponding to p1(0, 5, 0) as λ1 = 3.79, λ2 = −0.79, λ3 = −0.2, respectively. Therefore, p1
is an unstable equilibrium. Bringing a = 1, b = 0.2, c = 1 into (6) yields the characteristic
root corresponding to p2 and p3 as λ1 = −0.746, λ2 = 0.27 + 1.24i, λ3 = 0.27 − 1.24i,
respectively. Therefore, p2 and p3 are unstable equilibriums.

Figure 1 illustrates the state trajectories of the system with initial value (x0, y0, z0) =
(0.01, 5.01, 0.01). It can be seen from the figure that the equilibrium point of the system
is unstable.
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Figure 1. The state trajectories of system (2) with initial value (x0, y0, z0) = (0.01, 5.01, 0.01).

Next, we analyze the dynamics of the system qualitatively and quantitatively by
selecting the maximum Lyapunov exponential method and the bifurcation diagram method
by choosing different parameters a, b, c and different orders α.

3.1. Analysis of Dynamical Behavior with Fixed Order and Varying System Parameters

To analyze the influence of system parameters on the dynamics of system (2), a, b, and
c are varied as control parameters. Specifically, b = 0.2 and c = 1 are fixed when varying a;
a = 1 and c = 1 are fixed when varying b; and a = 1 and b = 0.2 are fixed when varying c.
The initial conditions are set as (x0, y0, z0) = (0.1, 0.1, 0.1).

3.1.1. Dynamical Analysis with a as the Control Parameter

In Figure 2, the bifurcation diagram and maximum Lyapunov exponent plot illustrate
the system’s rich dynamical behavior, as a varies within the interval [0, 5]. When a ∈ (4, 5],
the system exhibits a period-one state, with a period-doubling bifurcation occurring at
a = 4. For a ∈ (3, 4], the system transitions to an unstable cyclic state, while for a ∈ (0, 3],
the system remains in a fully chaotic state. The maximum Lyapunov exponent, shown
in Figure 2b, exceeds zero when a < 3, indicating chaotic behavior. It fluctuates around
zero for a ∈ (3, 4], and becomes negative for a ∈ (4, 5], indicating periodic behavior. The
bifurcation diagram is consistent with the behavior indicated by the maximum Lyapunov
exponent. The phenomenon of the fractional dimension is closely linked to chaos, forming
a crucial part of fractal theory. According to the Kaplan–Yorke dimension, a fractional
dimension indicates chaotic dynamics, whereas an integer dimension, less than the state
space dimension, corresponds to an ordered state.
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Figure 2. The bifurcation and maximum Lyapunov exponent diagrams of the system with a as the
control variable. (a) The bifurcation diagram. (b) Maximum Lyapunov exponent diagram.

Equation (8) is the Kaplan–Yorke dimensionality formula

DL = j + 1
|λj+1| ∑

j
i=1 λj (8)

where j is the smallest integer value that makes the sum of Lyapunov exponents in each
direction greater than or equal to zero, and λ is the value of the Lyapunov exponent.

The Lyapunov exponents in the three directions of the system are 0.7521, −0.2, and
−1, when the initial value is (x0, y0, z0) = (0.1, 0.1, 0.1) , with a = 1, b = 0.2 and c = 1.
According to Equation (7), the corresponding Kaplan–Yorke dimension can be calculated
by Lyapunov exponentiation to be 2.5521. Therefore, the conclusion of the Kaplan–Yorke
dimension is the same as that of the maximum Lyapunov exponentiation method, which
proves that the system sates are chaotic at this time.

Multi-dimensional systems are too computationally intensive if the Lyapunov expo-
nent is calculated for each direction. So the maximum Lyapunov exponent is commonly
applied to determine the chaotic state of the system. The Kaplan–Yorke dimension depends
on the Lyapunov exponent, and the conclusion of the Kaplan–Yorke dimension method
is the same as that of the maximum Lyapunov exponent method. Therefore, only the
maximum Lyapunov exponent method is used to analyze the dynamics of the system in
the following sections.

3.1.2. Dynamical Analysis with b as the Control Parameter

In Figure 3, the bifurcation diagram and maximum Lyapunov exponent plot illustrate
the system’s dynamical behavior with b as the control variable, while a = c = 1. As b varies
in the interval [0, 1], the system demonstrates rich dynamical behaviors, transitioning from a
periodic state to a chaotic state through an inverse multiplicative bifurcation. Specifically, for
b ∈ (0.505, 1), the system remains in a periodic state, with a bifurcation occurring at b = 0.505.
When b decreases below 0.505, the system enters a fully chaotic state. The maximum Lyapunov
exponent, as shown in the plot, is negative when b > 0.505, indicating the system is in a
periodic state. As b decreases below 0.505, the maximum Lyapunov exponent becomes
positive, signifying chaotic behavior. The results from the maximum Lyapunov exponent plot
align with the bifurcation diagram.
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Figure 3. The bifurcation and maximum Lyapunov exponent diagrams of the system with b as the
control variable. (a) The bifurcation diagram. (b) Maximum Lyapunov exponent diagram.

3.1.3. Dynamical Analysis with c as the Control Parameter

In Figure 4, the bifurcation diagram and maximum Lyapunov exponent plot depict
the system’s behavior with c as the control variable. The system exhibits a cyclic state when
c > 2.094, with a bifurcation occurring at c = 2.094. For c ∈ (1.6, 2.094), the system enters
a chaotic state, with another bifurcation occurring at c = 1.6. When c ∈ (1.35, 1.6), the
system transitions to a doubled-cycle state, and a bifurcation occurs at c = 1.35. Between
c ∈ (0.6, 1.35), the system remains chaotic, while for c < 0.6, the system returns to a
cyclic state. The maximum Lyapunov exponent plot confirms the results shown in the
bifurcation diagram.

0 0.5 1 1.5 2 2.5 3
c
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-0.5
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0.5

1

1.5

2

2.5
Bifurcation diagram

(a)
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-0.05
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0.05
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0.15

0.2

0.25
Maximum Lyapunov exponential chart

(b)

Figure 4. The bifurcation and maximum Lyapunov exponent diagrams of the system with c as the
control variable. (a) The bifurcation diagram. (b) Maximum Lyapunov exponent diagram.

The parameters of the financial system critically influence the evolution of its dynamics.
When the system is in a cyclical state, variables such as real interest rates and investment
demand exhibit periodic behavior within a certain range, contributing to the system stability.
However, as the total savings and unit investment costs change, the system may become
chaotic, which could be detrimental to real-world financial systems. Therefore, appropriate
adjustments and controls are necessary to keep these parameters within optimal ranges,
ensuring that the system evolves into a more stable and organized state.
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3.2. Dynamics Analysis with Fixed Parameters and Varying Orders

For the purpose of analyzing the effect of the fractional-order α, the parameters are
chosen as a = 1, b = 0.2, c = 1, and the step size is chosen as h = 0.01. Figure 5 illustrates
the bifurcation diagram of the system for α in the interval (0.7, 1). The system states are
cyclic when α ∈ (0.7, 0.86). The system bifurcates at α = 0.86. The system states are chaotic
when α ∈ (0.86, 0.89). The system states are in a doubled cycle when α ∈ (0.89, 0.93). The
bifurcation occurs again at α = 0.93 and remains chaotic thereafter. Correspondingly, the
maximum Lyapunov exponent plot yields the same results as the bifurcation plot.
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0.5
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1.5

2

2.5

3
Bifurcation diagram

(a)
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-1.5

-1

-0.5

0

0.5

1

1.5
Maximum Lyapunov exponent

(b)

Figure 5. The bifurcation and maximum Lyapunov exponent diagrams of the system with α as the
control variable. (a) The bifurcation diagram. (b) Maximum Lyapunov exponent diagram.

Some specific values are chosen to visualize more intuitively the dynamics of system (2).
The states of system (2) are in chaotic motion as shown by the bifurcation diagram when
α = 0.98. The corresponding chaotic attractors are shown in Figure 6, and the system state
trajectories are shown in Figure 7.

Figure 6. Phase diagram with α = 0.98.
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Figure 7. Chronology diagram with α = 0.98.

System (2) is out of chaos by the bifurcation diagram when α = 0.7. The phase diagram
is shown in Figure 8, and the system state trajectories are shown in Figure 9. These plots
are consistent with the results of the bifurcation diagram and the maximum Lyapunov
exponent diagram, which implies the complicated interactions among the real interest rate,
the investment demand, and the price indicator.

Figure 8. Phase diagram with α = 0.7.
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Figure 9. Chronology diagram with α = 0.7.

Remark 1. In the practical financial system, there may be a situation where changing the parameters
cannot eliminate the chaos when α = 1 in the case of the integer-order financial system. In this case,
we can establish a financial model closer to the real financial system through the fractional-order
model, and eliminate chaos by adjusting the fractional-order of the system. Generally, the system
states eventually evolve from order to chaos as the order α increases. The states of the financial
system gradually evolve from the chaotic region to the ordered region as a or b increases. Therefore,
adjusting the parameters of the fractional-order financial system and the fractional-order so that
they reach a reasonable region can avoid financial risk. Ultimately, the orderly development of the
financial market can be realized.

4. Adaptive Control Strategy Design

From the previous section, it can be seen that the states of system (2) will be chaotic
when the values of the savings and unit investment cost are too low. Without the exter-
nal control, the two financial systems with diverse initial values will perform unusual
dynamical behaviors. In the cause of keeping the stability of the two systems, the adaptive
controller is designed for synchronizing the two financial systems.

Let system (2) be the drive system, then system (9) is the response system after adding
the external control: 

Dαx2 = z2 + (y2 − â)x2 + u1
Dαy2 = 1 − b̂y2 − x2

2 + u2
Dαz2 = −x2 − ĉz2 + u3

(9)

where ui (i = 1, 2, 3) are the controller inputs.
Simultaneously, define the error signals ei(t) (i = 1, 2, 3) as e1(t) = x2(t) − x1(t),

e2(t) = y2(t)− y1(t), e3(t) = z2(t)− z1(t). Then, the error system (10) can be obtained as
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Dαe1 = Dαx2 − Dαx1

= e3 + y2x2 − y1x1 − âx2 + ax1 + u1

Dαe2 = Dαy2 − Dαy1 = −b̂y2 + by1 − x2
2 + x2

1 + u2

Dαe3 = Dαz2 − Dαz1 = −e1 − ĉz2 + cz1 + u3.

(10)

Design the controller as follows:
u1 = −e3 − y2x2 + y1x1 ˜̂ax2 − ãx1 − h1e1

u2 = ˜̂by2 − b̃y1 + x2
2 − x2

1 − h2e2
u3 = e1 + ˜̂cz2 − c̃z1 − h3e3

(11)

where â, b̂, ĉ, ˜̂a, ˜̂b, and ˜̂c are the estimations of the unknown positive parameters a, b, c, â, b̂, ĉ,
and hi(i = 1, 2, 3) are all normals.

Substituting the controller (11) into (10) yields
Dαe1 = ( ˜̂a − â)x2 + (a − ã)x1 − h1e1

Dαe2 = ( ˜̂b − b̂)y2 + (b − b̃)y1 − h2e2
Dαe3 = ( ˜̂c − ĉ)z2 + (c − c̃)z1 − h3e3.

(12)

Define the unknown constant parameter estimation errors as
ea = a − ã, eâ = â − ˜̂a
eb = b − b̃, eb̂ = b̂ − ˜̂b
ec = a − c̃, eĉ = ĉ − ˜̂c.

(13)

Substituting (13) into (12) yields
Dαe1 = −eâx2 + eax1 − h1e1
Dαe2 = −eb̂y2 + eby1 − h2e2
Dαe3 = −eĉz2 + ecz1 − h3e3.

(14)

Define the update law of the estimated parameters as follows:
Dα ã = e1x1 + h4ea, Dα ˜̂a = −e1x2 + h7eâ,
Dα b̃ = e2y1 + h5eb, Dα ˜̂b = −e2y2 + h8eb̂,
Dα c̃ = e3z1 + h6ec, Dα ˜̂c = −e3z2 + h9eĉ,

(15)

where h4, h5, h6, h7, h8, h9 are positive numbers.

Theorem 1. The fractional-order error system is asymptotically stable under the action of the
controller (11) with the estimated parameter update law (15).

Proof. Construct the Lyapunov function as follows:

V = 1
2

(
e2

1 + e2
2 + e2

3 + e2
a + e2

b + e2
c + e2

â + e2
b̂
+ e2

ĉ

)
. (16)

The fractional-order derivatives of (13) are
Dαea = −Dα ã, Dαeâ = −Dα ˜̂a,
Dαeb = −Dα b̃, Dαeb̂ = −Dα ˜̂b,
Dαec = −Dα c̃, Dαeĉ = −Dα ˜̂c.

(17)
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The fractional-order derivative of (16) is

DαV = 1
2 Dα

(
e2

1 + e2
2 + e2

3 + e2
a + e2

b + e2
c + e2

â + e2
b̂
+ e2

ĉ

)
. (18)

From Lemma 2, it follows that

DαV ⩽ e1Dαe1 + e2Dαe2 + e3Dαe3

+ eaDαea + ebDαeb + ecDαec

+ ea′D
αea′ + eb′D

αeb′ + ec′D
αec′ .

(19)

Substituting (14) and (17) into (19) yields

DαV ⩽− h1e2
1 − h2e2

2 − h3e2
3

+ ea(e1x1 − Dα ã) + eb
(
e2y1 − Dα b̃

)
+ ec(e3z1 − Dα c̃)− eâ

(
e1x2 − Dα ˜̂a

)
− eb′

(
e2y2 − Dα ˜̂b

)
− ec′

(
e3z2 − Dα ˜̂c

)
.

(20)

Substituting (15) into (20) yields

DαV ⩽− h1e2
1 − h2e2

2 − h3e2
3

− h4e2
a − h5e2

b − h6e2
c

− h7eâ
2 − h8eb̂

2 − h9eĉ
2

⩽0.

(21)

It shows that the fractional-order error system is asymptotically stable, which implies that
drive system (2) and response system (9) are synchronized.

Remark 2. Compared to the previous studies in [11,14,27,29,33], our result demonstrates several
notable advantages. In particular, different from [27], this paper offers a deeper analysis of the
relationship between varying derivative orders, system parameters, and chaotic behaviors, providing
more comprehensive insight into how financial systems’ long-term dynamics evolve. The adaptive
synchronization method proposed in this paper is not only effective for systems with unknown
parameters but also has broader applicability to other fractional-order systems, offering a more
flexible and generalized approach than the method in previous results. Furthermore, this paper goes
beyond simulation and addresses system robustness in the presence of external disturbances and
uncertainties, offering a more complete theoretical framework for managing system stability.

5. Numerical Simulations

Let the parameters be hi = 5(i = 1, 2, . . . , 9) of the adaptive controller (11) and
renewal rule (15). The initial values of the adaptive control parameters are ã(0) = −2,
b̃(0) = 5, b̃(0) = −1, ˜̂a(0) = 6, ˜̂b(0) = 3.5, ˜̂b(0) = −3. The initial value of the drive system is
selected as (−2, 3, 4), and the initial value of the response system is selected as (0.1, 0.1, 0.1).
The synchronization control effect is tracked through MATLAB R2023b simulations. The
results are shown in Figures 10 and 11.
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Figure 10. Time-domain trajectories of error variables.
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Figure 11. Time-domain trajectories of state variables.

Figure 10 shows an evolution of the errors over time, where each error variable
converges to 0 after a certain period of time. Figure 11 illustrates the trend of the trajectories
of the two systems as the corresponding variables converge to synchronization. It is more
straightforward to show the effect of synchronization of the systems under the action of
the controller. It also can be seen that all the error signals converge to 0 in approximately
1.2 s and stabilize around 0 later from Figure 10, which implies the synchronization of the
state variables.

We change the initial value of response system to (0.1, 0.2, 1). Figure 12 shows an
image of the error variables of the two systems. Figure 13 shows the trajectories of the
synchronization of the corresponding state variables of the two systems, which visually
demonstrates the effect of the synchronization of the two systems under the action of
the controller.
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Figure 12. Time-domain trajectories of error variables with another initial condition.
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Figure 13. Time-domain trajectories of state variables with another initial condition.

From Figure 12, it can be seen that all the error signals also converge to 0 in about
1.2 s and stabilize at 0. It thus implies that the drive–response systems achieve synchroniza-
tion under the action of the adaptive controller.

6. Conclusions

In this paper, a fractional-order financial system is obtained by applying Caputo’s
fractional-order differential operator to an integer-order financial system through fractional-
order theory. The stability of the three equilibrium points of the system is analyzed through
the fractional-order stability theory. The phase diagram of the system is plotted, and the
dynamics phenomenon of the parameter change when the fractional order is fixed, and the
dynamical behaviors of the fractional-order change when the parameter is fixed are also
analyzed by numerical simulation. The results show that low total savings, unit investment
cost, and high fractional order will lead the financial system into chaos.
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