
Citation: Li, J.; Yan, Z.; Shi, X.; Luo, X.

Distributed Adaptive Formation

Control for Fractional-Order

Multi-Agent Systems with Actuator

Failures and Switching Topologies.

Fractal Fract. 2024, 8, 563. https://

doi.org/10.3390/fractalfract8100563

Academic Editor: António Lopes

Received: 8 August 2024

Revised: 21 September 2024

Accepted: 24 September 2024

Published: 28 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Distributed Adaptive Formation Control for Fractional-Order
Multi-Agent Systems with Actuator Failures and
Switching Topologies
Jing Li * , Zixiang Yan, Xingyun Shi and Xuqiong Luo

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China;
yanzixiang2024@163.com (Z.Y.); sxy090402@163.com (X.S.); luoxuqiong@163.com (X.L.)
* Correspondence: lijingnew@126.com

Abstract: In this paper, a class of distributed adaptive formation control problems are investigated
for second-order nonlinear fractional-order multi-agent systems with actuator failures and switching
topologies. To address these challenges, two adaptive coupling gains based on agents’ position and
velocity are incorporated into the control protocol. Using the Lyapunov method along with graph
theory and matrix analysis, sufficient conditions for system stability are derived in the presence of
actuator failures and switching topologies. The effectiveness of the proposed control protocol is
demonstrated through numerical simulations, which show its capability to maintain stable formation
control under these challenging conditions.
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1. Introduction

In the past few decades, the rapid advancement of computing and network technolo-
gies has attracted widespread attention to distributed cooperative control in multi-agent
systems. Its versatility and applicability make it a prevalent approach in systems science
and control [1–7]. To address the varied needs of different tasks, cooperative control can be
categorized into several types, including consensus, tracking, containment, and formation
control [8–15], etc. The formation control is to achieve position and velocity control of
all agents through information exchange, form specific geometries to complete complex
cooperative tasks. Consequently, formation control for multi-agent systems is applied in
various fields, including obstacle avoidance [16], multi-robot systems [17], and unmanned
aerial vehicles [18], etc.

Recently, many scholars have explored formation control in multi-agent systems and
achieved important research results. In [19], Liang et al. proposed a control strategy that
uses relative local data and the desired formation structure to address the heterogeneous
formation problem. In [20], Chen et al. addressed the problem of optimal control with
uniformly moving leaders and developed a distributed control strategy with integrators
for the followers. In [21], He et al. investigated formation control for linear multi-agent
systems by using output feedback and an asynchronous sampled-data mechanism. These
studies provide important research methods for the formation control of integer-order
models. However, integer-order models have limitations in dealing with systems with
memory effects and long time dependencies. As a result, there is increasing interest in using
fractional-order models to achieve a more accurate representation of complex systems in
formation control. In [22], Luo et al. used iterative control strategies and an initial learning
rule for achieving finite-time formation control. In [23], Gong et al. introduced an observer-
based distributed control approach and converted the time-varying formation control
issues into a problem of asymptotic stability. In [24], Liu et al. explored formation control
with relative damping and non-uniform symmetric delays, applying frequency domain
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theory. In [25], Meng et al. introduced a dynamic event-triggered approach to address
leader-follower formation control subject to external disturbances. In [26], Zamani et al.
investigated fixed-time consensus and formation control under external disturbances by
using the virtual structure method, and introduced a distributed sliding mode control
approach based on neighborhood error variables.

Within multi-agent systems formation control, traditional methods typically rely on
preset static parameters or fixed feedback gain matrices. These methods may perform
poorly with dynamic changes or internal systems uncertainties. For example, dynamic
changes between agents, sensor errors, or varying task requirements can affect the stability
and performance of the formation. To overcome these challenges, adaptive techniques are
introduced to enhance the robustness for multi-agent systems by real-time adjustment of
control parameters. For instance, a time-varying parameter-adjustable adaptive control
strategy was introduced to address the time-varying formation control problem [27]. In [28],
Li et al. proposed a novel adaptive event-triggered control strategy aimed at reducing the
constraints on control coefficients in the stability analysis of uncertain systems. In [29],
Wang et al. explored the bounded Mittag-Leffler formation control issue, incorporating
adaptive coupling gains into the triggering conditions and control protocols. In [30], Li et al.
applied adaptive techniques to neural networks and employed a virtual leader approach
to successfully achieve formation and obstacle avoidance for torpedo-type underactuated
autonomous underwater vehicles.

It’s worth noting that the studies mentioned above are based on a fixed topology,
which often fails to account for the dynamic nature of real-world multi-agent systems
where agents’ positions and velocities continuously change. These variations frequently
lead to switching topologies, which can adversely affect system performance by causing
instability or loss of control inputs. To address these challenges, we focus on adaptive
formation control for nonlinear fractional-order multi-agent systems. The adaptive control
protocol is designed to dynamically adjust control inputs in response to these changes,
including actuator failures, by continuously monitoring performance and recalibrating
coupling gains. This adaptability ensures the stability of the formation and maintains
resilience, allowing agents to achieve and sustain the desired configuration despite the loss
of functionality in any single actuator.

(1) Compared to the work in [24,26], we have developed a second-order nonlinear
fractional-order multi-agent system model that incorporates both position and ve-
locity information under actuator failure conditions and switching topologies. As a
result, our research is more challenging, comprehensive, and practically relevant.

(2) We generalise the multi-agent systems formation problem to fractional-order. The
results presented in literature [31,32] primarily concern integer-order multi-agent
systems, which can be regarded as a special case of this paper.

(3) We propose a novel control protocol with two different adaptive coupling gains and
establish a Lyapunov function involving actuator failures, error variables, and their
derivatives. This provides new insights into formation control of fractional-order
multi-agent systems under actuator failures and switching topologies.

(4) This study enhances formation control by improving the robustness and adaptability
of multi-agent systems in dynamic environments, which is crucial for applications
such as unmanned aerial vehicles and robotic teams. It also develops fault-tolerant
control strategies to maintain stability and performance during actuator failures and
provides advanced control protocols for complex coordination tasks.

The remainder of the article is outlined as follows. In Section 2, we outline the
necessary notations in Table 1, basic concepts of switching topologies, definitions and
lemmas we will need later. In Section 3, we present the model and several assumptions
necessary for the study. In Section 4, we outline the adaptive formation control strategy and
conduct a stability analysis and theoretical proof. Finally, we demonstrate the correctness
and superiority of the theoretical results through comparative experiments.
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Table 1. Notations.

Symbol Stand for

Rn n-dimensional Euclidean space
Rn×n n × n real matrices
In n-dimensional identity matrix
diag (· · · ) A diagonal matrix
∥ · ∥ and⊗ Vector 2-norm and Kronecker product
P > 0 Positive definite matrix P
P < 0 Negative definite matrix P
P−1 Inverse of matrix P
PT Transpose of matrix P
λmax(P) Maximal eigenvalue of matrix P
λmin(P) Minimal eigenvalue of matrix P

2. Preliminaries

In the context of switching topology, the switching signal σ(t) is defined on [0,+∞)
and maps to the set {1, 2, . . . , s}, where s denotes the total number of possible topologies.

The communication network in multi-agent systems under switching topological struc-
tures is described by the undirected graph Gσ(t) =

(
W, Eσ(t)

)
, where W = {w1, w2, . . . , wN}

denotes the set of N followers in Gσ(t), Eσ(t) ⊆ W × W stands for the edge set in Gσ(t).(
wi, wj

)
∈ Eσ(t) (i, j = 1, 2, · · · , N) denotes that nodes wi and wj are adjacent at time t.

Aσ(t) =
[

aσ(t)
ij

]
∈ RN×N represents the adjacency matrix of Gσ(t). If the i-th and j-th nodes

are adjacent, then aσ(t)
ij = 1; otherwise, aσ(t)

ij = 0. Moreover, we assume that no node con-

nects to itself, i.e., aσ(t)
ii = 0(i = 1, 2, . . . , N). The Laplacian matrix Lσ(t) =

[
lσ(t)
ij

]
∈ RN×N

is defined with lσ(t)
ii =

N
∑

j=1,j ̸=i
aσ(t)

ij and lσ(t)
ij = −aσ(t)

ij for i ̸= j.

Let Gσ(t) consist of one leader and N followers, Hσ(t) = Lσ(t) + Bσ(t) with
Bσ(t) = diag

(
bσ(t)

1 , bσ(t)
2 , . . . , bσ(t)

N

)
. If the i-th follower communicates with the leader,

bσ(t)
i = 1; otherwise, bσ(t)

i = 0.

Definition 1. ([33]). The fractional derivative of a function f (t) ∈ Cn([0, ∞),R) in the Caputo
sense is defined as

Dα f (t) =
1

Γ(n − α)

∫ t

0

f (n)(r)

(t − r)α+1−n dr,

where α ∈ (n − 1, n), n ∈ Z+, and Γ(·) represents the Gamma function.

Definition 2. ([33]). The one-parameter Mittag-Leffler functions is defined as

Eα(z) =
∞

∑
k=1

zk

Γ(kα + 1)
,

where z ∈ C, α > 0.

Definition 3. Let P ∈ Rm×n and S ∈ Rp×q. The Kronecker product P ⊗ S is a matrix in Rmp×nq,
and is defined as

P ⊗ S =




p11S · · · p1nS
...

. . .
...

pm1S · · · pmnS


.
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It has the following properties

(1) P ⊗ (S + K) = P ⊗ S + P ⊗ K;
(2) (P ⊗ S)−1 = P−1 ⊗ S−1;
(3) (P ⊗ S)T = PT ⊗ ST ;
(4) (P ⊗ S)(K ⊗ M) = PK ⊗ SM;
(5) ι(P ⊗ S) = (ιP)⊗ S = P ⊗ (ιS);

where the matrices P, S, K, and M are of appropriate dimensions, and ι is a scalar.

Definition 4. ([34]). If there exist constants m̂ > 0, m > 0, α ∈ (0, 1) and µ > 0, such that

∥ e(t) ∥ ≤ m(Eα(−m̂tα))µ, t ≥ 0,

then e(t) is said to be Mittag-Leffler convergent to 0.

Lemma 1 ([35]). If the α-order derivative of a continuous function V(t) : [0,+∞) → R satisfying

DαV(t) ≤ −m̂V(t),

where 0 < α < 1, m̂ > 0. Then

V(t) ≤ V(0)Eα(−m̂tα), t ≥ 0.

Lemma 2. ([36]). Consider a differentiable vector function y(t) : [0, ∞] → Rn , the following
inequality holds

1
2

Dα
(

yT(t)Py(t)
)
≤ yT(t)PDαy(t),

where α ∈ (0, 1], P ∈ Rn×n is positive definite matrix.

Lemma 3. ([37]). For ∀y ∈ Rn, the following inequality holds:

λmin

(
C−1Z

)
yTCy ≤ yTZy ≤ λmax

(
C−1Z

)
yTCy,

where C ∈ Rn×n > 0, and Z ∈ Rn×n is a symmetric matrix.

Lemma 4. ([38]). For ∀x ∈ Rn, y ∈ Rn and Z > 0, the following inequality holds

2xTy ≤ xTZx + yTZ−1y,

Lemma 5. ([39]). The matrix Hσ(t) = Lσ(t) + Bσ(t) is positive definite if the leader can reach every

node in Gσ(t).

3. Problem Formulation

In fractional-order multi-agent systems where there is one leader and N followers, the
dynamics of the i-th follower is as follows

{
Dαθi(t) = φi(t),
Dα φi(t) = δF

i (t) + ω(t, φi(t)), i = 1, 2, . . . , N.
(1)
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The leader’s dynamic is given by
{

Dαθ0(t) = φ0(t),
Dα φ0(t) = ω(t, φ0(t)),

(2)

where 0 < α < 1, θi(t) ∈ Rn, φi(t) ∈ Rn and δF
i (t) ∈ Rn represent the position, velocity and

control input of the i-th follower at time t, respectively. θ0(t) ∈ Rn and φ0(t) ∈ Rn represent
the position and velocity of the leader at time t. ω(t, φi(t)) ∈ Rn and ω(t, φ0(t)) ∈ Rn are
the inherent dynamics of followers and leader and satisfy the Lipschitz condition.

If a fault causes the actuator to respond inadequately to the control input signal, the
effective control input δF

i (t) for the i-th follower is represented by

δF
i (t) = (1 − κi(t))δi(t), i = 1, 2, . . . , N, (3)

where 0 ≤ κi(t) ≤ κ < 1 is a time-dependent parameter that reflects the decrease in actuator
efficiency for the i-th follower. When κi(t) ≡ 0, the actuator is fully operational; otherwise,
it is functioning with reduced effectiveness. δi(t) ∈ Rn represents the ideal control input
assuming no faults. Based on the above description, we give the flowchart for the study of
adaptive formation control for multi-agent systems in Figure 1.

Fractal Fract. 2024, 1, 0 5 of 16

where 0 < α < 1, θi(t) ∈ Rn, φi(t) ∈ Rn and δF
i (t) ∈ Rn represent the position ,velocity and

control input of the i-th follower at time t, respectively. θ0(t) ∈ Rn and φ0(t) ∈ Rn represent
the position and velocity of the leader at time t. ω(t, φi(t)) ∈ Rn and ω(t, φ0(t)) ∈ Rn are
the inherent dynamics of followers and leader and satisfy the Lipschitz condition.

If a fault causes the actuator to respond inadequately to the control input signal,
the effective control input δF

i (t) for the i-th follower is represented by

δF
i (t) = (1 − κi(t))δi(t), i = 1, 2, . . . , N, (3)

where 0 ≤ κi(t) ≤ κ̄ < 1 is a time-dependent parameter that reflects the decrease in actuator
efficiency for the i-th follower. When κi(t) ≡ 0, the actuator is fully operational; otherwise,
it is functioning with reduced effectiveness. δi(t) ∈ Rn represents the ideal control input
assuming no faults.

Figure 1. Flowchart for the study of adaptive formation control for multi-agent systems.

Remark 1. The functions ω(t, φi(t)) and ω(t, φ0(t)) are key components of the system’s inherent
dynamics, reflecting the intrinsic nonlinear characteristics of the system, which depend on time t
and the velocities of the agents φi(t) and φ0(t). Assume that these functions satisfy the Lipschitz
condition , then the system’s response to changes in state variables is continuous and bounded,
thereby guarantee the stability and robustness in the control design.
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Figure 1. Flowchart for the study of adaptive formation control for multi-agent systems.

Remark 1. The functions ω(t, φi(t)) and ω(t, φ0(t)) are key components of the system’s inherent
dynamics, reflecting the intrinsic nonlinear characteristics of the system, which depend on time t
and the velocities of the agents φi(t) and φ0(t). Assume that these functions satisfy the Lipschitz
condition, then the system’s response to changes in state variables is continuous and bounded,
thereby guarantee the stability and robustness in the control design.

Assumption 1. Gσ(t) is undirected and connected.

Assumption 2. Gσ(t) remains fixed and connected over the interval [ts, ts+1), where ts denotes the
moment of topology switch, and t0 = 0.

Assumption 3. In Gσ(t), the leader can reach each node.

Assumption 4. For any s1, s2 ∈ Rn, there exists a positive constant ρ such that

∥ ω(t, s1)− ω(t, s2)∥≤ ρ ∥s1 − s2∥ .

Definition 5. The systems (1) and (2) are considered to achieve the desired formation if the following
conditions hold

lim
t→+∞

∥ θi(t)− θ0(t)− pi∥= 0, lim
t→+∞

∥ φi(t)− φ0(t) ∥ = 0, i = 1, 2, . . . , N,
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where pi ∈ Rn represents the desired positional deviation of the i-th follower relative to the leader.
The systems (1) and (2) are said to achieve concensus tracking if pi = 0.

4. Main Results

In this section, we propose an adaptive control protocol to achieve formation control
and analyze the stability of the systems and derive the sufficient conditions for achieving
the desired formation.

Define variables θi(t) and φi(t) for i = 1, 2, . . . , N as

{
θi(t) = θi(t)− θ0(t)− pi,
φi(t) = φi(t)− φ0(t).

(4)

Let θ(t) =
(

θ
T
1 (t), θ

T
2 (t), . . . , θ

T
N(t)

)T
, φ(t) =

(
φT

1 (t), φT
2 (t), . . . , φT

N(t)
)T

.
The distributed adaptive control protocol designed for the i-th follower is given

as follows
δi(t) = δ

η
i (t) + δ

ξ
i (t), (5)

where

δ
η
i (t)= −ηi(t)

[
N

∑
j=1

aσ(t)
ij
(
θi(t)− pi − θj(t) + pj

)
+ bσ(t)

i (θi(t)− θ0(t)− pi)

]

= −ηi(t)

[
N

∑
j=1

aσ(t)
ij
(
θi(t)− θ j(t)

)
+ bσ(t)

i θi(t)

]
,

δ
ξ
i (t)= −ξi(t)

[
N

∑
j=1

aσ(t)
ij
(

φi(t)− φj(t)
)
+ bσ(t)

i (φi(t)− φ0(t))

]

= −ξi(t)

[
N

∑
j=1

aσ(t)
ij

(
φi(t)− φj(t)

)
+ bσ(t)

i φi(t)

]
,

with ηi(t), ξi(t) (i = 1, 2, . . . , N) representing adaptive coupling gains of i-th agent, as
defined in (8).

According to the Kronecker product, δ(t) =
(
δT

1 (t), δT
2 (t), . . . , δT

N(t)
)T can be ex-

pressed as
δ(t) = −

[(
η(t)Hσ(t)

)
⊗ In

]
θ(t)−

[(
ξ(t)Hσ(t)

)
⊗ In

]
φ(t), (6)

where η(t) = diag(η1(t), η2(t), . . . , ηN(t)) and ξ(t) = diag(ξ1(t), ξ2(t), . . . , ξN(t)).
Let

κ(t) = diag(κ1(t), κ2(t), . . . , κN(t)), ω(t, φi(t)) = ω(t, φi(t))− ω(t, φ0(t)),

ω(t, φ(t)) =
(

ωT(t, φ1(t)), ωT(t, φ2(t)), . . . , ωT(t, φN(t))
)T

.

It follows that




Dαθ(t) =φ(t),

Dα φ(t) =−
{[

(IN − κ(t))η(t)Hσ(t)
]
⊗ In

}
θ(t)

−
{[

(IN − κ(t))ξ(t)Hσ(t)
]
⊗ In

}
φ(t) + ω(t, φ(t)).

(7)

We now present the following theorem to establish the effectiveness of the distributed
control protocol (5).

Theorem 1. If Assumptions 1–4 hold and the following conditions hold
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(i) The adaptive coupling gains ηi(t) and ξi(t) (i = 1, 2, . . . , N) are given by




Dαηi(t) = ai

[
θ

T
(t)(ζi ⊗ In)θ(t) + θ

T
(t)(ζi ⊗ In)φ(t)

]
,

Dαξi(t) = ci

[
φT(t)(ζi ⊗ In)φ(t) + θ

T
(t)(ζi ⊗ In)φ(t)

]
,

(8)

where ai, ci are positive constants, ζi =
(

hσ(t)
i1 , hσ(t)

i2 , . . . , hσ(t)
iN

)T(
hσ(t)

i1 , hσ(t)
i2 , . . . , hσ(t)

iN

)
.

(ii) 



(1 − κ)ηλ2
min

(
Hσ(t)

)
− Nh(ρ+1)

2 > 0,

(1 − κ)ξλ2
min

(
Hσ(t)

)
− λmax

(
Hσ(t)

)
− Nh(3ρ+1)

2 > 0,

where h = max
1≤i,j≤N

∣∣∣hσ(t)
ij

∣∣∣, ρ > 0, η, ξ are large enough constants. Then, under the distributed

adaptive control protocol (5), the second-order fractional-order multi-agent systems (1) and (2)
achieve formation control.

Proof of Theorem 1. Select a Lyapunov function

V(t) = V1(t) + V2(t), (9)

where
V1(t)=

1
2

eT(t)Qe(t), e(t) =
(

θ
T
(t), φT(t)

)T
,

V2(t)=
N

∑
i=1

1 − κi(t)
2ai

(ηi(t)− η)2 +
N

∑
i=1

1 − κi(t)
2ci

(
ξi(t)− ξ

)2
,

Q=

(
β(t)Hσ(t)Hσ(t) +Hσ(t) Hσ(t)

Hσ(t) Hσ(t)

)
⊗ In,

β(t)= diag(β1(t), β2(t), . . . , βN(t)), βi(t) > 0.

Obviously, V(t) ≥ 0.
According to (7) and Lemma 2, we have

DαV1(t) ≤ eT(t)QDαe(t)
= θ

T
(t)
[(

β(t)Hσ(t)Hσ(t) +Hσ(t)
)
⊗ In

]
φ(t) + φT(t)

(
Hσ(t) ⊗ In

)
φ(t)

+
(

θ
T
(t) + φT(t)

)(
Hσ(t) ⊗ In

)
Dα φ(t)

≤ θ
T
(t)
[(

β(t)Hσ(t)Hσ(t) +Hσ(t)
)
⊗ In

]
φ(t) + φT(t)

(
Hσ(t) ⊗ In

)
φ(t)

−θ
T
(t)
{[

(IN − κ(t))Hσ(t)η(t)Hσ(t)
]
⊗ In

}
θ(t)

−θ
T
(t)
{[

(IN − κ(t))Hσ(t)ξ(t)Hσ(t)
]
⊗ In

}
φ(t)

−θ
T
(t)
{[

(IN − κ(t))Hσ(t)η(t)Hσ(t)
]
⊗ In

}
φ(t)

−φT(t)
{[

(IN − κ(t))Hσ(t)ξ(t)Hσ(t)
]
⊗ In

}
φ(t)

+
(

θ
T
(t) + φT(t)

)(
Hσ(t) ⊗ In

)
ω(t, φ(t)).

(10)

Based on Assumption 4 and Lemma 4, we can get
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θ
T
(t)
(
Hσ(t) ⊗ In

)
ω(t, φ(t))=

N

∑
i=1

N

∑
j=1

hσ(t)
ij θi(t)

T(ω
(
t, φj(t)

)
− ω(t, φ0(t))

)

≤
N

∑
i=1

N

∑
j=1

ρ
∣∣∣hσ(t)

ij

∣∣∣ ∥ θi(t) ∥∥φj(t) ∥

≤ Nhρ

2

N

∑
i=1

(
∥ θi(t) ∥2 + ∥ φi(t) ∥2

)
,

(11)

where h = max
1≤i,j≤N

∣∣∣hσ(t)
ij

∣∣∣.
As above, we have

φT(t)
(
Hσ(t) ⊗ In

)
ω(t, φ(t))=

N

∑
i=1

N

∑
j=1

hσ(t)
ij φi(t)

T(ω
(
t, φj(t)

)
− ω(t, φ0(t))

)

≤
N

∑
i=1

N

∑
j=1

ρ
∣∣∣hσ(t)

ij

∣∣∣ ∥ φi(t) ∥φj(t) ∥

≤ Nhρ
N

∑
i=1

∥ φi(t) ∥2,

(12)

and

θ
T
(t)
(
Hσ(t) ⊗ In

)
φ(t)=

N

∑
i=1

N

∑
j=1

hσ(t)
ij θ

T
i (t)φj(t)

≤ Nh
2

N

∑
i=1

(
∥ θi(t) ∥2 + ∥ φi(t) ∥2

)
.

(13)

Then, we can obtain

(
θ

T
(t) + φT(t)

)(
Hσ(t) ⊗ In

)
ω(t, φ(t)) ≤ Nhρ

2

N

∑
i=1

∥ θi(t) ∥2 +
3Nhρ

2

N

∑
i=1

∥ φi(t) ∥2. (14)

Substituting (13) and (14) into (10), we can gain

DαV1(t) ≤θ
T
(t)
[(

β(t)Hσ(t)Hσ(t)
)
⊗ In

]
φ(t) + φT(t)

(
Hσ(t) ⊗ In

)
φ(t)

−θ
T
(t)
{[

(IN − κ(t))Hσ(t)η(t)Hσ(t)
]
⊗ In

}
θ(t)

−θ
T
(t)
{[

(IN − κ(t))Hσ(t)ξ(t)Hσ(t)
]
⊗ In

}
φ(t)

−θ
T
(t)
{[

(IN − κ(t))Hσ(t)η(t)Hσ(t)
]
⊗ In

}
φ(t)

−φT(t)
{[

(IN − κ(t))Hσ(t)ξ(t)Hσ(t)
]
⊗ In

}
φ(t)

+
Nh(ρ + 1)

2

N

∑
i=1

∥ θi(t) ∥2 +
Nh(3ρ + 1)

2

N

∑
i=1

∥ φi(t) ∥2.

(15)
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For V2(t), according to (8) and Lemma 2, one has

DαV2(t) ≤
N

∑
i=1

1 − κi(t)
ai

(ηi(t)− η)Dαηi(t) +
N

∑
i=1

1 − κi(t)
ci

(
ξi(t)− ξ

)
Dαξi(t)

=
N

∑
i=1

(1 − κi(t))(ηi(t)− η)
[
θ

T
(t)(ζi ⊗ In)θ(t) + θ

T
(t)(ζi ⊗ In)φ(t)

]

+
N

∑
i=1

(1 − κi(t))
(
ξi(t)− ξ

)[
φT(t)(ζi ⊗ In)φ(t) + θ

T
(t)(ζi ⊗ In)φ(t)

]

=θ
T
(t)
{[

(IN − κ(t))Hσ(t)(η(t)− Ξ1)Hσ(t)
]
⊗ In

}
θ(t)

+θ
T
(t)
{[

(IN − κ(t))Hσ(t)(η(t)− Ξ1)Hσ(t)
]
⊗ In

}
φ(t)

+φT(t)
{[

(IN − κ(t))Hσ(t)(ξ(t)− Ξ2)Hσ(t)
]
⊗ In

}
φ(t)

+θ
T
(t)
{[

(IN − κ(t))Hσ(t)(ξ(t)− Ξ2)Hσ(t)
]
⊗ In

}
φ(t).

(16)

where Ξ1 = η IN , Ξ2 = ξ IN .
Combining (15) with (16), it yields

DαV(t) ≤θ
T
(t)
{{

[β(t)− (IN − κ(t))(Ξ1 + Ξ2)]Hσ(t)Hσ(t)
}
⊗ In

}
φ(t)

−(1 − κ)θ
T
(t)
[(

Hσ(t)Ξ1Hσ(t)
)
⊗ In

]
θ(t)

+φT(t)
[(

Hσ(t) − (1 − κ)Hσ(t)Ξ2Hσ(t)
)
⊗ In

]
φ(t)

+
Nh(ρ + 1)

2

N

∑
i=1

∥ θi(t) ∥2 +
Nh(3ρ + 1)

2

N

∑
i=1

∥ φi(t) ∥2.

(17)

Let (1 − κi(t))η = η∗
i (t), (1 − κi(t))ξ = ξ∗i (t), βi(t) = η∗

i (t) + ξ∗i (t), we can obtain
β(t) = (IN − κ(t))(Ξ1 + Ξ2).

According to Lemma 3, we have

DαV(t) ≤−
(
(1 − κ)ηλ2

min

(
Hσ(t)

)
− Nh(ρ + 1)

2

)
θ

T
(t)θ(t)

−
(
(1 − κ)ξλ2

min

(
Hσ(t)

)
− λmax

(
Hσ(t)

)
− Nh(3ρ + 1)

2

)
φT(t)φ(t).

(18)

Obviously, there exist sufficiently large η, ξ such that

DαV(t) ≤ 0. (19)

Therefore, there exists m̂ > 0 such that

DαV(t) ≤ −m̂V(t). (20)

According to Lemma 1, we can gain

V(t) ≤ V(0)Eα(−m̂tα), t ≥ 0. (21)

From (9), we have

λmin(Q)e(t)Te(t) ≤ 2V(t) ≤ 2V(0)Eα(−m̂tα), (22)
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so
∥ e(t) ∥ ≤ m(Eα(−m̂tα))

1
2 , (23)

where m =
√

2V(0)λ−1
min(Q).

Based on Definition 4, we can see Eα(−m̂tα) → 0 as t → +∞ ,which leads to V(t) = 0,
e(t) = 0. It implies that the systems (1) and (2) can achieve the Mittag-Leffler stability under
designed control protocol (5). □

5. Numerical Simulation

In this section, we conduct numerical simulations for the multi-agent system consisting
of one leader and five followers. The proposed adaptive control protocol is compared
against the traditional fixed-coupling gain control protocol. The switching topologies and
the corresponding switching signal are illustrated in Figures 2 and 3. In these topologies,
Node 0 represents the leader, while the remaining five nodes represent the followers.
The edges between the nodes indicate the information exchange links. Specifically, when
σ(t) = 1, the communication topology of the multi-agent system corresponds to G1.
Conversely, when σ(t) = 2, the communication topology switches to G2. The computer
configurations used for the simulations are provided in Tables 2 and 3.
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Table 2. Computer Configurations.
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Processor 11th Gen Intel®Core™i5-11500 @ 2.70 GHz
RAM 16.0 GB (15.7 GB available)

Storage 512 GB SSD
Graphics Card NVIDIA GeForce GTX 1660 Super

Operating System Windows 10 Professional

Table 3. Software Tools.

Simulation Tools Application
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Simulink/MATLAB R2021b For performing optimization tasks

FOTF Toolbox Provide key simulation modules

Based on Figure 2, the matrices H1 and H2 for the switching topologies can be derived
as follows

H1 =
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0 0 −1 2 −1
0 −1 0 −1 2
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Figure 2. The switching topological structures.
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Table 2. Computer Configurations.

Category Specification

Processor 11th Gen Intel®Core™i5-11500 @ 2.70 GHz
RAM 16.0 GB (15.7 GB available)
Storage 512 GB SSD
Graphics Card NVIDIA GeForce GTX 1660 Super
Operating System Windows 10 Professional

Table 3. Software Tools.

Simulation Tools Application

MATLAB R2021b Programming Language
Simulink/MATLAB R2021b For performing optimization tasks
FOTF Toolbox Provide key simulation modules

Based on Figure 2, the matrices H1 and H2 for the switching topologies can be derived
as follows

H1 =




4 −1 −1 −1 0
−1 4 0 −1 −1
−1 0 2 −1 0
−1 −1 −1 4 −1
0 −1 0 −1 2




, H2 =




3 −1 −1 0 0
−1 3 0 0 −1
−1 0 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2




.

Next, the nonlinear terms for each agent i = 0, 1, 2, 3, 4, 5 are defined as

ω(t, φi(t)) =




sin φi1(t)
e−0.01φi2(t)

sin φi3(t)


.

Based on these settings, we obtain ρ = 1, λmax

(
Hσ(t)

)
= 5.3028 and λmin

(
Hσ(t)

)
=

0.2679.
To simulate actuator failures, we define the loss of actuator effectiveness κi(t) for each

follower i = 1, 2, · · · , 5 as follows

κ1(t)=

{
0, 0 ≤ t < 4,
0.3, t ≥ 4,

κ2(t) =

{
0, 0 ≤ t < 3,
0.2, t ≥ 3,

κ3(t)=

{
1

1+et , 0 ≤ t < 5,
1

1+e5 , t ≥ 5,
κ4(t) = 0.25, κ5(t) = 0.1.

The average actuator loss is κ = 0.3.
Let α = 0.97. For the adaptive coupling gains defined in (8), we set the parameters as

follows
ai = ci = 1, i = 1, 2, . . . , 5.

The initial values are given by

ηi(0) = ξi(0) = 0.1·i, i = 1, 2, . . . , 5.

The initial positions of the leader and followers are randomly generated and specified
as

θ0(0) = (−7.9,−2.1, 7.6)T , θ1(0) = (−0.1, 5.5, 4.3)T ,
θ2(0) = (−8,−7.8, 1)T , θ3(0) = (4,−6, 2.4)T ,
θ4(0) = (3.7, 4.1, 6.3)T , θ5(0) = (−10, 5, 3)T .
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The initial velocities for the leader and followers are

φ0(0) = (0.2, 0.2, 0.2)T , φi(0) = (0.1, 0.1, 0.1)T (i = 1, 2, . . . , 5).

Finally, the desired formation geometry is defined as

p1= (6, 0, 0)T , p2 =
(

9,−
√

3, 3
)T

, p3 =
(

6,−6
√

3, 6
)T

,

p4=
(

0,−6
√

3, 6
)T

, p5 =
(
−3,−3

√
3, 3
)T

.

Figure 4 shows snapshots of the leader and followers’ positions at different time in
three-dimensional space, applying the adaptive control protocol (5). By connecting the
agents in these snapshots, it is evident that all agents gradually form and maintain a regular
hexagon configuration, indicating successful coordination and stability within the multi-
agent system. This formation serves as a strong testament to the efficacy of the proposed
control protocol (5). Figure 5 depicts the trajectory of the adaptive coupling gains, which
ultimately converge to a constant value. This shows that the adaptive gains stabilize after a
period of adjustment, reinforcing the reliability and robustness of the control approach.

Fractal Fract. 2024, 1, 0 12 of 16

faster convergence rate compared to traditional methods. This observation highlights the
effectiveness of the adaptive control strategy in enhancing performance.

(a) t = 0 s (b) t = 2 s

(c) t = 8 s (d) t = 12 s

Figure 4. Position snapshots at different times for each agent.

0 5 10 15

Time(s)

0

5

10

15

20

25

30

(a) ηi(t)

0 5 10 15

Time(s)

-10

-5

0

5

10

15

20

25

30

(b) ξi(t)

Figure 5. Adaptive coupling gains.

Finally, Figure 8 presents the trajectory of the control inputs over time, providing
insights into the dynamics of the control mechanism employed. Overall, these results
collectively demonstrate the effectiveness and potential of the proposed control strategy in
achieving desired formation and stability in fractional-order multi-agent systems.
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Finally, Figure 8 presents the trajectory of the control inputs over time, providing
insights into the dynamics of the control mechanism employed. Overall, these results
collectively demonstrate the effectiveness and potential of the proposed control strategy in
achieving desired formation and stability in fractional-order multi-agent systems.

Figure 5. Adaptive coupling gains.

Figures 6 and 7 illustrate the variations of the position and the velocity trajectories,
respectively. In these figures, the solid lines represent the motion trajectories achieved
under adaptive coupling gain control, while the dashed lines correspond to those under
fixed coupling gain control. It is worth noting that while both methods lead to a gradual
convergence of position and velocity errors to zero, our approach exhibits a significantly
faster convergence rate compared to traditional methods. This observation highlights the
effectiveness of the adaptive control strategy in enhancing performance.
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Finally, Figure 8 presents the trajectory of the control inputs over time, providing
insights into the dynamics of the control mechanism employed. Overall, these results
collectively demonstrate the effectiveness and potential of the proposed control strategy in
achieving desired formation and stability in fractional-order multi-agent systems.
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6. Conclusions

In this paper, we put forward a novel distributed adaptive formation control protocol
for second-order nonlinear fractional-order multi-agent systems that are subject to the ef-
fects of actuator failures and switching topologies. The incorporation of adaptive coupling
gains markedly enhanced the resilience of the system to dynamic disturbances. The correct-
ness of the theoretical results is further illustrated by implementing a formation control
task for a positive hexagon. These results not only extend the theoretical understanding
of fractional-order systems, but also provide practical insights for the design of resilient
multi-agent networks. Notwithstanding the success of the proposed approach, certain
limitations remain. For instance, the present model is based on the assumption of ideal
communication between agents, which may not be applicable in real-world scenarios that
involve delays or noise. Furthermore, the scalability of the method to larger networks
requires further investigation. In future, we will concentrate on resolving communication
delays, addressing external disturbances and applying the proposed control framework to
more complex multi-agent systems.
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6. Conclusions

In this paper, we put forward a novel distributed adaptive formation control protocol
for second-order nonlinear fractional-order multi-agent systems that are subject to the ef-
fects of actuator failures and switching topologies. The incorporation of adaptive coupling
gains markedly enhanced the resilience of the system to dynamic disturbances. The correct-
ness of the theoretical results is further illustrated by implementing a formation control
task for a positive hexagon. These results not only extend the theoretical understanding
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of fractional-order systems, but also provide practical insights for the design of resilient
multi-agent networks. Notwithstanding the success of the proposed approach, certain
limitations remain. For instance, the present model is based on the assumption of ideal
communication between agents, which may not be applicable in real-world scenarios that
involve delays or noise. Furthermore, the scalability of the method to larger networks
requires further investigation. In future, we will concentrate on resolving communication
delays, addressing external disturbances and applying the proposed control framework to
more complex multi-agent systems.
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