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Abstract: In engineering practice, the nonlinear vibration effect can easily lead to chaos in the system,
which will not only reduce the performance of the system but also lead to premature fatigue of
components, control failure, and increased safety risks. In view of the core position of the robotic
arm in modern industry, this study relies on the robotic arm brake system to explore the theoretical
basis of integrated viscoelastic materials as a vibration isolation layer. By analyzing the dynamic
characteristics of the friction braking system with fractional differential terms, it aims to provide a new
perspective for understanding and controlling the chaotic phenomena of a class of nonlinear friction
systems. Firstly, we construct a model of a friction system and analyze its dynamic characteristics
in detail. The self-excited vibration of the system under disturbance is studied. The relationship
between amplitude and frequency is calculated by a nonlinear approximate analytical algorithm,
and the accuracy of this relationship is verified by a numerical algorithm. Then, we compare the
differences between non-fractional systems and fractional systems. It is found that with the increase
in the fractional order term, the vibration amplitude of the system decreases significantly, which
helps to reduce the nonlinear characteristics generated by the friction system and narrow the range of
unstable solutions. Secondly, we also study the influence of parameter coefficients on the amplitude–
frequency characteristics and analyze the local static bifurcation characteristics through singularity
theory. Finally, we study the dynamic bifurcation behavior under different parameter perturbations
and find that the change in system parameters will lead to the alternation of periodic motion and
chaotic motion.

Keywords: fractional calculus; friction system; stability; bifurcation system

1. Introduction

In today’s society, collaborative robots [1] have become the fastest-growing and most
widely marketed type in the global robot industry. The cooperation between collaborative
robots and humans in industrial production can give full play to their respective advantages
and improve work efficiency, thus forming a healthy and efficient production mode. Thus
far, collaborative robots have been applied to various industries, such as manufacturing [2],
automobiles [3], electronics [4], biomedicine [5], logistics [6], agriculture [7], aerospace [8],
and many other industries. In the process of human–machine cooperation, we must
first ensure the safety of both humans and machines. As an important component of
robots, brakes can provide good protection for robots, especially when people manipulate
machines, which can protect both the robot and the controller. Therefore, it is necessary to
study brakes.

A brake is a device that slows down, stops, or maintains the stopped state of moving
parts. It is widely used in high-speed rail [9], robotic arms [10], new energy electric vehi-
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cles [11], and other fields, attracting many scholars to study it. Yuan [12] used finite element
software to compare the stability of brake systems with and without noise reduction pads,
studying how the use of noise reduction pads improves brake friction squeal. Additionally,
the relationship between the muffler’s structure and brake friction squeal was investigated.
Liu et al. [13] conducted a study on the force amplification coefficient that affects the force
transmission performance of the dry disk brake cartridge pressurization mechanism during
the process and return stroke, aiming at the mobility and braking efficiency of tracked
vehicles. Suo et al. [14] obtained the thermal elastoplastic constitutive relation of the brake
disk through experiments and simulated the stress–strain response relationship of the
lower brake disk using numerical calculations based on the sequential coupling method.
In many countries, brakes are used to ensure the safety of joints and equipment, such as
the robotic arm of the National Aeronautics and Space Administration [15], the European
ERA [16], and the space robotic arm designed by Chinese universities [17].

Fractional calculus is an important branch of mathematics. Fractional calculus not only
occupies an inevitable position in the development of mathematics, but its unique memory
characteristics and precise description of real-world models, especially its simplicity in de-
scribing nonlinear models, have attracted widespread attention in both theory and practice.
In response to the needs of applied disciplines, the theory and computational techniques of
fractional calculus continue to advance and have become a core tool for solving complex
scientific and engineering problems [18–20]. In some systems that require high accuracy, re-
searchers have increasingly high requirements for describing systems. Applying fractional
calculus to differential equations simplifies the resulting system differential equations, mak-
ing the calculated results more accurate. Fractional calculus models are applied in various
engineering fields [21–28]. To address the issue of low harmonic current at the DC bus in
DC microgrid systems, Lin et al. [29] proposed a fractional capacitance-based method to
force low harmonic currents. This method can theoretically achieve complete suppression
of any or combination of low harmonic currents. Zhu et al. [30] used the backstepping
method to design a boundary controller for fractional order reaction diffusion systems with
spatially dependent coupling coefficients and proved the fitness of the observation gain
and control gain kernel matrix equations. For error systems and closed-loop systems with
output feedback, the Mittag–Leffler stability of the system was analyzed using the fractional
order Lyapunov method. Moreover, using Wirtinger’s inequality, the stability conditions of
the coupled system are improved, and a numerical solution method for the kernel function
partial differential equation is given. Numerical simulation verifies the theoretical results.
Zhu et al. [31] proposed fractional order power flow and voltage analysis for systems with
fractional order inductors and capacitors. The results show that power system analysis
based on fractional order component models can not only reduce reactive power losses in
branches but also help improve voltage stability in power systems.

Viscoelastic materials [32] are widely used in various industries [33–35]. He et al. [36]
used laminated piezoelectric actuators as active isolation elements and designed passive
isolation elements based on viscoelastic materials. Li et al. [37] proposed a novel hybrid
isolator for simulating rigid satellites. Tang et al. [38] studied rubber isolators for auxiliary
power units. A nonlinear friction derivative dynamic model of rubber isolators has been
established. Chang et al. [39] proposed a viscoelastic constitutive model for metal rubber
that includes fractional order differentiation. Experimental results have shown that the
proposed nonlinear dynamic system model of metal rubber with fractional order subterms
has a continuous mathematical expression and can accurately reflect the complete dynamic
performance of the nonlinear system of metal rubber.

In various projects, there are few linear problems but more nonlinear problems. There-
fore, there have been many studies on nonlinear problems. Hamed [40] studied the
approximate nonlinear dynamic behavior of AFM systems using perturbation methods
and frequency response analysis. Kandil et al. [41] studied the oscillation behavior of the
bearing system and derived a nonlinear dynamic equation for the control system. In order
to eliminate the vibration of nonlinear dynamic beams, Ms et al. [42] added active control
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to their research and analyzed its stability, obtaining analytical and numerical solutions.
Wang [43,44] established a nonlinear dynamic equation for the relative rotation system of
two end-face rotating shafts, qualitatively analyzed the dynamic equation of equal torque,
and studied the stability and other properties of the equation. Finally, an approximate
analytical algorithm was developed to calculate the approximate solution of the equation
under specific conditions. In addition, the uniqueness and exact periodic solutions of a
class of relative rotational nonlinear dynamic systems were also studied.

In summary, the research on robots and brakes mainly considers the design of robot
brakes and the dynamic performance of disk brakes. However, the dynamic performance
analysis of nonlinear systems in robot electromagnetic brakes that incorporate fractional
differentiation has not yet been fully investigated. In this paper, viscoelastic materials are
added to the electromagnetic brake of a robot, which is used as a vibration isolation layer.
The stress of the newly added material is represented by a fractional order term, thereby
establishing a dynamic model of the electromagnetic brake of a robotic arm with fractional
differentiation. We calculated the relationship between the frequency and amplitude under
perturbation external conditions. By altering the external conditions, this study examined
the characteristics of the friction system, analyzed the conditions for bifurcation behavior,
and analyzed the local static and global steady-state characteristics.

2. Calculating an Approximate Solution

The new brake of the robotic arm is composed of a friction plate, brake caliper, electro-
magnet, spring, brake disk, shaft, and vibration isolation layer. Figure 1 is the functional
structure diagram of the new electromagnetic brake of the robotic arm with vibration isola-
tion layer. Figure 2 shows two states of the electromagnetic brake: (a) When the electrical
current is switched off, the friction plate contacts the brake disk under the action of spring
force, and the torque generated by the system is quickly stopped by the drive shaft. (b)
When the current passes through the magnetic coil of the electromagnetic brake, the friction
plate is pulled apart under the action of the magnetic force, releasing the brake disk. At
this time, the transmission shaft runs normally.
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Figure 1. Functional structure diagram of new electromagnetic brake for robotic arm with vibration
isolation layer.
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By analyzing the braking process of the electromagnetic brake, obtain the simplified
model (Figure 3):

Fractal Fract. 2024, 8, x FOR PEER REVIEW 4 of 22 
 

 

  
(a) (b) 

Figure 2. Different states of the new electromagnetic brake of the robotic arm. (a) Electromagnet 
power-off braking state. (b) Electromagnet power-on starting state. 

By analyzing the braking process of the electromagnetic brake, obtain the simplified 
model (Figure 3): 

m

K p1

x

Fn

vc

k1

k2

c1

c2

Fcos(ωt)

 
Figure 3. Nonlinear dynamic model of the new electromagnetic brake of a robotic arm. 

Kinetic equation: 
13 3

1 1 2 2( ) ( ) ( ) ( ) ( ) [ ( )] cos( )p
fmx t k x t c x t k x t c x t KD x t F F tω+ + + + + − =   . (1)

In Equation (1), k1 and k2 are linear and nonlinear stiffness coefficients; c1 and c2 are 
linear and nonlinear damping coefficients, respectively; cos( )F tω  is defined as an exter-
nal disturbance function; ( )1pD x t    is the fractional derivative; 1p  ( 10 1p≤ ≤ ) is the 

order of the fractional derivative; and K(K > 0) is the coefficient of the fractional derivative. 
fF  is the friction between the mass and the conveyor belt, which belongs to dry friction. 

There are many forms of definitions of fractional differential. In this paper, the ex-
pression of fractional order terms is defined using the Caputo [45] definition. Let the do-
main of the function x(t) be (a, b), and assume that x(t) is continuously differentiable up to 
order n on (a, b), where n − 1 < p < n and p > 0, then the Caputo fractional derivative is 
defined as follows: 

( ) ( ) ( ) ( )

( )
0

0

1 ( )

( )

1 d , 1 ( )

, ( )

t n p n

C p t
t t

n

t u x u u n p n n N
n pD x t

x t p n n N

− − + − − < < ∈Γ −=   
 = ∈



. 

(2)

In Equation (2), ( )tΓ  is a Gamma function satisfying ( ) ( )1z z zΓ + = Γ  when z > 0. 
In order to study the vibration generated by the brake during braking and its impact 

on frictional vibration, a static friction model is applied to the motion process of the system 
as a friction force. For high-performance motion control, in addition to the robot’s own 
coupling and nonlinear time-varying effects, the effect of nonlinear friction, such as the 
Stribeck effect, is particularly pronounced at low speeds. The dry friction model with the 
Stribeck effect exhibits a negative slope characteristic at low relative velocities. When the 

Figure 3. Nonlinear dynamic model of the new electromagnetic brake of a robotic arm.

Kinetic equation:

m
..
x(t) + k1x(t) + c1

.
x(t) + k2x(t)3 + c2

.
x(t)3 + KDp1 [x(t)]− Ff = F cos(ωt). (1)

In Equation (1), k1 and k2 are linear and nonlinear stiffness coefficients; c1 and c2 are
linear and nonlinear damping coefficients, respectively; F cos(ωt) is defined as an external
disturbance function; Dp1 [x(t)] is the fractional derivative; p1 (0 ≤ p1 ≤ 1) is the order of
the fractional derivative; and K(K > 0) is the coefficient of the fractional derivative. Ff is the
friction between the mass and the conveyor belt, which belongs to dry friction.

There are many forms of definitions of fractional differential. In this paper, the
expression of fractional order terms is defined using the Caputo [45] definition. Let the
domain of the function x(t) be (a, b), and assume that x(t) is continuously differentiable up
to order n on (a, b), where n − 1 < p < n and p > 0, then the Caputo fractional derivative is
defined as follows:

C
t0

Dp
t [x(t)] =

{
1

Γ(n−p)

∫ t
t0
(t − u)n−p−1x(n)(u)du, n − 1 < p < n(n ∈ N+)

x(n)(t), p = n(n ∈ N)
. (2)

In Equation (2), Γ(t) is a Gamma function satisfying Γ(z + 1) = zΓ(z) when z > 0.
In order to study the vibration generated by the brake during braking and its impact

on frictional vibration, a static friction model is applied to the motion process of the system
as a friction force. For high-performance motion control, in addition to the robot’s own
coupling and nonlinear time-varying effects, the effect of nonlinear friction, such as the
Stribeck effect, is particularly pronounced at low speeds. The dry friction model with the
Stribeck effect exhibits a negative slope characteristic at low relative velocities. When the
relative velocity reaches a certain threshold, the dry friction coefficient remains unchanged.
In this paper, a dry friction model with the Stribeck effect is selected.

Ff = Fnµ(
.
x(t)− vc), (3)

where Fn denotes external force and µ(
.
x(t)− vc) expresses the negative slope characteristics

of the friction coefficient using a polynomial function model:

µ(
.
x(t)− vc) = −µssign(

.
x(t)− vc) + k3(

.
x(t)− vc) + k4(

.
x(t)− vc)

3. (4)

where µ represents the coefficient of friction; k3 and k4 are constants; µs is the maximum
static friction coefficient; and vc is the speed of the conveyor belt.

In actual robotic arm operation, the brake usually works in a state close to equilibrium,
and the nonlinear effect of its dynamic response is relatively weak. Introducing a small
parameter ε can simulate this weak nonlinear effect, making the model closer to actual
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operating conditions. Therefore, Equation (1) is simplified into the following dimensionless
form:

..
x(t) + ω2

0x(t) + εβ1
.
x(t) + εα2x(t)3 + εβ2

.
x(t)3 + εγDp1 [x(t)]− ε f = ε f0 cos(ωt), (5)

ε f [
.
x(t)] = −ε[υsign(

.
x(t)− vc) + αn3

.
x(t) + αn4(

.
x(t)3 − 3

.
x(t)2vc + 3

.
x(t)v2

c )], (6)

where ω0 =
√

k1/m, εα1 = k1/m, εβ1 = c1/m, εα2 = k2/m, εβ2 = c2/m, εγ = K/m,
ε f0 = F/m, ε f = Ff /m, ευ = Fnµs/m, εαn3 = Fnk3/m, εαn4 = Fnk4/m, and ες = Fnµm/m.

This article uses the average method to obtain the analytical solution of the system.
The averaging method is a technique for handling weakly nonlinear system dynamics,
which simplifies problem solving by separating the fast oscillations and slow varying
parts of the system response and eliminating the fast oscillations. This method transforms
complex nonlinear problems into easier-to-handle linear or weakly nonlinear problems,
preserving key dynamic characteristics of the system and helping to predict long-term
behavior. In this article, the average method can effectively analyze the dynamic behavior
of the robotic arm brake and provide theoretical support for design optimization. Let
ω2 = ω2

0(1 + εσ1) and σ1 be tuning factors, then Equation (5) can be written as follows:

..
x(t) + ω2x(t) = εω2

0σ1x(t) + ε f0 cos(ωt)
−ε
{

β1
.
x(t) + α2x(t)3 + β2

.
x(t)3 + γDp1 [x(t)]− f (

.
x(t))

}
.

(7)

When ε = 0, the solution of the derived system and its derivative are as follows:

x(t) = a cos(ωt + θ), (8)

.
x(t) = −aω sin(ωt + θ). (9)

The changes of a and θ are considered here. Let ϕ = ωt + θa, by differentiating
Equation (8) to time t and eliminating Equation (9), we obtain the following:

.
a cos ϕ − a

.
θ sin ϕ = 0, (10)

− .
a sin ϕ − a

.
θ cos ϕ

= ε
ω

[
ω2

0σ1x(t) + f0 cos(ωt)− β1
.
x(t)− α2x(t)3 − β2

.
x(t)3 − γDp1 [x(t)] + f (

.
x(t))

]
.
(11)

Further obtaining:

.
a = − 1

ω
[P1(a, θ) + P2(a, θ) + P3(a, θ)] sin ϕ, (12)

.
θ = − 1

aω
[P1(a, θ) + P2(a, θ) + P3(a, θ)] cos ϕ, (13)

where:
P1(a, θ) = −εγDp1(a cos ϕ)

P2(a, θ) = ε

[
ω2

0σ1a cos ϕ + f0 cos(ϕ + θ) + β1aω sin ϕ − α2(a cos ϕ)3

+β2(aω sin ϕ)3

]
P3(a, θ) = ε f (aω sin ϕ)

. (14)

Integrate Equations (12) and (13) as follows:

.
a = − 1

ωT
∫ T

0 P1(a, θ) sin ϕdϕ − 1
ωT
∫ T

0 P2(a, θ) sin ϕdϕ

− 1
ωT
∫ T

0 P3(a, θ) sin ϕdϕ =
.
a1 +

.
a2 +

.
a3

, (15)
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.
θ = − 1

aωT
∫ T

0 P1(a, θ) cos ϕdϕ − 1
aωT

∫ T
0 P2(a, θ) cos ϕdϕ

− 1
aωT

∫ T
0 P3(a, θ) cos ϕdϕ =

.
θ1 +

.
θ2 +

.
θ3

. (16)

Before calculating the fractional integral, it is important to introduce two basic formu-
las:

B1 = lim
T→∞

∫ T

0

sin ωt
tp dt

t=s

1
1 − p ,dt=

1
1 − p

s

p
1 − p ds

−−−−−−−−−−−−−−−−−−−→ B1 =
1

1 − p
lim

T→∞

∫ T1−p

0
sin

ωs

1
1 − p

ds, (17)

B2 = lim
T→∞

∫ T

0

cos ωt
tp dt

t=s

1
1 − p ,dt=

1
1 − p

s

p
1 − p ds

−−−−−−−−−−−−−−−−−−−→ B2 =
1

1 − p
lim

T→∞

∫ T1−p

0
cos

ωs

1
1 − p

ds. (18)

Using the residue theorem and the contour integral:

B1 =
ωp−1Γ(2 − p)

1 − p
cos
( pπ

2

)
= ωp−1Γ(1 − p) cos

( pπ

2

)
, (19)

B2 =
ωp−1Γ(2 − p)

1 − p
sin
( pπ

2

)
= ωp−1Γ(1 − p) sin

( pπ

2

)
. (20)

Calculate the integral of the first part of Equation (15):

.
a1 = − lim

T→∞

1
Tω

∫ T
0 P1(a, θ) sin ϕdϕ = lim

T→∞

εγ

Tω

∫ T
0 Dp1(a cos ϕ) sin ϕdϕ

=
−εaγ

Γ(1 − p1)
lim

T→∞

1
T
∫ T

0

{[∫ t
0

cos(ωs)
sp1

ds
]

sin(ωt + θ) sin(ωt + θ)

}
dt

+
−εaγ

Γ(1 − p1)
lim

T→∞

1
T
∫ T

0

{[∫ t
0

sin(ωs)
sp1

ds
]

cos(ωt + θ) sin(ωt + θ)

}
dt

= A1 + A2

. (21)

A1 = − εaγωp1−1

2
sin
( p1π

2

)
. (22)

Similarly, it can be determined that when T → ∞ , A2 in Equation (21) approaches 0,
so:

.
a1 = A1 = − εaγωp1−1

2
sin
( p1π

2

)
. (23)

Using the same method, we can obtain the integral of the first part of Equation (16).

.
θ1 = − εγωp1−1

2
cos
( p1π

2

)
. (24)

Next:

.
a2 = − 1

ωT

∫ T

0
P2(a, θ) sin ϕdϕ = − ε

2ω

(
− f0 sin θ + β1aω +

3β2a3ω3

4

)
, (25)

.
θ2 = − 1

aωT

∫ T

0
P2(a, θ) cos ϕdϕ = − ε

2ωa

(
ω2

0σ1a + f0 cos θ − 3α2a3

4

)
. (26)

Finally:

.
a3 = − 1

ωT

∫ T

0
P3(a, θ) sin ϕdϕ =

ε

2

(
αn3a + αn4(

3
4

a3ω2 + 3av2
c )

)
, (27)



Fractal Fract. 2024, 8, 565 7 of 20

.
θ3 = − 1

Taω

∫ T

0
P3(a, θ) cos ϕdϕ = 0. (28)

Therefore, it is obtained that:

.
a = − εaγωp1−1

2 sin
( p1π

2
)
− ε

2ω

(
− f0 sin θ + β1aω + 3β2a3ω3

4

)
+ ε

2
(
αn3a + αn4(

3
4 a3ω2 + 3av2

c )
) , (29)

.
θ = − εγωp1−1

2
cos
( p1π

2

)
− ε

2ωa

(
ω2

0σ1a + f0 cos θ − 3α2a3

4

)
. (30)

The singular point (as, θs) in the moving phase plane is the solution of Equations
(29) and (30), and eliminating θs leads to the amplitude frequency curve equation of the
nonlinear system:[

−aγωp1 sin
( p1π

2
)
− β1aω − 3β2a3ω3

4 + ω
(
αn3a + αn4(

3
4 a3ω2 + 3av2

c )
)]2

+
[
−aγωp1 cos

( p1π
2
)
−
(

ω2
0σ1a − 3α2a3

4

)]2
− f 2

0 = W(as, ω)
. (31)

3. Stability Analysis

Analyze the stability of the system. Let
.
a = 0 and

.
θ = 0 to obtain:

0 = − εaγωp1−1

2 sin
( p1π

2
)
− ε

2ω

(
− f0 sin θ + β1aω + 3β2a3ω3

4

)
+ ε

2
(
αn3a + αn4(

3
4 a3ω2 + 3av2

c )
) , (32)

0 = − εγωp1−1

2
cos
( p1π

2

)
− ε

2ωa

(
ω2

0σ1a + f0 cos θ − 3α2a3

4

)
, (33)

Let a = a0 + ∆a, θ = θ0 + ∆θ, and substitute Equations (32) and (33):

d∆a
dt

=

[
− εγωp1−1

2
sin
( p1π

2

)
+ εDe

]
∆a +

ε

2ω
f0 cos θ0∆θ, (34)

d∆θ

dt
=

[
− εγωp1−1

2
cos
( p1π

2

)
− ε

2ω

(
ω2

0σ1 −
9α2a2

0
4

)]
∆a +

( ε

2ω
f0 sin θ0

)
∆θ, (35)

where De = − 1
2ω

(
β1ω +

3β23a2
0ω3

4

)
+ 1

2
(
αn3 + αn4(

3
4 3a2

0ω2 + 3v2
c )
)
.

The characteristic determinant can be obtained from Equations (34) and (35) as follows:∣∣∣∣∣∣
− γωp1−1

2 sin
( p1π

2
)
+ De − λ

− γωp1−1

2 cos
( p1π

2
)
− 1

2ω

(
ω2

0σ1 −
9α2a2

0
4

) −aDe +
aγωp1−1

2 sin
( p1π

2
)

− γωp1−1

2 sin
( p1π

2
)
+ De − λ

∣∣∣∣∣
= λ2 + N1λ + N2 = 0

, (36)

where λ is the root of the characteristic equation,

N1 =


(
− γωp1−1

2 sin( p1π
2 ) + De

)2

−
(
−aDe +

aγωp1−1

2 sin( p1π
2 )
)(

− γωp1−1

2 cos( p1π
2 )− 1

2ω

(
ω2

0σ1 −
9α2a2

0
4

))
,

N2 = −2
(
− γωp1−1

2 sin( p1π
2 ) + De

)
.

According to the Lyapunov stability theory and Routh criterion, if N1 > 0 and
N2 > 0, the trajectory of the singularity is asymptotically stable. If N2 < 0, the trajec-
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tory corresponding to the singularity is unstable. Therefore, N2 = 0 is the critical condition
for determining whether the trajectory is stable.

4. Curve of Amplitude Versus Frequency and Verification of Numerical Solution

According to Equation (31), take a set of operating conditions as follows: F0 = 1,
Fn = 0.2, m = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 0.1, c1 = 0.1, c2 = 0.01, K = 0.8, p = 0.4, vc = 0.1, and
us = 0.1.

Analyze the relationship between the amplitude and frequency of a system with
fractional subdivisions (FOS, K = 0.8, p = 0.4) and a system without fractional subdivisions
(NFOS, K = 0, p = 0).

Obtained from Figure 4, the amplitude–frequency relationship curve lags behind, and
there are unstable regions in both FOS and NFOS. In FOS, it can be seen that due to the
existence of fractional subdivisions, the maximum value of the curve is reduced, and the
nonlinearity is also reduced. The figure shows that with A as the demarcation point, when
the abscissa ω > A, the amplitude of FOS is greater than that of NFOS, and when the
abscissa ω > A, the amplitude of FOS is less than that of NFOS.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 9 of 22 
 

 

4. Curve of Amplitude versus Frequency and Verification of Numerical Solution 
According to Equation (31), take a set of operating conditions as follows: F0 = 1, Fn = 

0.2, m = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 0.1, c1 = 0.1, c2 = 0.01, K = 0.8, p = 0.4, vc = 0.1, and us = 0.1. 
Analyze the relationship between the amplitude and frequency of a system with frac-

tional subdivisions (FOS, K = 0.8, p = 0.4) and a system without fractional subdivisions 
(NFOS, K = 0, p = 0). 

Obtained from Figure 4, the amplitude–frequency relationship curve lags behind, 
and there are unstable regions in both FOS and NFOS. In FOS, it can be seen that due to 
the existence of fractional subdivisions, the maximum value of the curve is reduced, and 
the nonlinearity is also reduced. The figure shows that with A as the demarcation point, 
when the abscissa Aω > , the amplitude of FOS is greater than that of NFOS, and when 
the abscissa Aω > , the amplitude of FOS is less than that of NFOS. 

 
Figure 4. System amplitude–frequency response curve. 

Using the Runge–Kutta numerical method to verify the accuracy of the approximate 
analytical solution for the main resonance of the system calculated by the averaging 
method. Calculate the numerical iteration format of the system: 

1
1 2 -1 1

1
( ) ( ) - ( )

l

l l j l j
j

Z t Z t h C Z t −
=

=  , (37)

( )

3 3
2 1 1 1 1 2 1 2 1 1 1 2 1 1 1

3 1
3 1 1 4 1 1 1 3 1 2

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[ ( ( )

( ) ( ) ) cos (] )

l l l l l s l c
l

l c l c l j l j
j

Z t k Z t c Z t k Z t c Z t Fn sign Z t v

k Z t v k Z t v F hi K Z t h C Z t

μ

ω

− − − − −

− − − −
=

= − − − − + − −

+ − + − + − −
, 

(38)

1 11 1
3 2 1 3

1
( ( ) ) ) (

l
p p

l l j l j
j

Z t Z t h C Z t− −
− −

=

= −
, 

(39)

where 1Z  is displacement; 2Z  is velocity; 3Z  is fractional order sub-item; and h is step 
size. 
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Using the Runge–Kutta numerical method to verify the accuracy of the approximate
analytical solution for the main resonance of the system calculated by the averaging method.
Calculate the numerical iteration format of the system:

Z1(tl) = Z2(tl−1)h −
l

∑
j=1

C1
j Z1(tl−j), (37)

Z2(tl) = [−k1Z1(tl−1)− c1Z2(tl−1)− k2Z1(tl−1)
3 − c1Z2(tl−1)

3 + Fn(−µssign(Z1(tl−1)− vc)

+k3(Z1(tl−1)− vc) + k4(Z1(tl−1)− vc)
3) + F cos(ωhi)− K1Z3(tl−1)]h −

l
∑

j=1
C1

j Z2(tl−j)
, (38)

Z3(tl) = Z2(tl−1)h1−p1 −
l

∑
j=1

C1−p1
j Z3(tl−j), (39)

where Z1 is displacement; Z2 is velocity; Z3 is fractional order sub-item; and h is step size.
The numerical solution of the system was obtained by forward and backward fre-

quency scanning, as shown in Figure 5. Comparing the approximate analytical solution
calculated by the averaging method with the solution calculated by the numerical method,
it was found that the solutions obtained by the two methods were relatively close, and the
correctness of the approximate analytical solution could be obtained.
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5. Analysis of Amplitude Frequency Response Characteristics

Analyze the amplitude–frequency response characteristics under different parameter
values. The obtained results are represented in Figures 6–15.
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Figure 7. The effect of K on the amplitude–frequency curves at p = 0.9 and p = 0.1.

From Figure 6, when K increases, the maximum value of the FOS curve decreases,
the resonance interval gradually shifts to a small frequency range, and the nonlinearity
weakens. It shows that the increase in K not only increases the damping of the system but
also makes the system skeleton curve move to the left. When K increases, the maximum
value of the relation curve between NFOS amplitude and frequency increases, and the
resonance interval also changes to a small frequency range, but the nonlinearity tends
to increase. When K takes the same value, the resonance interval of the FOS curve is
located at the bottom left of the resonance interval of the NFOS amplitude–frequency
curve. In conclusion, the vibration amplitude of FOS is smaller than that of NFOS in the
resonance range.
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Figure 9. Amplitude–frequency curve when k2 changes (K = 1, p = 0.33).
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Figure 14. Amplitude frequency curve of c2 variation range 0.005-0.02 (K = 1, p = 0.33).
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Figure 15. Amplitude frequency curve of c2 variation range 0.02-0.035 (K = 1, p = 0.33).

When p is taken as a larger value, there is no unstable solution interval in the amplitude
and frequency relationship curve, thus reducing the nonlinear characteristics. As the value
of K increases, the peak value gradually decreases. When p is small, when K gradually
changes to a larger value, the maximum amplitude gradually decreases. The resonance
interval gradually moves to the low-frequency interval.
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From Figure 8, we can see that when the linear stiffness gradually increases, the
resonance interval gradually moves towards a higher frequency range, and the peak value
gradually decreases. From Figure 9, when the value of nonlinear stiffness k2 changes to
a larger value, the bending degree of the curve of the system increases, resulting in the
resonance interval biased towards a higher frequency range. The results indicate that
when the k2 value changes significantly, the nonlinear characteristics of the system become
stronger. As shown in Figures 10 and 11, when the values of k3 and k4 change significantly,
the relationship curve between amplitude and frequency decreases, and the bending degree
decreases gradually. It shows that the increase of k4 weakens the nonlinearity of the system,
and the influence on the curve is larger than that of Figures 10 and 11.

As shown in Figure 12, when the value of linear stiffness c1 changes to a larger value.
The nonlinear characteristics of the system become stronger. Resonance interval tends to
shift to a higher frequency range. Analyzing Figure 13, when Fn = 0, there is an unstable
solution region. As Fn increases to 0.6, the system amplitude gradually decreases. When
Fn is equal to 0.6, when the value of ω changes to a larger value, the curve of amplitude
and frequency decreases. From Figures 14 and 15, as ω increases, the system amplitude
increases with the increase of c2. When c2 is greater than 0.025, an independent loop
appears, and the nonlinearity is significantly enhanced.

6. Study on the Local Static Bifurcation Response Characteristics of the System

Construct the unfolding function by Equation (31):

G =
(

9
16 α2

2 +
( 3

4 an4ω3 − 3
4 b2ω3)2

)
a6

+

(
− 3α2

2
(
σ1 + γωp1 cos(πp1

2 )
)
−
( 3

2 an4ω3 − 3
2 β2ω3)

∗
(

β1ω − ω
(
3an4v2

c + an3
)
+ γωp1 sin(πp1

2 )
) )

a4

+
((

β1ω − ω
(
3an4v2

c + an3
)
+ γωp1 sin(πp1

2 )
)2

+ γωp1 cos(πp1
2 )
)

a2 − f 2
0

. (40)

Bifurcation point set:

B =
{

χ ∈ Rk
∣∣∣∃(a, ξ), ∃G = Ga = Gω = 0

}
. (41)

Lag point set:

H =
{

χ ∈ Rk
∣∣∣∃(a, ξ), ∃G = Gaa = Ga = 0

}
. (42)

Hyperbolic limit point set:

D =
{

χ ∈ Rk
∣∣∣∃(a, ξ)(j = 1, 2, a1 ̸= a2), ∃G = Ga = 0

}
. (43)

After calculation:

Ga = 2 ∗
( 3

4 a3β2ω3 − ω
(
aan3 + an4

( 3
4 a3ω2 + 3av2

c
))

+ aβ1ω + γωp1 sin(πp1
2 )
)

∗
(

β1ω − ω
(
an3 + an4

( 9
4 a2ω2 + 3v2

c
))

+ 9
4 a2β2ω3 + γωp1 sin(πp1

2 )
)

+2
(
aσ1 − 3

4 a3α2 + aγωp1 cos(πp1
2 )
)(

σ1 − 9
4 a2α2 + γωp1 cos(πp1

2 )
) , (44)

Gω = 2ap1γωp1−1cos(πp1
2 )
(
aσ1 − 3

4 a3α2 + aγωp1 cos(πp1
2 )
)

−2
( 3

4 a3β2ω3 − ω
(
aan3 + an4

( 3
4 a3ω2 + 3av2

c
))

+ aβ1ω + aγωp1 sin(πp1
2 )
)

∗
(
aan3 − aβ1 + an4

( 3
4 a3ω2 + 3av2

c
)
+ 3

2 a3an4ω2 − 9
4 a3β2ω2 − ap1γωp1−1 sin(πp1

2 )
) , (45)

Gaa = 2
(
σ1 − 9

4 a2α2 + γωp1 cos(πp1
2 )
)2 − 2

( 9
2 9aan4ω3 − 9

2 aβ2ω3)
∗
( 3

4 a3β2ω3 − ω
(
aan3 + an4

( 3
4 a3ω2 + 3av2

c
))

+ aβ1ω + aγωp1 sin(πp1
2 )
)

+2
(

β1ω − ω
(
an3 + an4

( 9
4 a2ω2 + 3v2

c
))

+ 9
4 a2β2ω3 + γωp1 sin(πp1

2 )
)2

−9aα2
(
aσ1 − 3

4 a3β2 + aγωp1 cos(πp1
2 )
) . (46)
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The system parameters are as follows: F0 = 1, Fn = 0.2, m = 1, k1 = 1, k2 = 1, k3 = 1,
k4 = 0.1, c1 = 0.1, c2 = 0.01, K = 4, p = 0.1, vc = 0.1, and us = 0.1. The bifurcation point set and
the lag point set are calculated as shown in Figures 16 and 17.
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The system parameters are as follows: F0 = 1, Fn = 0.2, m = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 
0.1, c1 = 0.1, c2 = 0.01, K = 4, p = 0.1, vc = 0.1, and us = 0.1. The bifurcation point set and the 
lag point set are calculated as shown in Figures 16 and 17. 
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Figure 16. Set of lag points, red represents G, green represents the first derivative of G with 
respect to a, and blue represents the second derivative of G with respect to a. 

Figure 16. Set of lag points, red represents G, green represents the first derivative of G with respect to
a, and blue represents the second derivative of G with respect to a.
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Figure 17. Set of bifurcation points, red represents G, green represents the first derivative of G with
respect to a, and yellow represents the first derivative of G with respect to ω.

As can be seen from Figure 16, the intersection point of the unfolding surface is the
lag point set of the system when the current parameter value is: H = (1.706, 4.066, 3.548).
According to the analysis of Figure 17, when the former parameter values are taken, the
intersection point of the expanded surface is the bifurcation point set of the system: B =
(2.387, 2.201, 0.3124).

By sorting Equation (37), let:

ξ = 9
16 α2

2 +
( 3

4 an4ω3 − 3
4 b2ω3)2

ξ1 = − 3α2
2
(
σ1 + γωp1 cos(πp1

2 )
)

−
( 3

2 an4ω3 − 3
2 β2ω3)(β1ω − ω

(
3an4v2

c + an3
)
+ γωp1 sin(πp1

2 )
)

ξ2 =
(

β1ω − ω
(
3an4v2

c + an3
)
+ γωp1 sin(πp1

2 )
)2

+ γωp1 cos(πp1
2 )

ζ = f 2
0

.

Further obtaining:

0 = a6 +
ξ1

ξ
a4 +

ξ2

ξ
a2 − ζ

ξ
. (47)

Equation (47) is a general expansion of equation 0 = a6 + ζ
ξ ; the codimension is 2,

and the system transition set is then calculated. The migration set can be represented as
∑ = B ∪ H ∪ D. Figure 8 is the system transition set and bifurcation diagram.

The parameters F0 = 1, Fn = 0.2, m = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 0.1, c1 = 0.1, c2 = 0.01,
K = 4, p = 0.1, vc = 0.1, and us = 0.1 are selected. The analysis of Figure 18 shows that the
corresponding bifurcation topology can be obtained by taking the values of ξ1/ξ and ξ2/ξ
in each region. By analyzing Figure 18b, we conclude that when the unfolding parameter
passes through the transition set H from region (1) into region (2), the jump phenomenon of
the system can be seen from the bifurcation topology diagram. Parts (2)–(4) in Figure 18b
show different bifurcation states.
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7. Bifurcation Response Characteristics

Take a set of operating parameters of the system and conduct bifurcation research
with the following parameter values: F0 = 1, m = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 0.1, c1 = 0.1,
p = 0.1, vc = 0.1, and us = 0.1.

From Figure 19, it can be seen that when Fn changes, the motion is different. When the
Fn value increases, the system state initially undergoes generalized three-period motion and
then becomes a large-scale chaotic state. It was not until Fn became 4.2 that it transitioned
to a small degree of chaotic motion. When in a chaotic state, the corresponding LLE graph
value is also greater than 0. The Fn values of different motion states are taken below; the
.
x − x diagrams and Poincaré diagrams are drawn to verify different motion states.

The data in Figure 19 is summarized in Table 1.

Table 1. The motion state when Fn takes different values.

Fn K Poincare Motion State

2 0.5 Three mapping points Three cycles
2.5 0.5 Mapping point set Chaos
4 0.5 Mapping point set Chaos
5 0.5 Mapping point set Chaos

From Figure 20, it can be seen that when K changes, it shows a different motion state
from Figure 19. When the value of Fn changes to a larger value, the state is a single cycle
→ chaotic state → two period motion → chaotic state → three period motion → chaos
→ single period motion. Compared with K = 0.5, the system state is more abundant at
K = 1.5. In a single cycle state, the LLE value is less than 0, while the value of LLE in other
motion states is greater than 0. The Fn values of different motion states are 2, 2.55, 2.6, 2.71,
2.88, 3.5, 3.8, and 4.35, respectively. The

.
x − x diagrams and Poincaré sections are drawn to

verify different motion states.
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Figure 19. When c2 = 0.01, ω = 1.8, and K = 0.5. (a) Bifurcation diagram; (b) Largest Lyapunov
Exponent (LLE); (c) phase diagram at Fn = 2; (d) Poincaré sections at Fn = 2; (e) phase diagram at
Fn = 2.5; (f) Poincaré sections at Fn = 2.5; (g) phase diagram at Fn = 4; (h) Poincaré sections at Fn = 4;
(i) phase diagram at Fn = 5; and (j) Poincaré sections at Fn = 5.

The data in Figure 20 is summarized in Table 2.

Table 2. Each typical point and motion state when Fn takes different values.

Fn K Poincare Motion State

2 1.5 A mapping point Single cycle
2.55 1.5 Mapping point set Chaos

2.6 1.5 Three-period
mapping Three cycles

2.71 1.5 Mapping point set Chaos
2.88 1.5 Biperiodic mapping Two cycles
3.5 1.5 Mapping point set Chaos

3.8 1.5 Three-period
mapping Three cycles

4.35 1.5 Mapping point set Chaos
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Figure 20. When c2 = 0.01, ω = 1.8, and K = 1.5. (a) Bifurcation diagram; (b) LLE;
(c) phase diagram at Fn = 2; (d) Poincaré sections at Fn = 2; (e) phase diagram at
Fn = 2.55; (f) Poincaré sections at Fn = 2.55; (g) phase diagram at Fn = 2.6; (h) Poincaré sections
at Fn = 2.6; (i) phase diagram at Fn = 2.71; (j) Poincaré sections at Fn = 2.71; (k) phase diagram at
Fn = 2.88; (l) Poincaré sections at Fn = 2.88; (m) phase diagram at Fn = 3.5; (n) Poincaré sections at
Fn = 3.5; (o) phase diagram at Fn = 3.8; (p) Poincaré sections at Fn = 3.8; (q) phase diagram at
Fn = 4.35; (r) Poincaré sections at Fn = 4.35.

It can be seen from Figure 21 that when K is equal to 2, when Fn increases, the system
changes in the order of single period → chaotic state → two-period motion. In a single cycle
state, the value of LLE is less than 0, while the value of LLE in other motion states is greater
than 0. Next, Fn values of different motion states are taken as 2, 3.5, and 4, respectively, and
the

.
x − x picture and Poincaré sections are calculated to verify different motion states of

the system.
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Figure 21. When c2 = 0.01, ω = 1.8, and K = 2. (a) Bifurcation diagram; (b) LLE; (c) phase diagram at
Fn = 2; (d) Poincaré sections at Fn = 2; (e) phase diagram at Fn = 3.5; (f) Poincaré sections at Fn = 3.5;
(g) phase diagram at Fn = 4; (h) Poincaré sections at Fn = 4.

The data in Figure 21 is summarized in Table 3.

Table 3. Each typical point and motion state when Fn takes different values.

Fn K Poincare Motion State

2 2 A mapping point Single cycle
3.5 2 Mapping point set Chaos
4 2 Biperiodic mapping Two cycles

Finally, to visually demonstrate the impact of fractional order on bifurcation, we
selected K as the bifurcation parameter in our study.

Analyzing Figure 22, the system exhibits a variety of rich motion phenomena, includ-
ing various periodic motion states. Our ultimate goal is to maintain the motion within a
single-cycle state. A bifurcation diagram within this range shows that the system moves in
one period, and the maximum Liapunov curve shows that the LLE value at this time is less
than 0.
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Figure 22. When Fn = 0.5 and p = 0.33. (a) Bifurcation diagram; (b) LLE.

8. Conclusions

In this study, we conducted in-depth research on a type of friction system. By applying
fractional calculus to viscoelastic systems, we have successfully described their unique
dynamic characteristics. We derived the equations for system amplitude and frequency
using a nonlinear approximate analytical algorithm (averaging method) and verified the
effectiveness of the analytical solution through power series expansion. By comparing
the amplitude frequency curves of FOS and NFOS, we found that adding fractional order
terms can effectively reduce the vibration amplitude, reduce the nonlinear characteristics
of the system, and narrow down the range of unstable solutions of the system.

We analyzed in detail the effects of damping parameters, stiffness parameters, frac-
tional order parameters, and disturbance parameters on the amplitude frequency curve.
Research has found that changes in system parameter values can lead to significant changes
in amplitude frequency curves and stability, providing a theoretical basis for material selec-
tion in system production. In addition, we investigated the local static bifurcation response
and obtained the law of bifurcation characteristics changing with the opening parameters.
Furthermore, we investigated the dynamic bifurcation behavior under different parameter
perturbations, and the results showed that changing the system parameters would cause
the system to alternate between single-period motion, multi-period motion, and chaotic
motion. Therefore, by controlling the system parameters, we can maintain the system
within the periodic motion range, thereby improving the stability of the system.

In order to better describe the response of the braking system and improve its perfor-
mance, we propose the following suggestions:

1. Adjust fractional order parameters to optimize the vibration characteristics of the
system, thereby reducing unnecessary energy loss.

2. Based on the amplitude frequency curve, select damping and stiffness parameters
reasonably to ensure that the system remains stable under predetermined operating
conditions.

By controlling the disturbance parameters, the system can avoid entering an unstable
or chaotic state and improve the reliability and performance of the braking system.

The advantages and disadvantages of using fractional derivatives for viscoelastic
materials in dynamic models are summarized as follows:

1. Advantages: (1) Fractional calculus can more accurately describe the memory char-
acteristics and time dependence of viscoelastic materials. (2) Fractional calculus
provides a more flexible tool to simulate the complex dynamic behavior of different
materials.

2. Disadvantages: (1) Compared with integer order calculus, fractional order calculus
has more complex calculations, especially in numerical calculations. This may lead to
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a decrease in computational efficiency, especially when processing large-scale data or
conducting real-time simulations. (2) The theoretical foundation of fractional calculus
is still relatively weak. The approximate processing of fractional calculus may lead to
errors in the results, and further verification and improvement are needed in future
research.

Author Contributions: Conceptualization, data curation, visualization, writing—original draft,
methodology, and formal analysis: W.M. Project administration, investigation, and supervision: Q.D.
Software, writing—review and editing, and validation: W.L. Funding acquisition and resources: Z.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Jilin Province Science and Technology Development Plan
Project (20240302038GX) and the Beijing Enterprise Horizontal Project (3R2205502419).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: Author Zhenqi Yang was employed by the company State Grid Jibei Electric
Power Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Mahdi, H.; Akgun, S.A.; Saleh, S.; Dautenhahn, K. A survey on the design and evolution of social robots—Past, present and

future. Robot. Auton. Syst. 2022, 156, 104193. [CrossRef]
2. Shah, A. Emerging trends in robotic aided additive manufacturing. In Proceedings of the International Conference on Additive

Manufacturing and Advanced Materials (AM2), Gandhinagar, India, 6 January 2022. [CrossRef]
3. Zbiss, K.; Kacem, A.; Santillo, M.; Mohammadi, A. Automatic Collision-Free Trajectory Generation for Collaborative Robotic

Car-Painting. IEEE Access 2022, 10, 9950–9959. [CrossRef]
4. Ju, H.; Park, H.; Kim, N.; Lim, J.; Jung, D.; Lee, J. A Locally Actuatable Soft Robotic Film for Actively Reconfiguring Shapes of

Flexible Electronics. Soft Robot. 2022, 9, 767–775. [CrossRef] [PubMed]
5. Volpe, G.; Cohen, S.; Capps, R.C.; Giacomelli, B.; McManus, R.; Scheckelhoff, K.; Choudhary, K.; Dabestani, A.T.; Hermann, S.;

Kuiper, S.; et al. Robotics in acute care hospitals. Am. J. Health Syst. Pharm. 2012, 69, 1601–1603. [CrossRef]
6. Oran, I.B.; Cezayirlioglu, H.R. AI—Robotic Applications in Logistics Industry and Savings Calculation. J. Organ. Behav. Res. 2021,

6, 148–165. [CrossRef]
7. Ghiani, L.; Sassu, A.; Palumbo, F.; Mercenaro, L.; Gambella, F. In-Field Automatic Detection of Grape Bunches under a Totally

Uncontrolled Environment. Sensors 2021, 21, 3908. [CrossRef] [PubMed]
8. Liu, X.-F.; Zhang, X.-Y.; Cai, G.-P.; Chen, W.-J. Capturing a Space Target Using a Flexible Space Robot. Appl. Sci. 2022, 12, 984.

[CrossRef]
9. Bocii, L.S.; Sanjuan, J.J.V. Determination of the Braking Characteristics in Case of the Variation Depending on the Temperature of

the Material Properties of the Friction Coupling of the Disc Brake of Railway Vehicles. Acta Tech. Napoc. Ser. Appl. Math. Mech.
Eng. 2022, 65, 125–134.

10. Zhang, W.; Zhao, C.; Chen, P.; Chen, E.; Lei, T. Numerical simulation and experimental research on mechanical behaviour of
hydraulic disc brakes based on multi-body dynamics. Sci. Rep. 2022, 12, 18594. [CrossRef]

11. Zhou, S.; Wang, Q.; Liu, J. Control Strategy and Simulation of the Regenerative Braking of an Electric Vehicle Based on an
Electromechanical Brake. Trans. Famena 2022, 46, 23–40. [CrossRef]

12. Yuan, Q. Study on the Influence of Damping Shim on Friction Squeal Characteristics of Automobile Disc Brakes. Noise Vib. Control
2022, 42, 201–207.

13. Liu, S.H.; Wang, Z.T.; Ren, Y.R.; Ning, K.Y.; Yang, L.L. Research on full-stroke transfer coefficient of brake’s ball-plate forcing
mechanism. J. Mach. Des. 2022, 39, 7–12.

14. Suo, R.; Shi, X. Temperature Field and Stress Field Distribution of Forged Steel Brake Disc for High speed Train. Jordan J. Mech.
Ind. Eng. 2022, 16, 113–121.

15. Christian, S. Canadian space robotic activities. Acta Astronaut. 2004, 41, 239–246. [CrossRef]
16. Verzijden, P. ERA performance measurements test results. In Proceedings of the 7th ESA Workshop on Advanced Space

Technologies for Robotics and Automation ‘ASTRA 2002′ ESTEC, Noordwijk, The Netherlands, 19–21 November 2002.
17. Shao, Z.Y.; Sun, H.X.; Jia, Q.X. Development of a general 2-dof space module. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1002–1007. [CrossRef]
18. Podlubny, I. Chapter 3—Existence and Uniqueness Theorems. In Mathematics in Science and Engineering; Elsevier: Amsterdam,

The Netherlands, 1999; Volume 198, pp. 121–136. [CrossRef]
19. Podlubny, I. Chapter 10—Survey of Applications of the Fractional Calculus. In Mathematics in Science and Engineering; Elsevier:

Amsterdam, The Netherlands, 1999; Volume 198, pp. 261–307. [CrossRef]

https://doi.org/10.1016/j.robot.2022.104193
https://doi.org/10.1016/j.matpr.2022.03.680
https://doi.org/10.1109/ACCESS.2022.3144631
https://doi.org/10.1089/soro.2021.0046
https://www.ncbi.nlm.nih.gov/pubmed/34694906
https://doi.org/10.2146/ajhp110348
https://doi.org/10.51847/jUXQmvCvqf
https://doi.org/10.3390/s21113908
https://www.ncbi.nlm.nih.gov/pubmed/34198844
https://doi.org/10.3390/app12030984
https://doi.org/10.1038/s41598-022-21960-4
https://doi.org/10.21278/TOF.461019420
https://doi.org/10.1016/S0094-5765(98)00082-4
https://doi.org/10.1109/IROS.2006.281782
https://doi.org/10.1016/S0076-5392(99)80022-8
https://doi.org/10.1016/S0076-5392(99)80029-0


Fractal Fract. 2024, 8, 565 20 of 20

20. Podlubny, I. Chapter 9—Fractional-order Systems and Controllers. In Mathematics in Science and Engineering; Elsevier: Amsterdam,
The Netherlands, 1999; Volume 198, pp. 243–260. [CrossRef]

21. Song, Y.; Wang, H.; Chang, Y.; Li, Y. Nonlinear creep model and parameter identification of mudstone based on a modified
fractional viscous body. Environ. Earth Sci. 2019, 78, 607. [CrossRef]

22. Di Paola, M.; Alotta, G.; Burlon, A.; Failla, G. A novel approach to nonlinear variable-order fractional viscoelasticity. Philos. Trans.
R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190296. [CrossRef] [PubMed]

23. Mezhoud, R.; Saoudi, K.; Zaraï, A.; Abdelmalek, S. Conditions for the local and global asymptotic stability of the time–fractional
Degn–Harrison system. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 749–759. [CrossRef]

24. Birs, I.; Muresan, C.; Nascu, I.; Ionescu, C. A survey of recent advances in fractional order control for time delay systems. IEEE
Access 2019, 7, 30951–30965. [CrossRef]

25. Yavari, M.; Nazemi, A. On fractional infinite-horizon optimal control problems with a combination of conformable and Caputo–
Fabrizio fractional derivatives. ISA Trans. 2020, 101, 78–90. [CrossRef]

26. Pourhashemi, A.; Ramezani, A.; Siahi, M. Dynamic Fractional-Order Sliding Mode Strategy to Control and Stabilize Fractional-
Order Nonlinear Biological Systems. IETE J. Research 2020, 68, 2560–2570. [CrossRef]

27. Tran, N.; Van Au, V.; Zhou, Y.; Tuan, N.H. On a final value problem for fractional reaction-diffusion equation with Riemann-
Liouville fractional derivative. Math. Methods Appl. Sci. 2020, 43, 3086–3098. [CrossRef]

28. Marco, A.; Prabakaran, B.; Ivan, B. Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas.
J. Mech. Behav. Biomed. Mater. 2019, 99, 186–197. [CrossRef]

29. Lin, Z.L.; Zhang, J.Y.; He, L.Z. Method of Multiple Low-order Harmonic Currents Suppression Based on Fractional-order
Capacitor. In Proceedings of the Chinese Society For Electrical Engineering, Wuhan, China, 9 February 2022; Volume 42,
pp. 8921–8932. [CrossRef]

30. Zhuang, B.; Cui, B.T.; Lou, X.Y.; Chen, J. Backstepping-based Output Feedback Boundary Control for Coupled Fractional
Reaction-diffusion Systems. Acta Autom. Sin. 2022, 48, 2729–2743. [CrossRef]

31. Zhu, H.H.; Zhu, J.Z.; Li, S.L.; Fan, J.W.; Done, H.J.; Wu, W.L. Power flow calculation and voltage analysis of fractional order
power system. Electr. Mach. Control 2022, 26, 38–46. [CrossRef]

32. Lu, C.H.; Bai, H.B. Study on Constitutive Model of Viscoelastic Material. Polym. Mater. Sci. Eng. 2007, 23, 28–31.
33. Dai, J.; Han, M.; Ang, K.K. Moving element analysis of partially filled freight trains subject to abrupt braking. Int. J. Mech. Sci.

2019, 151, 85–94. [CrossRef]
34. Wu, Q.; Luo, S.; Cole, C. Longitudinal dynamics and energy analysis for heavy haul trains. J. Mod. Transp. 2014, 22, 127–136.

[CrossRef]
35. Mastroddi, F.; Martarelli, F.; Eugeni, M.; Riso, C. Time- and frequency-domain linear viscoelastic modeling of highly damped

aerospace structures. Mech. Syst. Signal Process. 2019, 122, 42–55. [CrossRef]
36. He, Y.; Li, H.B.; Du, J. Dynamic Modulus Fitting Method of Viscoelastic Materials Based on Complex Neural Network. Chin. Q.

Mech. 2022, 43, 406–415. [CrossRef]
37. Li, M.M.; Fang, B.; Zhen, Y.X.; Zhao, J.X. A hybrid vibration isolator based on piezoelectric and viscoelastic materials. J. Vib. Shock

2017, 36, 134–140. [CrossRef]
38. Tang, Z.H.; Luo, G.H.; Chen, W.; Yang, G.; Fang, J. Parallel dynamic model of rubber isolator about five-parameter fractional

derivatives. J. Aerodyn. 2013, 28, 275–282. [CrossRef]
39. Chang, Y.J.; Tian, W.W.; Chen, E.L.; Shen, Y.J.; Xing, W.C. Dynamic model for the nonlinear hysteresis of metal rubber based on

the fractional-order derivative. Vib. Shock 2020, 39, 233–241. [CrossRef]
40. Hamed, Y.S.; Albogamy, K.M.; Sayed, M. Nonlinear vibrations control of a contact-mode AFM model via a time-delayed positive

position feedback. AEJ Alex. Eng. J. 2021, 60, 963–977. [CrossRef]
41. Kandil, A.; Sayed, M.; Saeed, N.A. On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic

bearings system. Eur. J. Mech. A/Solids 2020, 84, 104051. [CrossRef]
42. Ms, A.; Aamb, C.; Imd, E. Stability and bifurcation analysis of a buckled beam via active control. Appl. Math. Model. 2020, 82,

649–665. [CrossRef]
43. Wang, K. Stability and approximate solution of nonlinear dynamic system of a cylinder with two end faces in relative rotation.

Acta Phys. Sin. 2005, 54, 5530–5533. [CrossRef]
44. Wang, K.; Guan, X.P.; Qiao, J.M. Precise periodic solutions and uniqueness of periodic solutions of some relative rotation nonlinear

dynamic system. Acta Phys. Sin. 2010, 59, 3648–3653. [CrossRef]
45. Podlubny, I. Chapter 2—Fractional Derivatives and Integrals. In Mathematics in Science and Engineering; Elsevier: Amsterdam, The

Netherlands, 1999; Volume 198, pp. 41–119. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0076-5392(99)80028-9
https://doi.org/10.1007/s12665-019-8619-z
https://doi.org/10.1098/rsta.2019.0296
https://www.ncbi.nlm.nih.gov/pubmed/32389079
https://doi.org/10.1515/ijnsns-2019-0159
https://doi.org/10.1109/ACCESS.2019.2902567
https://doi.org/10.1016/j.isatra.2020.02.011
https://doi.org/10.1080/03772063.2020.1719909
https://doi.org/10.1002/mma.6103
https://doi.org/10.1016/j.jmbbm.2019.07.010
https://doi.org/10.13334/j.0258-8013.pcsee.211903
https://doi.org/10.16383/j.aas.c190389
https://doi.org/10.15938/j.emc.2022.04.005
https://doi.org/10.1016/j.ijmecsci.2018.11.011
https://doi.org/10.1007/s40534-014-0055-x
https://doi.org/10.1016/j.ymssp.2018.12.023
https://doi.org/10.15959/j.cnki.0254-0053.2022.02.019
https://doi.org/10.13465/j.cnki.jvs.2017.01.020
https://doi.org/10.13224/j.cnki.jasp.2013.02.004
https://doi.org/10.13465/j.cnki.jvs.2020.14.032
https://doi.org/10.1016/j.aej.2020.10.024
https://doi.org/10.1016/j.euromechsol.2020.104051
https://doi.org/10.1016/j.apm.2020.01.074
https://doi.org/10.7498/aps.54.5530
https://doi.org/10.7498/aps.59.3648
https://doi.org/10.1016/S0076-5392(99)80021-6

	Introduction 
	Calculating an Approximate Solution 
	Stability Analysis 
	Curve of Amplitude Versus Frequency and Verification of Numerical Solution 
	Analysis of Amplitude Frequency Response Characteristics 
	Study on the Local Static Bifurcation Response Characteristics of the System 
	Bifurcation Response Characteristics 
	Conclusions 
	References

