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Abstract: In this paper, we study a class of nabla fractional difference equations with multipoint
summation boundary conditions. We obtain the exact expression of the corresponding Green’s
function and deduce some of its properties. Then, we impose some sufficient conditions in order
to ensure existence and uniqueness results. Also, we establish some conditions under which the
solution to the considered problem is generalized Ulam–Hyers–Rassias stable. In the end, some
examples are included in order to illustrate our main results.
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1. Introduction

The notion of the fractional derivative [1,2] dates back to the works of Euler, but the
idea of fractional difference is recent. Discrete fractional calculus is an integrated theory
of sums and differences of an arbitrary order [3,4]. Two perspectives may be found in the
literature on fractional differences: the ∆ point of view, also known as the delta fractional
difference, and the ∇ perspective, also known as the nabla fractional difference. We limit
ourselves to the second method in this article.

The notion of nabla fractional difference can be traced back to the work of Gray and
Zhang [5], and Miller and Ross [6]. In this line, Atici and Eloe [7] developed the Riemann–
Liouville nabla fractional difference; initiated the study of nabla fractional initial value
problem; and established exponential law, product rule, and nabla Laplace transform.

Since then, the non-local character of nabla fractional differences has attracted a lot of
attention regarding the theory and applications of nabla fractional calculus. It is an ideal
tool for simulating non-local phenomena in time or space. There is a long-term memory
effect in the nabla fractional difference of a function as it holds information about this
function at previous times. Many natural systems, including those with non-local effects,
are better described by nabla fractional difference equations than by integer-order difference
equations. A strong theory of nabla fractional calculus for discrete-variable, real-valued
functions was developed as a consequence of the contributions of multiple mathematicians.
We refer to a recent monograph [4] and its sources for a thorough introduction to the
development of nabla fractional calculus.

During the past decade, interest in analyzing discrete fractional boundary value
problems increased. To name a few works, we refer to [8–24]. Recently, Ulam–Hyers-type
stability [25–28] has palyed an important role in many applied problems in biology and
economics. However, it is not a common result in discrete fractional calculus and there
are only a few papers in this direction [13,29–32]. To the best of our knowledge, both
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the existence results and the Ulam–Hyers–Rassias stability results for multipoint nabla
fractional problems had been obtained before.

Motivated by these developments, in this work, we study existence, uniqueness, and
stability of solutions for the following nonlinear nabla fractional difference problem with
multipoint summation boundary conditions

−
(
∇ν

ρ(a)u
)
(t) = f (t, u(t)), t ∈ Nb

a+2, (1)

u(a) = A, u(b) + µ
b−1

∑
s=a+1

u(s) = B, (2)

where a, b, A, B ∈ R; µ > 0; u : Nb
a → R; f : Nb

a+2 ×R → R is continuous with respect to
the second argument; 1 < ν < 2 and ∇ν

ρ(a)u denotes the νth-order Riemann–Liouville nabla
fractional difference of u based at ρ(a) = a − 1.

Our interest in the above problem also comes from the fact that the mathematical
models of many real-world phenomena can be represented by multi-point boundary value
problems. Such models have a large number of applications in numerous areas of science
and engineering, such as electric power networks, electric railway systems, elasticity,
thermodynamics, telecommunication lines, and wave propagation. For more details, we
refer to [33] and the references therein. As mentioned above, there are no results for
the solutions of nabla fractional boundary value problems with multi-point boundary
conditions, and our work seems to be the first one in this direction. The present paper is
organized as follows. In Section 2, we recall some preliminaries on nabla fractional calculus,
Ulam–Hyers stability, and fixed-point theory. In Section 3, we construct the Green’s function
associated with (1) and (2). We also derive a few of their essential properties. Then,
in Section 4, we impose some sufficient conditions in order to deduce the existence and
uniqueness of solutions to (1) and (2) using various fixed-point theorems. In Section 5, we
state and prove the Ulam–Hyers stability results for (1) and (2). Finally, we provide an
example in Section 6 to illustrate our main results.

2. Preliminaries

First, we provide some definitions and fundamental facts of nabla fractional cal-
culus [4], which we are going to use later. Denote by Na = {a, a + 1, a + 2, . . .} and
Nb

a = {a, a + 1, a + 2, . . . , b} for any a, b ∈ R such that b − a ∈ N1. The backward jump
operator ρ : Na+1 → Na is defined by

ρ(t) = t − 1, t ∈ Na+1.

For t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈ R \ {. . . ,−2,−1, 0}, the general-
ized rising function is defined by

tr =
Γ(t + r)

Γ(t)
.

Also, tr = 0, if t ∈ {. . . ,−2,−1, 0} and r ∈ R, such that (t + r) ∈ R \ {. . . ,−2,−1, 0}.
Let µ ∈ R \ {. . . ,−3,−2,−1}. The µth-order nabla fractional Taylor monomial is

defined as

Hµ(t, a) =
(t − a)µ

Γ(µ + 1)
,

provided the right-hand side exists. Note that for all µ ∈ {. . . ,−3,−2,−1} and t ∈ Na, we
have Hµ(a, a) = Hµ(t, a) = 0 .

Let u : Na+1 → R and N ∈ N1. The Nth-order nabla sum of u based on a is defined as

(
∇−N

a u
)
(t) =

t

∑
s=a+1

HN−1(t, ρ(s))u(s), t ∈ Na.
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Moreover,
(
∇−N

a u
)
(a) = 0 and

(
∇−0

a u
)
(t) = u(t) for all t ∈ Na+1.

Definition 1 ([4]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u based at a is
defined as (

∇−ν
a u

)
(t) =

t

∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

with
(
∇−ν

a u
)
(a) = 0.

Definition 2 ([4]). Let u : Na+1 → R, ν > 0 and N ∈ N1, such that N − 1 < ν ≤ N.
The νth-order Riemann–Liouville nabla difference of u is given by(

∇ν
au
)
(t) =

(
∇N(∇−(N−ν)

a u
))

(t), t ∈ Na+N .

Similar to the definitions given in [27], we introduce the definitions of Ulam stability
for nabla fractional difference equations.

Consider the following two inequalities:∣∣∣(∇ν
ρ(a)u

)
(t) + f (t, u(t))

∣∣∣ ≤ ϵ, t ∈ Nb
a+2, (3)∣∣∣(∇ν

ρ(a)u
)
(t) + f (t, u(t))

∣∣∣ ≤ ϵψ(t), t ∈ Nb
a+2, (4)

where ψ : Nb
a+2 → R+.

Definition 3 ([27]). Problem (1) and (2) is said to be Ulam–Hyers stable if there exists a real
number d f > 0, such that for each ϵ > 0 and for every solution u2 : Nb

a → R of (2) and (3), there
exists a solution u1 : Nb

a → R of (1) and (2) with

|u1(t)− u2(t)| ≤ ϵd f , t ∈ Nb
a.

Moreover, (1) and (2) is said to be generalized Ulam–Hyers stable if

|u1(t)− u2(t)| ≤ ϕ f (ε), t ∈ Nb
a,

where ϕ f ∈ C(R+,R+) and ϕ f (0) = 0.

Definition 4 ([27]). Problem (1) and (2) is said to be Ulam–Hyers–Rassias stable with respect to
the function ψ : Nb

a → R+ if there exists a real number d f ,ψ > 0, such that for each ϵ > 0 and for
every solution u2 : Nb

a → R of (2)–(4), there exists a solution u1 : Nb
a → R of (1) and (2) with

|u1(t)− u2(t)| ≤ ϵψ(t)d f ,ψ, t ∈ Nb
a.

Moreover, (1) and (2) is said to be generalized Ulam–Hyers–Rassias stable with respect to the
function Ψ : Nb

a → R+ if there exists a real number d f ,Ψ > 0, such that for every solution
u2 : Nb

a → R of (2)–(4), there exists a solution u1 : Nb
a → R of (1) and (2) with

|u1(t)− u2(t)| ≤ Ψ(t)d f ,Ψ, t ∈ Nb
a.

Finally, we provide the statements of Brouwer and Banach fixed-point theorems as
follows:

Theorem 1 ([34]). (Brouwer Fixed-Point Theorem) Let K be a nonempty compact convex subset
of a finite dimensional normed space B = (B, ∥ · ∥), and let T be a continuous mapping of K into
itself. Then, T has a fixed point in K.
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Theorem 2 ([34]). (Banach Fixed-Point Theorem) Let K be a closed subset of a Banach space
B = (B, ∥ · ∥), and let T : K → K be a contraction mapping. Then, T has a unique fixed point
in K.

3. Green’s Function

First, our aim is to obtain the exact expression of the Green’s function corresponding
to the linear problem

−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Nb

a+2, (5)

u(a) = 0, u(b) + µ
b−1

∑
s=a+1

u(s) = 0, µ > 0, (6)

with h : Nb
a+2 → R and 1 < ν < 2. Denote:

ϕ(r) = Hν−1(b, ρ(r)) + µHν(b, r), r ∈ Nb
a,

Λ = Hν−1(b, a) + µHν(b − 1, a).

Theorem 3. Assume Λ ̸= 0. The linear problem (5) and (6) has a unique solution

u(t) =
b

∑
s=a+2

G(t, s)h(s), t ∈ Nb
a, (7)

where

G(t, s) =

{
G1(t, s), t ∈ Nρ(s)

a ,
G2(t, s), t ∈ Nb

s ,
(8)

with

G1(t, s) =
Hν−1(t, a)ϕ(s)

Λ
,

and
G2(t, s) = G1(t, s)− Hν−1(t, ρ(s)).

Proof. Applying ∇−ν
a+1 on both sides of the nabla problem (5), we obtain that the general

solution is given by

u(t) = C1Hν−1(t, ρ(a)) + C2Hν−2(t, ρ(a))−
t

∑
s=a+2

Hν−1(t, ρ(s))h(s), t ∈ Nb
a, (9)

where C1 and C2 are arbitrary constants. As Hν−1(a, ρ(a)) = Hν−2(a, ρ(a)) = 1, the first
condition u(a) = 0, shows that

C1 + C2 = 0. (10)

From the second boundary condition, we obtain

C1Hν−1(b, ρ(a)) + C2Hν−2(b, ρ(a))−
b

∑
s=a+2

Hν−1(b, ρ(s))h(s)

+ µ
b−1

∑
s=a+1

[
C1Hν−1(s, ρ(a)) + C2Hν−2(s, ρ(a))−

s

∑
r=a+2

Hν−1(s, ρ(r))h(r)

]
= 0.

Replacing C2 with −C1 in the above equation, we deduce

C1 =
∑b

s=a+2 Hν−1(b, ρ(s))h(s) + µ ∑b−1
s=a+1 ∑s

r=a+2 Hν−1(s, ρ(r))h(r)

Hν−1(b, ρ(a))− Hν−2(b, ρ(a)) + µ ∑b−1
s=a+1[Hν−1(s, ρ(a))− Hν−2(s, ρ(a))]

. (11)
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Note that
Hν−1(b, ρ(a))− Hν−2(b, ρ(a)) = Hν−1(b, a).

Now, we will show by induction that for every b ≥ a + 2, the following equality holds

Hν(b − 1, a) =
b−1

∑
s=a+1

Hν−1(s, a).

For b = a + 2, it is necessary to check that Hν−1(a + 1, a) = Hν(a + 1, a) = 1.
Suppose that our claim holds for some b = k, i.e,

Hν(k − 1, a) = Hν−1(a + 1, a) + Hν−1(a + 2, a) + ... + Hν−1(k − 1, a).

In order to show that the equation holds for b = k + 1, one needs to check that

Hν(k, a) = Hν(k − 1, a) + Hν−1(k, a),

which clearly holds.
As a result,

Hν−1(b, ρ(a))− Hν−2(b, ρ(a)) + µ
b−1

∑
s=a+1

[Hν−1(s, ρ(a))− Hν−2(s, ρ(a))]

= Hν−1(b, a) + µ
b−1

∑
s=a+1

Hν−1(s, a)

= Hν−1(b, a) + µHν(b − 1, a)

= Λ.

Moreover, as Hν(b, b) = 0, we have

b

∑
s=a+2

Hν−1(b, ρ(s))h(s) + µ
b−1

∑
s=a+1

s

∑
r=a+2

Hν−1(s, ρ(r))h(r)

=
b

∑
s=a+2

Hν−1(b, ρ(s))h(s) + µ
b−1

∑
s=a+2

s

∑
r=a+2

Hν−1(s, ρ(r))h(r)

=
b

∑
s=a+2

Hν−1(b, ρ(s))h(s) + µ
b−1

∑
r=a+2

[
b−1

∑
s=r

Hν−1(s, ρ(r))

]
h(r)

=
b

∑
s=a+2

Hν−1(b, ρ(s))h(s) + µ
b−1

∑
r=a+2

Hν(b, r)h(r)

=
b

∑
s=a+2

Hν−1(b, ρ(s))h(s) + µ
b

∑
s=a+2

Hν(b, s)h(s)

=
b

∑
s=a+2

ϕ(s)h(s).

From (10) and (11), we deduce that

C1 =
1
Λ

b

∑
s=a+2

ϕ(s)h(s), (12)

and

C2 = − 1
Λ

b

∑
s=a+2

ϕ(s)h(s). (13)

Substituting (12) and (13) in (9), we obtain (7).
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Lemma 1. The Green’s function defined in (8) satisfies the identity

b

∑
s=a+2

|G(t, s)| ≤ Hν−1(b, a)
Λ

[Hν(b, a + 1) + µHν+1(b, a + 2)] + Hν(b, a + 1) = G,

for t ∈ Nb
a.

Proof. Clearly, Λ > 0. Also, for each s ∈ Nb
a,

ϕ(s) = Hν−1(b, ρ(s)) + µHν(b, s) > 0.

Moreover, since
Hν−1(t, a) ≥ 0, t ∈ Nb

a,

one can check that

b

∑
s=a+2

|G(t, s)| =
t

∑
s=a+2

|G2(t, s)|+
b

∑
s=t+1

|G1(t, s)|

=
t

∑
s=a+2

|G1(t, s)− Hν−1(t, ρ(s))|+
b

∑
s=t+1

|G1(t, s)|

≤
b

∑
s=a+2

|G1(t, s)|+
t

∑
s=a+2

Hν−1(t, ρ(s))

=
b

∑
s=a+2

∣∣∣∣Hν−1(t, a)ϕ(s)
Λ

∣∣∣∣+ Hν(t, a + 1)

=
Hν−1(t, a)

Λ

b

∑
s=a+2

[Hν−1(b, ρ(s)) + µHν(b, s)] + Hν(t, a + 1)

=
Hν−1(t, a)

Λ
[Hν(b, a + 1) + µHν+1(b, a + 2)] + Hν(t, a + 1).

Finally, using t ∈ Nb
a,

Hν−1(t, a) ≤ Hν−1(b, a) and Hν(t, a + 1) ≤ Hν(b, a + 1),

the proof is complete.

Now, our aim is to obtain the exact expression of the unique solution of the following
nabla problem:

−
(
∇ν

ρ(a)u
)
(t) = h(t), t ∈ Nb

a+2, (14)

u(a) = A, u(b) + µ
b−1

∑
s=a+1

u(s) = B, µ > 0. (15)

First, we establish the following result.

Lemma 2. Assume Λ ̸= 0. The unique solution of the nabla fractional problem

−
(
∇ν

ρ(a)v
)
(t) = 0, t ∈ Nb

a+2, (16)

v(a) = A, v(b) + µ
b−1

∑
s=a+1

v(s) = B, µ > 0,
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is

v(t) =
1
Λ

[
(Aµ + B)Hν−1(t, a)− AµHν−2(t, ρ(a))Hν(b, a)

(ν − 1)

+ A
(

b − t
ν − 1

)
[Hν−2(t, ρ(a))Hν−2(b, ρ(a)) + µHν−2(t, ρ(a))Hν−1(b, a)]

]
, (17)

for t ∈ Nb
a.

Proof. Using similar arguments as before, the general solution of (16) is

v(t) = C1Hν−1(t, ρ(a)) + C2Hν−2(t, ρ(a)), t ∈ Nb
a. (18)

The condition v(a) = A, implies that

C1 + C2 = A. (19)

Using the condition v(b) + µ
b−1

∑
s=a+1

v(s) = B in (18), we obtain

C1Hν−1(b, ρ(a)) + C2Hν−2(b, ρ(a))

+ µ
b−1

∑
s=a+1

[C1Hν−1(s, ρ(a)) + C2Hν−2(s, ρ(a))] = B. (20)

It is necessary to check that

b−1

∑
s=a+1

Hν−1(s, ρ(a)) =
b−1

∑
s=a

Hν−1(s, ρ(a))− Hν−1(a, ρ(a))

= Hν(b − 1, ρ(a))− 1

= Hν(b, a)− 1.

Similarly,
b−1

∑
s=a+1

Hν−2(s, ρ(a)) = Hν−1(b, a)− 1.

Then, from (20), we obtain

C1[Hν−1(b, ρ(a)) + µ(Hν(b, a)− 1)]

+ C2[Hν−2(b, ρ(a)) + µ(Hν−1(b, a)− 1)] = B. (21)

Solving (19) and (21), we obtain. Thus,

C1 =
−AHν−2(b, ρ(a))− AµHν−1(b, a) + Aµ + B

Λ
, (22)

and

C2 =
AHν−1(b, ρ(a)) + AµHν(b, a)− Aµ − B

Λ
. (23)

Substituting (22) and (23) in (18), we obtain (17).

From the above results, it follows that the unique solution of the boundary problem
(14) and (15) has the following representation.
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Theorem 4. Assume Λ ̸= 0 and h : Nb
a+2 → R. The unique solution of the nabla fractional

problem (14) and (15) is

u(t) = v(t) +
b

∑
s=a+2

G(t, s)h(s), t ∈ Nb
a, (24)

where G(t, s) is given in (8) and v is given in (17).

Remark 1. For t ∈ Nb
a, we have

v(t) =
1
Λ

[
(Aµ + B)Hν−1(t, a)− AµHν−2(t, ρ(a))Hν(b, a)

(ν − 1)

+ A
(

b − t
ν − 1

)
[Hν−2(t, ρ(a))Hν−2(b, ρ(a)) + µHν−2(t, ρ(a))Hν−1(b, a)]

]
=

1
Λ

[
(Aµ + B)Hν−1(t, a) + A

(
b − t
ν − 1

)
Hν−2(t, ρ(a))Hν−2(b, ρ(a))

+
AµHν−2(t, ρ(a))

(ν − 1)
[(b − t)Hν−1(b, a)− Hν(b, a)]

]
.

As Hν(b, a) > 0, and for t ∈ Nb
a, one can verify that Hν−1(t, a) ≥ 0 and Hν−2(t, ρ(a)) > 0, then,

|v(t)| ≤ 1
Λ

[
(|A|µ + |B|)Hν−1(t, a) + |A|

(
b − t
ν − 1

)
Hν−2(t, ρ(a))Hν−2(b, ρ(a))

+
|A|µHν−2(t, ρ(a))

(ν − 1)
[(b − t)Hν−1(b, a) + Hν(b, a)]

]
.

Denote

V =
1
Λ

[
(|A|µ + |B|)Hν−1(b, a) + |A|

(
b − a
ν − 1

)
Hν−2(b, ρ(a))

+
|A|µ

(ν − 1)
[(b − a)Hν−1(b, a) + Hν(b, a)]

]
.

It is also clear that for t ∈ Nb
a, we have

Hν−1(t, a) ≤ Hν−1(b, a), Hν−2(t, ρ(a)) ≤ Hν−2(a, ρ(a)) = 1, (b − t) ≤ (b − a).

Thus,
|v(t)| ≤ V, t ∈ Nb

a.

4. Existence and Uniqueness Results

Now, let X be a Banach space equipped with the standard norm ∥y∥ =

max
{
|y(t)| : t ∈ Nb

a

}
. Set the compact, convex subset

K =
{

u ∈ X : ∥u∥ ≤ 2V
}

of X and the operator T : X → X by

Tu(t) =
b

∑
s=a+2

G(t, s) f (s, u(s)) + v(t), t ∈ Nb
a.

Now, we are in the position to establish our existence result based on Theorem 1.
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Theorem 5. Let

F = max
{
| f (t, u)| : (t, u) ∈ Nb

a ×
[
−2V, 2V

]}
> 0.

If GF ≤ V, then the nonlinear problem (1) and (2) has at least one solution in K.

Proof. For any t ∈ Nb
a and u ∈ K, we have

|Tu(t)| =

∣∣∣∣∣ b

∑
s=a+2

G(t, s) f (s, u(s)) + v(t)

∣∣∣∣∣
≤

b

∑
s=a+2

|G(t, s)|| f (s, u(s))|+ |v(t)|

≤ F
b

∑
s=a+2

|G(t, s)|+ V

≤ 2V,

which means that T : K → K. Continuity of f on R implies its uniform continuity on[
−2V, 2V

]
. Then, one can choose δ > 0, such that for all t ∈ Nb

a and for all u1, u2 ∈[
−2V, 2V

]
with |(t, u1)− (t, u2)| < δ, we have

| f (t, u1)− f (t, u2)| < ϵG−1.

Hence, for all t ∈ Nb
a,

|Tu1(t)− Tu2(t)| =

∣∣∣∣∣ b

∑
s=a+2

G(t, s) f (s, u1(s))−
b

∑
s=a+2

G(t, s) f (s, u2(s))

∣∣∣∣∣
≤

b

∑
s=a+2

|G(t, s)|| f (s, u1(s))− f (s, u2(s))|

< εG−1
b

∑
s=a+2

|G(t, s)| = ϵ,

which shows us that T has at least one fixed point in K.

Now, we provide the following uniqueness results based on Theorem 2.

Theorem 6. Where f is Lipschitz continuous on its second variable with a constant k > 0.
Moreover, if k < G−1, then the nonlinear problem (1) and (2) has a unique solution.

Proof. For all t ∈ Nb
a and u1, u2 ∈ X, we have

∥Tu1 − Tu2∥ ≤ max
t∈Nb

a

b

∑
s=a+2

|G(t, s)|| f (s, u1(s))− f (s, u2(s))|

≤ k max
t∈Nb

a

b

∑
s=a+2

|G(t, s)||u1(s)− u2(s)|

≤ kG∥u1 − u2∥.

As kG < 1, T is a contraction on X, which means that T has a unique fixed point u ∈ X.

5. Stability Analysis

Here, we will establish two stability results as follows.
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Theorem 7. Let f is Lipschitz continuous on its second variable with a constant k > 0. Moreover,
if k < G−1, then the nonlinear problem (1) and (2) is generalized Ulam–Hyers stable.

Proof. Let u1 be a solution of (1) and (2) and u2 is a solution of (2) and (3). From (3) and
(24), for t ∈ Nb

a, it follows that∣∣∣∣∣u2(t)−
(

v(t) +
b

∑
s=a+2

G(t, s) f (s, u2(s))

)∣∣∣∣∣ ≤ ε.

Moreover, for t ∈ Nb
a, we have

|u2(t)− u1(t)| =

∣∣∣∣∣u2(t)−
(

v(t) +
b

∑
s=a+2

G(t, s) f (s, u1(s))

)∣∣∣∣∣
≤

∣∣∣∣∣u2(t)−
(

v(t) +
b

∑
s=a+2

G(t, s) f (s, u2(s))

)∣∣∣∣∣
+

∣∣∣∣∣ b

∑
s=a+2

G(t, s) f (s, u2(s))−
b

∑
s=a+2

G(t, s) f (s, u1(s))

∣∣∣∣∣
≤ ϵ + kG|u2(t)− u1(t)|,

implying that

|u2(t)− u1(t)| ≤
ϵ

1 − kG
= ϵd f .

Clearly, from Definition 3, the solution of problem (1) is Ulam–Hyers stable. Moreover,
as one can choose ϕ f (ε) = ϵ

1−kG
with ϕ f (0) = 0, the solution of problem (1) and (2) is

generalized Ulam–Hyers stable.

Theorem 8. Let f be Lipschitz continuous on its second variable with a constant k > 0. Moreover,
if k < G−1, then the nonlinear problem (1) and (2) is Ulam–Hyers–Rassias stable with respect to
the function ψ : Nb

a → R+ and, consequently, it is generalized Ulam–Hyers–Rassias stable.

Proof. Let u1 be a solution to (1) and (2) and u2 is a solution of (2) and (3). From (4) and
(24), for t ∈ Nb

a, it follows that∣∣∣∣∣u2(t)−
(

v(t) +
b

∑
s=a+2

G(t, s) f (s, u2(s))

)∣∣∣∣∣ ≤ ϵψ(t).

Furthermore, for t ∈ Nb
a, we have

|u2(t)− u1(t)| =

∣∣∣∣∣u2(t)−
(

v(t) +
b

∑
s=a+2

G(t, s) f (s, u1(s))

)∣∣∣∣∣
≤

∣∣∣∣∣u2(t)−
(

v(t) +
b

∑
s=a+2

G(t, s) f (s, u2(s))

)∣∣∣∣∣
+

∣∣∣∣∣ b

∑
s=a+2

G(t, s) f (s, u2(s))−
b

∑
s=a+2

G(t, s) f (s, u1(s))

∣∣∣∣∣
≤ ϵψ(t) + kG|u2(t)− u1(t)|,

implying that

|u2(t)− u1(t)| ≤
ϵψ(t)

1 − kG
= ϵψ(t)d f ,ψ.
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As a result, from Definition 4, the solution of problem (1) and (2) is Ulam–Hyers–Rassias
stable with respect to the function ψ and, consequently, choosing Ψ(t) = ϵψ(t), it is
generalized Ulam–Hyers–Rassias stable.

6. Examples

In the end, we provide an example to show the applicability of our main results.

Example 1. Consider (1) and (2) with a = 0, b = 5, ν = 1.5, µ = 1
2 , A = B = 1, and f (t, ξ) =

1
35 (t + ξ) for all (t, ξ) ∈ N5

2 ×R. Then,

Λ = H0.5(5, 0) +
H1.5(4, 0)

2
= 5.7422,

V =
1
Λ

[
(1.5)H0.5(5, 0) +

(
5

0.5

)
H−0.5(5,−1) + 5H0.5(5, 0) + H1.5(4, 0)

]
= 4.4728,

G =
H0.5(5, 0)

Λ

[
H1.5(5, 1) +

H2.5(5, 2)
2

]
+ H1.5(5, 1) = 11.0628,

and

F = max
{∣∣∣∣ 1

35
(t + ξ)

∣∣∣∣ : t ∈ N5
2, |ξ| ≤ 8.9456

}
= 0.3984.

As GF = 4.4074 ≤ V, by Theorem 5, the nonlinear problem (1) and (2) has at least one solution in
u ∈ K.

Moreover, f is Lipschitz continuous on its second variable with a constant k = 1
35 . Since

kG = 0.3161 < 1, from Theorem 6, the nonlinear problem (1) and (2) has a unique solution u ∈ X.
And, from Theorem 7, the nonlinear problem (1) and (2) is generalized Ulam–Hyers stable.

7. Conclusions

In this work, we study a completely new for the literature problem (1) and (2). We
were able to construct the Green’s function related to the linear problem and to deduce
some of its properties. Then, using various fixed-point theorems, under some suitable
conditions, we obtained the existence and uniqueness of solutions to (1) and (2). In the end,
we proved that these solutions are Ulam–Hyers stable. We point out that, to the best of
knowledge, this is the first paper that deals with the existence and stability results for nabla
fractional difference equations with summation boundary conditions. Our results can be
used in future works as a base for researchers to obtain the existence and multiplicity of
positive solutions via some topological methods.
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