i fractal and fractional

[

Article

Exploring Soliton Solutions and Chaotic Dynamics in the
(3+1)-Dimensional Wazwaz-Benjamin-Bona—Mahony Equation:
A Generalized Rational Exponential Function Approach

Amjad E. Hamza 1 Muntasir Suhail #*, Amer Alsulami 3, Alaa Mustafa ¢, Khaled Aldwoah 5*

and Hicham Saber !

check for
updates

Citation: Hamza, A.E.; Suhail, M.;
Alsulami, A.; Mustafa, A.; Aldwoah,
K.; Saber, H. Exploring Soliton
Solutions and Chaotic Dynamics in
the (3+1)-Dimensional Wazwaz—
Benjamin-Bona-Mahony Equation:
A Generalized Rational Exponential
Function Approach. Fractal Fract.
2024, 8,592. https://doi.org/
10.3390/ fractalfract8100592

Academic Editors: Andrey Zahariev

and Hristo Kiskinov

Received: 14 September 2024
Revised: 30 September 2024
Accepted: 3 October 2024
Published: 9 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, College of Science, University of Ha'il, Ha'il 55473, Saudi Arabia

Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
Department of Mathematics, Turabah University College, Taif University, Taif 21944, Saudi Arabia
Department of Mathematics, Faculty of Science, Northern Border University, Arar 73213, Saudi Arabia
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
*  Correspondence: m.suhail@qu.edu.sa (M.S.); aldwoah@iu.edu.sa (K.A.)

(S I N

Abstract: This paper investigates the explicit, accurate soliton and dynamic strategies in the resolution
of the Wazwaz-Benjamin-Bona-Mahony (WBBM) equations. By exploiting the ensuing wave events,
these equations find applications in fluid dynamics, ocean engineering, water wave mechanics,
and scientific inquiry. The two main goals of the study are as follows: Firstly, using the dynamic
perspective, examine the chaos, bifurcation, Lyapunov spectrum, Poincaré section, return map,
power spectrum, sensitivity, fractal dimension, and other properties of the governing equation.
Secondly, we use a generalized rational exponential function (GREF) technique to provide a large
number of analytical solutions to nonlinear partial differential equations (NLPDEs) that have periodic,
trigonometric, and hyperbolic properties. We examining the wave phenomena using 2D and 3D
diagrams along with a projection of contour plots. Through the use of the computational program
Mathematica, the research confirms the computed solutions to the WBBM equations.

Keywords: WBBM equation; chaos; partial differential equations; sensitivity analysis; soliton solutions

1. Introduction

In many fields of physics, mathematics, and engineering, nonlinear partial differential
equations (NLPDEs) has been used to investigate physical processes [1,2]. Analytical solu-
tions of NLPDEs are crucial for predicting the dynamics of a physical process governed
by these equations. Researchers have proposed several analytical techniques to extract
analytical solutions of NLPDEs. Some of them are: the binary F-expansion method [3],
the modified Kudryashov scheme [4], the Hirota bilinear technique [5], the modified ex-
tended tanh-function technique [6], the Khater technique [7], the advanced expansion
techniques [8], the tanh-coth technique [9], the variational iteration technique [10], the
technique of characteristics [11], the modified Sardar sub equation technique [12], the
modified Fan sub-equation approach [13], the modified rational sin-cos and sinh-cosh
techniques [14], the Darboux transformation technique [15], the Bernoulli sub-ODE tech-
nique [16], the improved ¢(—¢)-expansion technique [17], the modified direct algebraic
technique [18], the improved Bernoulli sub-equation technique [19], the complex tech-
nique [20], the modified simple equation technique [21], the Riccati Bernoulli sub ODE
technique [22], and so on [23-26].
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Wazwaz provides a framework and generalization of multiple notions that have been
used in the literature [27]. This unique structure is present in the (3+1)-dimensional BBM equa-
tions. This work aims to analyze the complex dynamics lying behind the WBBM equations

-Ft+-Fx+-F2Fy_fxzt:01 (1)
Fi+ Fy+F2F = Faxt =0, )
Tt + Fz+ F>Fx — Fayr = 0. 3)

where x, y, z are the spatial terms and ¢ is a temporal term. There are several studies on
WBBM equation in the literature [27-29].

Chaos analysis has become interest of researchers, because it provides a deeper anal-
ysis of complex systems that appear disordered, but follow underlying patterns. Chaos
theory has many profound applications in neural networks [30,31], biology [32,33], and
physics [34,35]. Via chaos analysis, we can better explain real-world systems, enhance
predictions, and develop more robust solutions to challenges in science, technology, and
engineering. In NLPDEs, currently, chaos analysis has gained much interest of the mathe-
matician and physicists. Soliton solutions and chaos analysis of different NLPDESs have been
reported in the literature [36-39]. In this study, we aim to extract analytical solutions to the
WBBM equation by applying the GREF technique [40]. In addition, sensitivity analysis to the
governing equation, bifurcation analysis, and chaos analysis are all examined graphically.

The layout of the manuscript is as follows: In Section 2, analysis and graphical vi-
sualization of dynamic properties of governed equation are explored. In Section 3, we
briefly describe the GREF technique. In Section 4, we implement the GREF technique to
the governing equation to acquire the soliton solutions. In Section 5, a discussion on the
obtained results is provided. The conclusion is provided in Section 6.

2. Dynamic System Governed from Proposed Equation

This section provides the transformation of proposed Equations (1)—(3) into the system
of ODEs. First, we use wave transformation to convert the considered PDEs into the ODEs.
After obtaining the ODE, it is converted into a system of ODEs with the help of Galilean
transformation. So, we start by using the following:

Fxyzt) =G(Y), 4)

where Y = ax + By + vz — wt. After the insertion of Equation (4) in Equation (1), the
following nonlinear ODE can be obtained:

(0 —w + BG(Y)? + aywG" (Y) = 0. (5)

It should be noted that when we substitute the proposed wave transform into
Equations (2) and (3), we obtain the same results as after the substitution of the wave
transformation into Equation (1). On performing the integration of Equation (5) concerning
the Y only once, and supposing the constant of integration as zero, we obtain the result
presented below:

WG(Y) ~ wG(Y) + 3PG(Y) +arwG"(Y) = 0. ©®)

Here, by making use of the Galilean transformation, Equation (6) gives rise to the
following system of ODEs:

{dﬁggy) = Lo(Y),

)
dﬁéﬁ(y) =H1L1(Y) — Ha L1 (Y) + HzL1(Y)3,
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where

1 1
H1:7,H2:—7,H3=—7'B .
Yw aw xwy

2.1. The Analysis and Graphical Visualizations of Chaos and Other Behaviors of Equation (7)

This section of the current research is focused on conducting a thorough examination
and analysis of chaotic dynamics, sensitivity, and additional analysis pertaining to the
suggested system of ODEs.

2.2. Chaos in the Proposed System

This section delves into the potential presence of chaos within the system described by
Equation (7), through the incorporation of a perturbation term. This portion also analyzes
the 2D and 2D vs. time phase diagrams of the governed system. After inserting the
perturbation, we obtained the following:

B0 — L(t), ©
AE0) _ 31, £1(+) — HaLr (1) + Ha Ly (1) + Esign(cos(Dt)).

In this part, Figures 1 and 2 analyze the influences of the added term ¢ cos(®t) on
the dynamic behavior of the proposed system (8). In the added term, { means amplitude,
while ® represents frequency of the proposed system.

The 2D and 2D against-time phase images for the study of the underlying complex
dynamics of the system are presented by the utilization of parameters in the form of
a=0.121, p= —1, v =1, w = 1, while varying the amplitudes and frequency, such that
¢ and & are considered differently, as ¢ = 1, & = 1in Figure la,band { = 1.5, ® = 0.06
in Figure 1c,d. Further, in Figure 2, we consider for ¢ = 0.1, ® = 0.1 in Figure 2a,b, and
¢ = 3.5, @ = 0.1 in Figure 2¢,d.

After analyzing the phase diagrams, captivating and complex dynamics are observed.
In Figure 1a, multi-scroll torus-type dynamics are observed, while in Figure 1c, strange
and complex dynamics can be seen. Moreover, in Figure 2a, complex multi-scroll torus-like
behavior is observed, while Figure 2c shows complex torus-shaped oscillations. These
observations reveal the system’s susceptibility to the added perturbations arising in ®, offer-
ing a substantial understanding of how the term & cos(®t) impacts the overall behavior of
the governed system. The newly discovered insights into the system'’s susceptibility to pa-
rameter variations enhance our understanding of the intricate connections within ¢ and the
system’s overall dynamics. These understandings further facilitate a wider comprehension
of how small changes navigate the trajectories of the proposed dynamic system.

100

Figure 1. Cont.
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1200

Figure 1. Chaotic visual representations of a suggested equation, with the parameters taken into
considerationas « = 0.121, f = -1, vy =1, w = 1. (a) 2D dynamics of £y vs. Ly for{ =1, ® =1.
(b) 3D dynamics of £1 vs. L vs. t for ¢ =1, & = 1. () 2D dynamics of £ vs. £ for ¢ = 1.5, & = 0.06.
(d) 3D dynamics of £y vs. £, vs. t for ¢ = 1.5, & = 0.06.

100

-0.1 -0.05 0 0.05 0.1

200

Figure 2. Chaotic visual representations of a suggested equation, with the parameters taken into
considerationas w = 0.121, p = =1, v =1, w = 1. (a) 2D graph for { = 0.1, ® = 0.1. (b) 3D
dynamics for { = 0.1, ® = 0.1. (c) 2D behavior for { = 3.5, ® = 0.1. (d) 3D behavior for
¢ =235 &=01

2.3. Effects of Parameters on the Chaotic Flow of the System

This section investigates the effects of parameters on the dynamics of the proposed
system. Figure 3 displays six figures showcasing different chaotic structures. The figures
are labeled according to variations in the parameters, specifically f and w, which influence
the system’s chaotic dynamics. Figure 3a—c demonstrate the behavior with varying f, while
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Figure 3d—f show the dynamics with varying w. We will discuss each plot in more detail and
analyze the effect of the proposed parameters on the chaotic structures. Figure 3a displays
a structure resembling a figure-eight or a double-loop pattern. This indicates the presence
of a chaotic attractor where the system’s state oscillates between the two loops. The loops
are twisted together, suggesting a low level of chaos and a more periodic nature. When we
consider f = —4 (as observed in Figure 3b), the loops appear more separated compared
to the previously simulated case, resulting in a simpler overall structure. This change in
structure indicates a shift in the dynamics of the proposed system, potentially making the
attractor less chaotic and more stable. Figure 3c simulates the system with § = —6, which
shows a more complex structure with multiple coinciding loops. This indicates increased
sophistication and greater chaos within the proposed system. The overlapping loops are
indicative of a highly sensitive dependence on parameters, a defining characteristic of
chaotic models. Figure 3d shows the impact of the parameter w = 1.10 on the proposed
model, displaying a tight, complex looping pattern. The large value of w introduces higher
oscillations in the model, contributing to the intricate pattern observed. The tight loops
indicate a high level of chaotic and complex behavior. Further, in Figure 3e, the behavior
is simpler and more symmetric on the £, axis compared to Figure 3d. This suggests
that the dynamics exhibits less chaos at the value of w = 1.00. The symmetry indicates
more regular and less chaotic behavior. Finally, in Figure 3f, w is set to 0.90. The pattern
observed in this simulation is more chaotic, featuring several overlapping loops. The small
value of the parameter w introduces slow oscillations, but the complexity indicates high
sensitivity. The chaotic structure with overlapping loops is indicative of strong chaos within
the system. These simulations demonstrate how small perturbations in system parameters
can substantially change the system’s dynamics, a fundamental feature of chaotic systems.
Each parameter affects the system in a completely different way, contributing to the overall
behavior and complexity of the chaotic system.

£1 .
(d) w = 1.10 (e) w = 1.00 (f) w = 0.09

Figure 3. Effects of parameters § and w on the behavior of the chaos on the governed system with
other parameters supposed as « = 0.121, v = 1. The 2D dynamics are depicted in subplots: (a) for
B = =3 (b) for B = —4 and (c) for B = —6. The 2D dynamics are displayed in subplots: (d) for
w = 1.1, (e) for w = 1.00 and (f) for w = 0.09.
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2.4. Some New Dynamic Properties of the Proposed Model

This portion of the manuscript is devoted to the analysis of several qualitative charac-
teristics of the proposed system, ranging from bifurcation analysis to Lyapunov exponents
(LEs), strange attractors, and more. Figure 4 illustrates the bifurcation behavior of the pro-
posed model with respect to the parameter ¢ in both state variables £1 and £2. Figure 4a
specifically shows bifurcation in £; vs. ¢. The figure depicts regions of unstable and stable
behavior. At small values of ¢, fewer points are observed, indicating limited or zero bifur-
cations. As ¢ increases, the system exhibits more complex dynamics with a wider spread of
points, signifying a transition to chaos or the coexistence of multiple attractors. The gaps
and dense clusters of points suggest periods of abrupt qualitative changes in the system’s
behavior. The second diagram, Figure 4b, shows variations in £, vs. the parameter ¢.
The dynamics of the system in this simulation exhibits notable differences compared to
Figure 4a. At low values of ¢, distinct branches can be observed, indicating fixed points
or stable periodic orbits. As § increases, the branches begin to diverge and ultimately
transition into more scattered behavior, indicating the onset of chaos. The spreading of
points at larger values of ¢ suggests that the system evolves into increasingly complex
dynamics, potentially with multiple attractors and a possible transition to chaos.

1

057 : R
— -
— O ~ O \‘
A L
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At :
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-1.5 : -2 :
0 0.5 1 0 0.5 1
3 3

(a) (b)

Figure 4. Bifurcation in the proposed system, with the parameters taken into consideration as
a=0.121,8=—1, vy =1, w = 1. (a) Bifurcation of £ vs. §. (b) Bifurcation of £; vs. ¢.

Figure 5 illustrates the Lyapunov spectrum, Poincaré section (PS), return map, and
power spectrum of the proposed model. Figure 5a demonstrates the dynamics of the two
Lyapunov exponents (LEs) (A1 and A;) versus time. Lyapunov exponents measure the rates
of separation of infinitesimally close orbits within a dynamic system. In this figure, A;
is positive, indicating that the system exhibits sensitive dependence on initial conditions,
a hallmark of chaos. A positive LE confirms that even a small perturbation in the initial
values will lead to exponentially divergent trajectories, rendering long-term prediction
impossible. Conversely, A, has a negative value, signifying that some directions contract
within the phase space. Figure 5b shows the Poincaré section (PS), which is a 2D slice of
the system’s phase space region considered at fixed intervals. The observed spiral-shaped
behavior indicates the presence of an intricate, multi-dimensional attractor. The recurrence,
though not overlapping, suggests deterministic but aperiodic chaotic dynamics. The PS
provides a clear view of the system’s dynamics, making it easier to visualize the behavior
of a chaotic attractor. Figure 5c displays the return map, which depicts the relationship
between the value of a variable at a certain time step (£1(n)) and its value at the next time
step (L1(n + 1)). The concentrated, diagonal structure of the return map suggests a strong
correlation between successive values, indicative of deterministic behavior with underlying
chaotic dynamics. This map assists in understanding how the state of the system evolves
over time, and can also highlight the periodic behavior and nature of attractors in lower-
dimensional presentations. Finally, Figure 5d shows the power spectrum of the time series
data from the proposed system, visualizing its frequency content. The presence of several
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peaks, especially at fractional multiples of the fundamental frequency, is representative of
the broad spectrum typical of chaotic waves. The dominant low-frequency peaks suggest
that the system exhibits long-term, complex-type oscillations. The power spectrum provides
a frequency domain perspective of the system’s dynamics, complementing the time domain

and phase space analyses.

Poincaré Map

, Lyapunov Spectrum 0.4
2 1 | | | "
[
o 0.2
8_ /‘_WM__‘
a<) O i o~
2 -0
S - —h
3 ‘ A\ 0.2 4
> g
- b
-2 ) 0.4 -
0 50 100 150 200 -0.05 0 0.05
t Ly
(a) (b)
Power Spectrum
1 250 ‘
05 . 200+
— ©
T 2 150 |
= 0 S
= 100t
Q =
'05 [ 50 L
-1 . O M,
-1 -0.5 0 0.5 1 0 5 10
Li(n) Frequency

() (d)

Figure 5. Visual representations of different characteristics of the suggested equation, with the
parameters taken into consideration as « = 0.121, g = —1, v =1, w = 1. (a) Lyapunov exponent vs.
time. (b) Poincaré map of £; vs. £,. (¢) Return map. (d) Power spectrum.

Figure 6 visualizes the dynamics of fractal dimension, recurrence plots, and strange
attractors of the proposed system. The fractal dimension is a measure of how densely a
fractal fills space as one zooms in to finer scales. In Figure 6a, the y-axis represents the
counts of instances within various box indices on the x-axis. The irregular peaks and
non-uniform dynamics indicate the complex structure of the system, revealing its fractal
nature. The fractal dimension quantifies the complexity of the system, demonstrating that
the attractor fills space in a self-similar and detailed manner across various scales. The
recurrence plot, shown in Figure 6b, is used to demonstrate the recurrence and periodicity of
states within the system over time. Time is represented on both axes, and the intensity of the
color indicates the recurrence of repeating states. The diagonal forms and grid-like patterns
reflect the system’s hidden periodicity and deterministic nature, while intricate patterns
showcase the complex, recurrent behavior characteristic of chaotic systems. Recurrence
plots depict the times at which a system returns to previous states, revealing both periodic
and chaotic dynamics. Finally, the strange attractor of the proposed system is displayed
in Figure 6c¢. This figure illustrates the trajectory of the proposed system by visualizing
L1(t) against £ (t + delay) and £q(t + 2 x delay). The crowded, twisted layers and
loops visualize the complexity of the chaotic attractor. The structure demonstrates that
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Fractal Dimension Recurrence Plot

the system’s trajectory never intersects itself exactly, despite revolving through the same
regions in phase space repeatedly.

500
+ 1000
1500
: 2000
50 100 500 1000 1500 2000
Box Index t

@) (b)

Strange Attractor

L1(t + 2 = delay)

L1(t + delay)

(0)

Figure 6. Visual representation of different characteristics of the suggested equation, with the
parameters taken into consideration as « = 0.121, § = —1, v = 1, w = 1. (a) Fractal dimension
(b) Recurrence plot (c) 3D dynamics of a strange attractor.

2.5. Sensitivity Analysis

Here, we simulate and analyze the sensitivity analysis of the proposed model, as
observed in Equation (7). To do so, let us consider the dynamic model in the form of

{Zidlt(t) = Lo(t), ©
200 — 94, £, (t) — Hala(t) + HaL3(1).

The parameters for the simulations of the above system are assumed as « = 0.121,
B = —1,v = 1, w = 1, while the initial conditions are used as follows: Blue curve:
represents the dynamics of the governed system with (L;(0),L>(0)) = (0.1,0). Green
curves: show the oscillations in the proposed model with (L;(0), Lp(0)) = (0.3,0). Red
curves: depict the system evolution with (L;(0), L»(0)) = (0.6,0).

The results obtained from this analysis are illustrated in Figure 7. Observations of the
figures indicate that minor perturbations in initial values lead to significant changes in the
dynamics of the proposed system.
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(a) (b)
Figure 7. Numerical simulations depicting the state variables over time, considering the parameters as
a=0.121, B = -1, v =1, w = 1 with various initial values considered as [blue, (£1(0), £2(0)) = (0.1,0)],
[green, (L£1(0), £(0)) = (0.3,0)], [red, (£1(0), L2(0)) = (0.6,0)]. (a) Sensitivity of L1 (b) Sensitivity
of ,CQ.

3. Mathematical Analysis of the GREF Technique
This is an overview of the GREF methodology that we use in our work.
o Stepl:
From the WBBM equations, we obtain a nonlinear ordinary differential equation
(NLODE) by applying the transformations defined in Equations (4) to (1)—(3).
o Step2:
Suppose the generic solution for NLODE is

h Y - mlenly +m2€"2Y
( ) - m3€”3y + m4en4Y’

(10)

where mq, my, m3, my and ny, ny, ns3, ny are the real or complex numbers. Assume
the general solution of Equation (10) as

N N
G(Y)=Co+ Y Gh(Y) + Y Dih(Y)™". (11)
i=1 i=1

where Cy, C;, D; (1 < i < Nandmy, ng (1 < k4) tobe find. Such that the equation
of NLODE satisfies Equation (11).

o Step3:
Calculating N by using the homogeneous balancing principle. To generate the follow-
ing polynomial equation, insert NLODE into Equation (11) and gather all the terms.

m(eMmY, emY, ™Y, ™Y =, (12)

o Step4:
Set each coefficient of m to zero, we obtained the set of the algebraic equation for
my, np (1 < k < 4)and !, Cy, C;, D1 to be obtained.

e Stepb:
Once the set of equations solved, the nontrivial solutions will be substituted into
NLODE. As a result, the soliton solutions to Equations (1)—(3) will be obtained.

4. Implementation of the GREF Technique to the Governing Equation

To acquire the soliton solution, we apply the GREF technique to Equation (6) in this
section. N = 2 is the result of solving Equation (6) using the homogeneous balancing
principle. Using the GERF technique, we obtain the analytical solutions in the form as
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D, . Dy
g(¥)>  g(¥)
By equating all of the coefficients to zero and inserting Equation (13) into Equation (6)

using Equation (10), we are left with an algebraic system of equations. The family of
solutions obtained by applying the system of algebraic equations is as follows:

R(Y) = Co+ Cig(Y) + Cog(Y)* + (13)

e Family i
m = [i,—i,1,1] and n = [i, —i,i, —i]; then, Equation (10) reveals
h(Y) = —tan(Y), where Y = ax + By + yz — wt. (14)
Solve Equations (13) and (14) to acquire the following solutions.
Cluster 1:
12Bw? 12Bw?
C1:0/ Dl:O/ DZZO/ Cozﬂ/ CZZﬂ/
o o
then, we obtain
2.2 2
Fialxt) = 12Bw* tan*(ax 4 By + vz — wt) n 12Bw ‘ (15)
o o
Cluster 2:
4Bw? 12Bw?
C1=0,D1=0,D,=0C=—-—"—,0C=—"—,
o o
then, we obtain
12Bw? tan? —wt)  4Pw?
Fia(x,t) = — Bw* tan* (ax + By + vz — wt) _ A4Bw . (16)
o o
Cluster 3:
12Bw? 12Bw?
Ci=0,Dy =0, Dy = 2P ¢y 1P o,
o o
then, we obtain
2 12 _ 2
Fra(x,t) = 12w cot”(ax + fy + 1z —wt) 12w . (17)
o o
Cluster 4:
2 2
C1=0, D=0, Dy = 2% ¢, = ¢,y
then, we obtain
2 2 2
Fialx,t) = 12Bw” cot*(ax + By + 7z —wt)  4pw ' (18)
« o
Cluster 5:
12Bw? 24Bw? 128w?
Ci1=0,D1=0,Dy=— , Co=——,C=—"—,
o o o
then, we obtain
12802 tan2 _ 1282 cot2 — 24Bw?
Fis(o) = — pw” tan”(ax + By + 1z —wt) 12w cot®(ax + By + 1z —wt)  24Pw ‘ (19)

14 14 14
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Cluster 6:
128w? 2 128w?
C1:0,D1:O,D2:— ,Bw,cozsﬁwlczz_ﬂ,
x x «
then, we obtain
2.2 _ 2 12 _ 2
Frelot) = _ 12Bw” tan (ax:ﬁy+ vz —wt)  12Bw* cot (ocx:érﬁer Yz — wt) N Sﬁ;} ' (20)
e Family ii:
m=[1+1i,1—1i,1,1] and n = [i,—i,i, —i]; then, Equation (10) reveals
h(Y) =1—tan(Y), where Y = w(t) + ux + vy. (21)
Solve Equations (13) and (21) to acquire the following solutions.
Cluster 1:
48Bw? 12Bw? 12Bw?
Ci=0, C=0, Dl:ﬂ, Co:ﬂ/ Dz:ﬂ/
« % %
then, we obtain
48 w2 48 wz 24 wZ
Forlx1) = P - f . ) 22)
a(tan(ax + By +9z —wt) +1)  a(tan(ax + By + vz — wt) +1) w
Cluster 2:
2 2 2
Cl=0,Dy =B p, BPO o M o,y
x o x
then, we obtain
48pw? 48Bw? 16pw?
Farlrt) = P - P AP
atan(ax + By +9z —wt) +1)  a(tan(ax + By + vz — wt) +1) «
Cluster 3:
2 2 2
Ci =0, D1:_12‘Bw , D2:_12ﬁw ,Co=0, sz—%,
« « «
then, we obtain
Fos(xt) = _24/3w2(tan(rxx + By + vz — wt) + 1)2 B 8Bw? -
2 o a(tan(ax + By + vz — wt) +1) 24)
6Bw?
a(tan(ax + By 4+ 9z — wt) +1)*
Cluster 4:
2 2
C =0 D= _ZZiw , D2=0,Cy = _Hpw , G2 =0,
then, we obtain
48Bw? w?
Foa(x,t) = P e (25)

a(tan(ax + By + vz — wt) + 1) a
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Cluster 5:
2 2 12813
Cl=0, D= 2P b I g = BPIL
o 25u 3w
then, we obtain
Fos(nf) = 2w (tan(ax + By + vz — wt) +1)° 8Bw?
2o\ it a(tan(ax + By + vz — wt) + 1)
6/3w2 (26)
+ 5
a(tan(ax + By + vz — wt) +1)
Cluster 6:
23812 6p12
ClIOIDlzf 511D2:7L1C0:0/C2:01
x o
then, we obtain
23Bw? 6Bw?
Faslnt) = - i - P 7)

a(tan(ax + By +7z —wt) +1)  a(tan(ax + By + vz — wt) +1)*

5. Results and Discussion

Using a variety of mathematical tools, including the GREF technique, bifurcation
analysis, chaos analysis, and sensitivity analysis, we examined the behavior of the WBBM
equation, and developed numerous solutions. The WBBM equation contains multiple
different types of solutions, including periodic, kink, and anti-kink solutions, according to
our research. These solutions are crucial, because they demonstrate the WBBM equation’s
nonlinear behavior and help scholars understand how the equation might be used in a
range of fields, such as mathematics, physics, and engineering. Soliton wave packets are
stable, and localized within nonlinear systems. They play a significant role in various
fields, particularly in explaining the behavior of nonlinear partial differential equations
(NPDEs). The existence of infinite soliton solutions in NPDEs provides insights into the
underlying nonlinear dynamics. Studying these solutions is particularly interesting for
applications such as optical communications, as they offer insights into how energy propa-
gates throughout the system and how nonlinear dynamics and localized heat distributions
behave. The fields of information transmission, nonlinear systems, and heat transfer can
all benefit from these solutions. Periodic solutions are useful for understanding stability,
oscillatory properties, and the long-term behavior of wave propagation processes. The
periodic wave solution of F7 1 (x, t) is shown in Figure 8. Figure 9 represents the interaction
of a kink soliton with a lump soliton, which is expressed Fj3(x,t). The periodic lump
soliton solution of 7 5(x, t) is shown in Figure 10. Another periodic solution of 2,3 x, t)
is shown in Figure 11. This technique offers physicists and mathematicians an innovative
approach to understanding the physical properties of phenomena that occur in nature.
The technique is reliable, effective, and concise, proving valuable for addressing NLPDEs
in various research fields. The numerical and exact results appear to align, encouraging
further investigation into the proposed equation. Our discoveries have applications in
several fields of mathematics, physics, and other scientific disciplines.
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(a) 3-D with contour plot (b) 2-D

Figure 8. Physical depiction of Equation (15), of /11 atw =2, y =1, y = 0.1, « = 0.2, and § = 0.23.
(a) 3D dynamics of the F7j 1. (b) 2D dynamics of the F7 ;.
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(a) 3-D with contour plot (b) 2-D

Figure 9. Physical depiction of Equation (17), of ;3 atw =22, y =14, y = 0.1, « = 0.2,and § = 0.23.
(a) 3D dynamics of the 7 3. (b) 2D dynamics of the F 3.
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(a) 3-D with contour plot (b) 2-D

Figure 10. Physical depiction of Equation (19), of Fisatw =24, v = 1.7, y = 0.1, « = 0.2,and g = 0.23.
(a) 3D dynamics of the 7 5. (b) 2D dynamics of the F7 5.

.
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(a) 3-D with contour plot (b) 2-D

Figure 11. Physical depiction of Equation (24), of /3 atw =14, v =08, y =0.7, « = 0.89, and
B = 0.23. (a) 3D dynamics of the 7 3. (b) 2D dynamics of the ;3.

6. Conclusions

This current research work successfully investigated the (3+1)-dimensional WBBM
equation by employing a variety of techniques. These techniques have played a significant
role in many fields, such as fluid dynamics, ocean engineering, water wave mechanics, and
scientific research, where a thorough understanding of wave phenomena is crucial. To ob-
tain novel solutions, we employed the generalized rational exponential functions technique
to generate analytical solutions with periodic, trigonometric, and hyperbolic characteristics.
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Furthermore, we analyzed the dynamic behavior of the system, examining chaos,
bifurcation, Lyapunov spectrum, Poincaré section, return map, power spectrum, sensitivity,
fractal dimension, and other properties. The results were effectively illustrated through
2D and 3D plots, including contour plots, to demonstrate the significance of wave prop-
agation. The paper highlights the usefulness of the suggested technique in producing
precise solutions for nonlinear partial differential equations (NLPDEs), and underscores its
importance for engineering and research applications by comparing its findings with those
of previous studies.

The potential usefulness of these solutions in developing nonlinear water models
for ocean and coastal engineering applications is demonstrated through the validation of
computed solutions using Mathematica. The paper contains multiple soliton solutions,
such as periodic solitons, lump solitons, etc. The periodic solitons are essential in the
design of breakwater or piers. The periodic soliton can give information on the stability
and flexibility of these patterns under changing wave conditions. Lump solitons play key
role in coastal engineering. Lump solitons discuss cases where lump solitons have been
utilized to study wave packets in coastal water, such as the formation of wave group that
can influence sludge transport or cause sudden loading on offshore platforms. Overall,
this work enhances our understanding of, and skill in handling, WBBM equations in a
variety of real-world contexts. It provides insightful information for future research and
applications in related domains.
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