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Abstract: The emission of carbon dioxide is the main reason for many global warming problems.
Although China has made tremendous efforts to reduce carbon emission, the space–time dynamics
of the carbon emission trend is still imbalanced. To forecast CDED in China, the Dagum Gini
coefficient was applied to measure regional CDED. Then, a grey correlation model was used to
select potential influence factors and a wrapping method for selecting the optimal subset. DGMC is
proposed to forecast CDED. The research results showed that the DGMC generalization performance
is significantly superior to other models. The MAPE of DGMC in six cases are 1.18%, 1.11%, 0.66%,
1.13%, 1.27% and 0.51%, respectively. The RMSPEPR of DGMC in six cases are 1.08%, 1.21%, 0.97%,
1.36%, 1.41% and 0.57%, respectively. The RMSPEPO of DGMC in six cases are 1.29%, 0.69%,
0.02%, 0.58%, 0.78% and 0.32%, respectively. In future trends, the eastern carbon dioxide emission
intraregional differences will decrease. Additionally, the intraregional differences in western and
middle-region carbon dioxide emissions will expand. Interregional carbon emission difference will
display a narrowing trend. Compared with the traditional grey model and ANN model, integrating
the influence factor information significantly improved forecasting accuracy. The proposed model
will present better balanced historical information and accurately forecast future trends. Finally,
policy recommendations are proposed based on the research results.

Keywords: carbon dioxide emission; regional difference; DGMC(1,n); Dagum Gini coefficient; grey
relation analyze

1. Introduction

The carbon cycle is closely related to social clean and sustainable development [1];
however, the acceleration of industrialization has led to human activity over-emitting
carbon dioxide into the atmosphere. Carbon dioxide excess emissions have led to se-
vere climate change problems. People were surprised to discover the world has become
warmer [2]. Global warming will result in the melting of polar region glaciers and rising
sea levels, seriously threatening coastal area residents’ safety. Global warming will increase
global extreme weather frequency and reduce agricultural production [3]. Governments
have attached great importance to the global warming problem and hope to reduce carbon
dioxide emission and realize green economic development [4]. Therefore, carbon dioxide
peaking and neutrality-controlling goals have become the focus of global attention within
this last decade [5]. The sustainable development goal has indicated that the world would
take emergency actions to combat the global climate change problem. The Paris agreement
established a global climate change control target. All countries should shoulder the bur-
den of carbon reduction responsibility. In the past two decades, Chinese carbon dioxide
emission has grown steeply. The carbon dioxide emission trends in China are shown in
Figure 1. As the largest developing country, Chinese economic development pressure
difficulty to achieving carbon decoupling in the short term. The achievement of carbon
emission peaking and neutrality goals have attracted significant attention in China.
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Figure 1. Carbon dioxide emissions in China from 1997 to 2021. 
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sumption and industrial structure characteristics involved in carbon emission reduction 
have faced enormous pressure. The carbon dioxide emission reduction pressure is higher 
than the national average level in 41.38% provinces and 49.65% cities [6]. Present studies 
indicate that energy structure and efficiency are essential factors in influencing carbon 
dioxide emission levels. Chinese fossil energy inefficiency consumption is the main reason 
for excessive carbon dioxide emission [7,8]. Li and Jiang have shown carbon dioxide emis-
sion reduction linked to energy efficiency improvement and clean renewable energy ap-
plication in Russia [9]. Therefore, energy consumption structure and efficiency improve-
ment are important measures for controlling excess carbon dioxide emission. It is neces-
sary to improve Chinese energy structure and leave behind inefficient and high-emission 
energy consumption pattern. 

However, the Chinese economic structure and ecological-carrying capacity have dis-
tinctly heterogeneous characteristics [10]. China should pay attention to environmental 
equity issues, balance socioeconomic development and ecological protection tasks and 
form environmental policies to achieve carbon dioxide emission reduction and economic 
development as a win–win result [11]. However, the current carbon reduction policy may 
enhance the carbon emission inequality problem. The Chinese carbon-trading emission 
pilot policy has led to carbon emission source shifts and aggravated regional carbon emis-
sion differences [12,13]. The policy reduced carbon dioxide emission intensity in pilot ar-
eas but exacerbated emission in the surrounding regions [14]. Therefore, the carbon diox-
ide emission equitability difference issue has become a new research area. Chen [15] be-
lieves that carbon emission right allocation should pay attention to regional equity issues. 
The regional development stage is an important influence factor in regard to carbon emis-
sion right allocation. Regional carbon emission difference reduction is vital to achieving 
environmental equity. Carbon dioxide emission has significantly difference in China from 
2005 to 2015. The secondary industry scale and economic structure are the main reasons 
for CDED [16]. The Chinese logistics industry carbon emission difference study showed 
that intraregional differences are the primary CDED resource. The energy consumption 
difference is a significant reason behind carbon emission spatial difference [17]. The Chi-
nese primary CDED sources range from population size, economic development, to en-
ergy intensity [18]. In addition, energy efficiency is also an important source of CDED. 
Energy consumption volume is the main motivation for carbon dioxide emission spatial 

Figure 1. Carbon dioxide emissions in China from 1997 to 2021.

The Chinese government has pledged to make independent national contributions. In
order to actively fulfil international commitments, the Chinese government established a
specialized climate change deliberative coordination institution in 2007 and set up eight
carbon-trading market pilots. However, as the largest developing country, the energy
consumption and industrial structure characteristics involved in carbon emission reduction
have faced enormous pressure. The carbon dioxide emission reduction pressure is higher
than the national average level in 41.38% provinces and 49.65% cities [6]. Present studies
indicate that energy structure and efficiency are essential factors in influencing carbon diox-
ide emission levels. Chinese fossil energy inefficiency consumption is the main reason for
excessive carbon dioxide emission [7,8]. Li and Jiang have shown carbon dioxide emission
reduction linked to energy efficiency improvement and clean renewable energy application
in Russia [9]. Therefore, energy consumption structure and efficiency improvement are
important measures for controlling excess carbon dioxide emission. It is necessary to
improve Chinese energy structure and leave behind inefficient and high-emission energy
consumption pattern.

However, the Chinese economic structure and ecological-carrying capacity have dis-
tinctly heterogeneous characteristics [10]. China should pay attention to environmental
equity issues, balance socioeconomic development and ecological protection tasks and
form environmental policies to achieve carbon dioxide emission reduction and economic
development as a win–win result [11]. However, the current carbon reduction policy may
enhance the carbon emission inequality problem. The Chinese carbon-trading emission
pilot policy has led to carbon emission source shifts and aggravated regional carbon emis-
sion differences [12,13]. The policy reduced carbon dioxide emission intensity in pilot areas
but exacerbated emission in the surrounding regions [14]. Therefore, the carbon dioxide
emission equitability difference issue has become a new research area. Chen [15] believes
that carbon emission right allocation should pay attention to regional equity issues. The
regional development stage is an important influence factor in regard to carbon emission
right allocation. Regional carbon emission difference reduction is vital to achieving envi-
ronmental equity. Carbon dioxide emission has significantly difference in China from 2005
to 2015. The secondary industry scale and economic structure are the main reasons for
CDED [16]. The Chinese logistics industry carbon emission difference study showed that in-
traregional differences are the primary CDED resource. The energy consumption difference
is a significant reason behind carbon emission spatial difference [17]. The Chinese primary
CDED sources range from population size, economic development, to energy intensity [18].
In addition, energy efficiency is also an important source of CDED. Energy consumption
volume is the main motivation for carbon dioxide emission spatial heterogeneity [19].
Energy consumption demand and intensity are the main reasons for enhancing the regional
energy consumption volume [20]. The Chinese province’s energy efficiency has significant
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differences. Energy efficiency spatial characteristics have shown a gradual decline trend
from the eastern to western in China [21]. Economy, technology, energy and urbaniza-
tion directly affect energy efficiency [22]. Therefore, economic, technological, and energy
structure factors have increased CDED. Regional energy efficiency common advances will
shrink CDED. Carbon emission reduction requires concern for energy efficiency and CDED
synergy functions. Carbon dioxide reduction should focus on regional energy consumption
structure and efficiency difference characteristics to reduce CDED by moderating critical
influencing factors in China.

Carbon dioxide emission has significantly spatial correlation characteristic [23]. There-
fore, forecasting the CDED trend requires a suitable model. The grey forecasting model
fully excavates system information from incomplete information. It is structured to de-
scribe future trends based on system hierarchy characteristics. The carbon dioxide emission
problem is complex. The current theory is difficult to investigate due to its dynamic evo-
lution rhythm. The grey forecasting model can effectively target current environmental
problems and widely excavate hidden information. Therefore, the grey forecasting model
has become an important research method for forecasting environmental development
trends. Guo et al. [24] used a compound accumulative grey model to achieve air quality
forecasting in 18 Henan Province cities. The results show that new grey model has good
forecasting accuracy. The grey model can effectively identify the primary pollutants in
Henan. Li et al. [25] established a grey Bass extended model to study new energy ve-
hicle demand in France, Norway and the EU. Grey model achieved highly forecasting
accuracy compared to available models. Qiao et al. [26] applied the grey model to fore-
cast the water consumption of 31 Chinese provinces. Ma et al. [27] designed an energy
consumption time lag fractional order accumulative grey model to forecast Chongqing’s
natural gas and coal consumption. Zeng and Li [28] forecasted the gas production shale
volume scientifically. It has also been demonstrated that the optimized grey model can
also be applied to forecasting coalbed methane production [29]. Ding studied the grey
forecasting model to forecast nuclear energy consumption volume [30] and new energy
vehicle sales volumes [31]. The forecasting results show that the grey model not only has
good forecasting accuracy in regard to traditional environmental problems but also has
a satisfactory forecasting ability in regard to the renewable energy industry field. Frac-
tional order is an expansion of integer order derivative and integral. Fractional order is
characterized by memorability and forgetfulness. It is more flexible in regard to describing
complex dynamic systems. Chen et al. [32] improved the adaptive genetic algorithm based
on a fractional order derivative theory for multi-parameter model identification of lithium
battery charge state estimations. Yang et al. [33] proposed electrochemical impedance
spectroscopy and relaxation time distribution methods to solve the unreasonable physical
results and numerical instability of fractional order in lithium-ion batteries. Mok et al. [34]
proposed a smoothing function algorithm to identify the variables of linear and nonlinear
subsystems in the continuous time fractional order Hammerstein model. By integrating
existing research, the fractional order can capture the historical information and long-term
trend more accurately. Fractional order has enhanced characterization ability of system
states. It has become the new trend in the grey time series model.

This study focuses on the CDED problem in China, aiming to identify sources of CDED
and forecast future trend. Firstly, influencing factors were selected based on literature
studies. Filtering and wrapping methods were used to select features. A grey correlation
index was used to eliminate unimportant influence factors. FGM is used to forecast feature
set trend, and a new damping grey multivariable convolution model is proposed to forecast
carbon dioxide regional differences. The new grey model validity is tested by comparing it
with the existing model. DGMC empirically analyzes regional CDED in China and provides
policy recommendation.

This study structure is as follows: The study region and CDED influence factors are
discussed in Section 2. Empirical method set is given in Section 3. The CDED empirical
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analysis is in Section 4. In the final part, the research conclusion and policy recommendation are
introduced. Meanwhile, the study limitations and future research directions are identified.

2. Study Region and CDED Influence Factor
2.1. Region Subpopulation Design

The Chinese economic regional emergence results from economic development and
the geographic location’s long-term evolution process. The ecological environment has
regional heterogeneity and cross-regional linkage characteristics. Regional carbon emission
differences are the result of multiple influence factors and interaction functions [35]. Indus-
trial structure, economy, energy intensity are the main causes of CDED [36,37]. Therefore,
according to Chinese regional characteristics, the carbon dioxide emission subpopulation
was divided into the eastern, middle and western regions. To ensure comparability, the
study sample did not include province-level municipalities and special administrative
regions. The subpopulation also excluded the Xizang autonomous, Hong Kong, Macau
and Taiwan regions because of data deficiency. The carbon dioxide emission subpopulation
is divided as shown in Figure 2.
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The eastern region includes eight provinces, including Hebei, Liaoning, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong and Hainan. The eastern region is the coastal
region of China. The eastern region’s topography is gentle. It has a superior geographical
location, a complete industrial system, robust production technology, and an obviously
labour concentration effect. It is economically developed but lacks water, forests, and other
resources. The natural resource demand of the eastern region exceeds its supply, so eastern
ecological environmental protection is under tremendous pressure.

The middle region includes eleven provinces, including Shanxi, Inner Mongolia, Jilin,
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Guizhou and Guangxi. The middle
region is rich in energy, metal and non-metal mineral resources. Its industrial structure is
mainly based on heavy industry. The total output values of its energy and heavy chemical
industries are significantly higher than the national average level. Therefore, the middle
region has faced serious pressure to reduce carbon dioxide emission.

The western region includes eight provinces, including Sichuan, Guizhou, Yunnan,
Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang. Its wide area has rich natural resources.
It is an important ecological function area in China and contributes significantly to the
maintenance of national environmental security. Its economic development and technical
management level is significantly different from the other two regions.
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2.2. Regional Difference Influence Factor Measurement

Economy. Economic scale is one of the most important reasons for CDED. The eco-
nomic scale increase is based on production activity and energy consumption. Economic
expansion will increase carbon emission. The economic model is another reason for CDED.
If the region is integrated into the global supply chain for energy-intensive industry, it will
increase carbon emission. Foreign investment in infrastructure and the energy economy
will also increase carbon emission. The economic market is also an important influence on
CDED. The demand side of the energy market will influence enterprise production behav-
ior. Economic market differential demand will create differentiated development pathways
between regions. Therefore, GDP, GDP per capita, total imports/exports and the total retail
sales of consumer goods are used to reflect regional differences in economic development.

Government. Government directly influences the regional carbon emission trend
through environmental regulation in administrative form and green subsidy in market
form. The government invests in green project and promotes green technology by finan-
cial subsidy. Meanwhile, the government increases the transparency of carbon emission
monitoring by increasing environmental monitoring investment. However, under the
background of fiscal decentralization, the local government may also relax environmental
regulation to increase fiscal revenue and increase regional carbon emission. Therefore,
fiscal revenue and fiscal expenditure are selected to reflect government impacts on CDED.

Science and education. Science and education are important factors influencing CDED.
Science and technological innovation is an important driving force for the transformation
and upgrading of the regional economy model. Traditional production technology has a
high emission feature. Green technological progress has reduced unit output in regard to
carbon emission. Technological progress has a significant spillover effect. Government
investment in science and technology can promote technical public product supply and
upgrade the region economy model. Modern technology has increased the demand for
high-skilled labour. Government expenditure on education provides human capital for
green technology application. Therefore, patent granted, education expense and science and
technology expenditure were selected to reflect regional differences in science and education.

Digital economy. Th digital economy promotes economic transformation, optimizes
industrial structure, improves energy efficiency and reduces reliance on traditional carbon-
emitting industry. The digital economy promotes information and intelligent management,
thereby reducing carbon emission. The information transmission network accelerates
information and communication technology application, promotes telecommuting, smart
city construction and green transformation. It will reduce regional dependence on energy-
intensive industry and lower carbon emission. Therefore, mobile telephone exchange
capacity, long-distance fibre-optic cable line length and fibre-optic cable line length were
chosen to reflect regional digital economy development differences.

Energy consumption. Energy consumption plays a crucial role in shaping CDED.
Energy structure and consumption pattern directly affect carbon emission levels. Energy
consumption not only depends on total consumption but also relies on regional production
and living features. Electricity energy, as the basic energy for production and life, better
reflects regional energy demand. Therefore, it has been chosen to reflect regional difference
in energy consumption.

Infrastructure. Transport and logistic infrastructure scales and efficiency play an im-
portant role in CDED formation. Cargo turnover reflects the regional dynamism in logistics
and transport. Interregional logistic infrastructure difference not only affect transport
efficiency but also directly determine the contribution of carbon emission. Therefore, cargo
turnover was chosen to reflect interregional infrastructure differences.

3. Empirical Method

The traditional grey model structure lacks adaptive characteristics. It cannot effectively
capture the nonlinear and long-term memory characteristics of complex systems, and it is
sensitive to noise. Fractional order adjusts the flexibility of the grey model to reflect complex
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nonlinear spatial-temporal dynamics by introducing non-integer orders. The fractional-
order adaptive adjusting model memory functions in pursuit of minimizing accuracy loss,
sensitively capturing time series dependency features. Therefore, this study attempted
to optimize the traditional grey model with a fractional order structure. Meanwhile, the
influence factor of information was added to increase the model accuracy.

3.1. Dagum Difference Measurement

The Dagum difference measure is a methodology used to measure regional inequal-
ity [38]. This approach highlights the crosscutting effect between groups. It can capture
inequality sources more delicately. The method decomposes total inequality into three com-
ponents: intracluster differences, intercluster differences and super-efficiency differences.
To provide a comprehensive picture of CDED, this research chose the Dagum difference
measure to examine CDED in China. It was calculated as follows:

Gw = ∑k
j=1 GjjPjSj (1)

Gjj = ∑
nj
i=1 ∑

nj
m=1

∣∣Cji − Cjm
∣∣/2nj

2Cj (2)

Gnb = ∑k
j=2 ∑j−1

h=1 Gjh(PjSh+PhSj)Djh (3)

Gjh = ∑
nj
i=1 ∑nh

r=1

∣∣Cji − Chr
∣∣/njnh(Cj + Ch) (4)

Pj =
nj

n
; Sj =

njCj

nC
(5)

Gw reflects the intraregional difference. Gnb reflects the interregional difference. Cji
reflects the jth subgroup carbon emission in the ith province. Chr reflects the hth subgroup
carbon emission the in r province.

3.2. Feature Selection

The carbon dioxide emission sources are widespread. According to current studies,
regional economic and social heterogeneity are the reason for the carbon dioxide emission
regional difference. However, the carbon emission difference reasons do not reach a consis-
tent conclusion. Therefore, to forecast CDED, evaluating an optimal forecast feature index is
necessary. Grey relation analyze is a method of measuring influence factors. Its correlation
coefficient can reflect the geometry similarity degree between carbon dioxide emission in
regional difference sequences with potential influence factor sequences. Grey correlation
comparative sequence sorts the significance of the systematic influence factor. Therefore,
in the research referencing Wang et al. [39], a grey relation analysis is used to explain the
effect of influence factors on carbon dioxide emission in regard to regional difference to an
important degree. Specifically, the grey relation analyze process as is follows:

The CDED sequence is defined as C0
(0) = {C0

(0) (1), C0
(0) (2), C0

(0) (3), . . ., C0
(0) (n)}, and

m potential influence factor set are CDED potential influence factors.

C1
(0) =

{
c1

(0)(1), c1(0)(2), c1
(0)(3), . . . , c1

(0)(n)
}

C2
(0) =

{
c2

(0)(1), c2
(0)(2), c2

(0)(3), . . . , c2(0)(n)
}

C3
(0) =

{
c3(0)(1), c3

(0)(2), c3
(0)(3), . . . , c3

(0)(n)
}

. . .
Cm

(0) =
{

cm
(0)(1), cm

(0)(2), cm
(0)(3), . . . , cm

(0)(n)
}

(6)
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The grey relational coefficient λ is the Ci
(0) potential influence factor and the carbon

dioxide emission regional difference C0
(0) in time j is:

λ(c0(0)(j), ci
(0)(j)) =

min
i

min
j

∣∣∣c0(0)(j)− ci
(0)(j)

∣∣∣+ 0.5 max
i

max
j

∣∣∣c0(0)(j)− ci
(0)(j)

∣∣∣∣∣c0(0)(j)− ci
(0)(j)

∣∣+ 0.5 max
i

max
j

∣∣c0(0)(j)− ci
(0)(j)

∣∣ (7)

The grey relational degree of the i influence factor is:

Grey_relational =
1
n

n

∑
j=1

λ(c0(0)(j), ci
(0)(j)), j = 1 . . . m (8)

Filtering and wrapping are two important methods for feature selection. However, the
filtering method ignores mutual influences between features. The wrapping method search
space is oversized, which limits the efficiency of feature selection. Therefore, this research
combined filtering and wrapping methods to select an optimal forecasting feature subset. Grey
correlation method filters out features with grey correlation coefficient below 0.7. A multivariate
time series was used with the forecasting grey model to select the optimal feature subset.

3.3. FGM(1,1) Forecasting Model

Wu first used FGM(1,1) to realize the information first principle [40]. FGM(1,1)
changed the traditional grey model and the adaptive adjusting weight accumulation infor-
mation. FGM(1,1) can give greater weight to new information. Therefore, FGM(1,1) was
used to forecast influence factors. The forecast process is as follows.

Firstly, assume a non-negative sequence C(0)(i) =
{

c(0)(1), c(0)(2), . . . , c(0)(n)
}

. The
ς-order accumulation generating operator is defined as follows:

C(ς)(k) = ∑K
i=1 Ck−i

k−i+ς−1c(0)(i), k = 1, 2, . . . , n (9)

Set C0
ς−1 = 1, Ck+1

k = 0, Ck−i
k−i+ς−1 = (k−i+ς−1)(k−i+ς−2)...(ς+1)ς

(k−i)! .

When ς = 1, Ck−i
k−i+ς−1 = Ck−i

k−i = 1 ς-FGM is defined as c(1)(k) =
k
∑

i=1
c(0)(i), it is

degenerated into traditional GM(1,1).
Secondly, the FGM(1,1) whitenization equation is established as follows:

dci(ς)

dk
+ aci(ς) = b (10)

a, b are estimated parameters. To accurately estimate parameters, a continuous differ-
ential equation is transformed into a discrete difference equation. The forecasting problem
is transformed into a linear mathematical problem. Therefore, the least squares method is
used to minimize the fitting error for the unknown parameters. The parameters solution
with least-squares. [

â
b̂

]
= (BT B)

−1
BTY (11)

where

B =


− c(ς)(1)+c(ς)(2)

2 1

− c(ς)(2)+c(ς)(3)
2 1

. . . . . .

− c(ς)(n−1)+c(ς)(n)
2 1

Y =


c(ς)(2)− c(ς)(1)
c(ς)(3)− c(ς)(2)

. . .
c(ς)(n)− c(ς)(n − 1)

 (12)



Fractal Fract. 2024, 8, 597 8 of 18

Thirdly, the approximate function is:

ci(ς)(k + 1) = (ci(0)(1)− b
a
)e−ak +

b
a

(13)

In the end, the inverse accumulated generating operator in:

α(ς)c(0) =
{

α(1)c(1−ς)(1), α(1)c(1−ς)(2), . . . , α(1)c(1−ς)(n)
}

(14)

The fitting value is ĉ(0)(ς) = ĉ(1)(ς)− ĉ(1)(ς − 1).

3.4. Establish a Grey Multivariable Convolution Model with a Damping Accumulation Operator

Tien first used a grey multivariable convolution feature index set to improve the
traditional GM(1,n) model [41]. However, the grey multivariable convolution model is
difficult to smooth in terms of the fitting data and flexibly adjusting the future trends. To
solve this problem, Liu introduced the damping accumulation operator and proved the
damping operator information priority characteristics by the matrix perturbation bound
theory [42]. Therefore, we introduce the damping accumulated operator into the traditional
grey multivariable convolution model to better reflect information priority. The damping
accumulation operator can adapt to future trends. The new model is called DGMC(1,n).
The new grey model can more fully reflect system characteristics and obtain more accurate
forecast results. The DGMC(1,n) is as follows.

Firstly, the ψ-order (according to particle swarm optimization identify optimum
accumulation order) accumulation sequence is:

c(Ψ)(k) = ∑k
i=1

c(0)(i)
Ψi−1 , 0 < Ψ ≤ 1 (15)

Secondly, the grey convolution sequence is:

dc(Ψ)
0 (k)
dk

+ bc(Ψ)
0 (k) = b1c(Ψ)

1 (k) + b2c(Ψ)
2 (k) + . . . + bnc(Ψ)

n (k) + µ, k = 1, 2 . . . n (16)

The estimated parameters are b, b1, b2, . . ., bn and µ. By the least squares test, the
solution estimated parameters are:

[b, b1, . . . , bn, µ] = (NT N)
−1NTY,

Y =


c0

(Ψ−1)(2)
c0

(Ψ−1)(3)
. . .
c0

(Ψ−1)(n)



N =


− c1(Ψ)(1)+c1(Ψ)(2)

2
c2(Ψ)(1)+c2(Ψ)(2)

2 . . . cn(Ψ)(1)+cn(Ψ)(2)
2 1

− c1(Ψ)(2)+c1(Ψ)(3)
2

c2(Ψ)(2)+c2(Ψ)(3)
2 . . . cn(Ψ)(1)+cn(Ψ)(2)

2 1
. . .

− c1(Ψ)(n−1)+c1(Ψ)(n)
2

c2(Ψ)(n−1)+c2(Ψ)(n)
2 . . . cn(Ψ)(1)+cn(Ψ)(2)

2 1


(17)

Thirdly, the time response function of DGMC(1,n) is:

⌢
c 1(1)(k) = c0

(0)(1)e−b(k−1) +
u
∑

φ=2

{
e−b(k−φ+1/2) f (φ) + f (φ − 1)

2

}
f (φ) = b1c(Ψ)

1 (φ) + b2c(Ψ)
2 (φ) + . . . + bnc(Ψ)

n (φ) + µ

(18)



Fractal Fract. 2024, 8, 597 9 of 18

In the end, the fitting sequence is:{
ĉ1(0)(1) = c1(0)(1)
ĉ1(0)(i) = Ψi−1( ĉ1(Ψ)(i)− ĉ1(Ψ)(i − 1))

(19)

After designing the DGMC model, it is necessary to test the new model’s forecast
accuracy. Model accuracy tests can reflect the fitting and prediction errors comprehensively.
The accuracy test equation is:

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ ĉ1(0)(i)− c1(0)(i)
c1(0)(i)

∣∣∣∣∣ (20)

RMSPEPR =

√√√√ 1
n

n

∑
i=1

(ĉ1(0)(i)− c1(0)(i))
2

c1(0)(i)2 (21)

RMSPEPO =

√√√√ 1
n f

n+n f

∑
i=n+1

(ĉ1(0)(i)− c1(0)(i))
2

c1(0)(i)2 (22)

c1
(0)(i) represents original data and ĉ(0)1 (i) represents fitted data, nf is the prediction

value. The MAPE is used to measure the average relative error between the fitted value and
the original value. The RMSPEPR is used to measure the average relative error in the fitted
data. This indicator is mainly used to reflect the model-fitting ability. The RMSPEPO is
used to measure the average relative error in the test data. This indicator is mainly used to
reflect the generalization ability of the model in order to better demonstrate the empirical
process. The data analysis and forecasting process in this research is shown in Figure 3.Fractal Fract. 2024, 8, x FOR PEER REVIEW 10 of 19 
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4. Empirical Results
4.1. Intraregional Differences Forecast
4.1.1. Eastern Region

Eastern region carbon dioxide emission intraregional differences are shown in Figure 4.
The accuracy test results are shown in Table 1. We found that carbon dioxide emission
intraregional difference in the eastern region showed a fluctuating downward trend from
2012 to 2021. Overall, carbon dioxide emission intraregional difference in eastern region
shows a fluctuating upward trend between 2012 and 2020, followed by a significant decline
after 2020. The ANN model deviates significantly from the actual data. The AGMC also
produces large deviations due to discarding excessive historical information. The DGMC
performed significantly better compared to the other models.
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Table 1. The accuracy test result in the eastern region.

FGM DGMC AGMC CFDGM ANN

MAPE (%) 1.55 1.18 8.14 1.57 2.77
RMSPEPR (%) 1.43 1.08 9.05 1.43 2.78
RMSPEPO (%) 2.19 1.29 1.61 2.17 2.74

According to DGMC, the comparative series change forecast showed results. In the
next two years, the eastern region’s carbon dioxide emission intraregional difference will
show an downward trend. The feature selection identified import/export, patent granted
and long-distance fibre cable as the main influencing factors. The eastern region is an
economic activity intensive region in China. The eastern region government attaches im-
portance to innovative and synergistic development, builds open platforms, and integrates
advantageous resources within the region. The eastern region is guaranteed by basic in-
dustries, with high-tech industries acting as the leading industries and related industries
supporting development, with tremendous industrial development potential and high
energy efficiency. Energy efficiency improvements decreased carbon emission and reduced
resource consumption. The technology-led development model accelerates economic and
carbon emission decoupling and achieves low-carbon economic balanced development in
the eastern region. The eastern region’s upstream and downstream enterprises are well
defined and te industrial collaboration effect is significant. With information technology
spreading, cross-regional collaboration and the sharing economy have been promoted,
low-carbon technology applications have been promoted through platform-based resource
scheduling, and reduced resource wastage has occurred in high-carbon emitting regions.
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Therefore, in the future forecast interval, the open economy of informatization and regional
integration will decrease the CDED in the eastern region.

4.1.2. Middle Region

The middle region’s carbon dioxide emission intraregional difference is shown in
Figure 5. The accuracy test results are shown in Table 2. We found that the middle region’s
carbon dioxide emission intraregional difference showed an upward trend from 2012 to
2021. The middle region’s carbon dioxide emission intraregional difference remained
relatively stable between 2013 and 2017 and showed a continued upward trend in 2018. It
decreased in 2021 but still showed an overall upward trend. The model comparison results
showed that DGMC model has superior fitting and a generalization ability. The ANN
model deviated significantly from the actual value. The other models performed similarly.
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Table 2. The accuracy test results in the middle region.

FGM DGMC AGMC CFDGM ANN

MAPE (%) 2.10 1.11 2.37 2.23 4.57
RMSPEPR (%) 1.90 1.21 2.05 2.80 4.65
RMSPEPO (%) 2.39 0.69 3.61 0.74 3.56

According to DGMC, the comparative series change forecast showed results. The
middle regional carbon dioxide emission intraregional difference will continuously show
a slight increase trend in the next two years. Fiscal revenues, total exports, education
expense and the total retail sales of consumer goods are the main factors in this trend.
Fiscal revenue difference creates infrastructure development and industrial development
difference and expands CDED. Government spending will go towards education-promoted
technological progress and industrial upgrading in some regions, forming low-carbon
pilot zones and expanding CDED. The total retail sales of consumer goods will reflect the
increase in consumer demand differences. Consumption demand difference is transmitted
to production and expanding CDED. The total export difference increased will reflect
the different degrees of economic openness between regions. Export-dependent regions
generally experience higher energy consumption and discharge from production, resulting
in increased CDED increased. Therefore, within forecast intervals, CDED will show upward
trend in the middle region.
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4.1.3. Western Region

The carbon dioxide emission intraregional difference in the western region is shown
in Figure 6. The accuracy test results are shown in Table 3. We found western region carbon
dioxide emission intraregional difference showed inverted the U-curve trend from 2012 to
2021. It increased in 2012–2016, decreased in 2017–2018 and fluctuated in 2019–2021. The
forecasting models showed that the ANN model deviated significantly from the actual
value. FGM and CFDGM deviated significantly from the future trend. AGMC and DGMC
fitted and forecasted well. DGMC had a better overall performance than AGMC.
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Table 3. The accuracy test result in the western region.

FGM DGMC AGMC CFDGM ANN

MAPE (%) 1.26 0.66 0.85 1.30 3.82
RMSPEPR (%) 1.23 0.97 0.98 1.23 2.52
RMSPEPO (%) 1.93 0.02 0.73 1.99 5.60

According to DGMC, the comparative series change forecast showed results. Carbon
dioxide emission intraregional difference reduction in the western region is driven by
DGP, the total retail sales of consumer goods and fiscal revenue. Unfortunately, in future
next two years, western region’s carbon dioxide emission intraregional difference will
display a slight increasing trend. The total retail sales of consumer goods difference
in the declining trend means that social consumption will develop trend balanced in
the western region in the future. High carbon emission commodity consumption will
rise in the western region. However, differences in economic and fiscal revenues will
expand in the CDED in the western region. Developed regions are usually accompanied
by higher levels of industrialization, urbanization, and energy consumption. Economic
expansion often is accompanied with higher carbon emissions Western regions are resource-
rich. The resource curse has led some high-income local governments to rely on resource
taxation. Economically backward regions lack smaller industrial scales despite lower carbon
emissions in total but are unable to effectively reduce emissions through technological
innovation. Financial resources are difficult to sustain in regard to energy transition
investment. Therefore, western regions face the double dilemma of energy inefficiency and
insufficient low-carbon technology in the future. CDED will show an upward trend.
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4.2. Interregional Differences Forecast
4.2.1. Eastern–Middle Regions

The Eastern–Middle interregional CDED curve is shown in Figure 7. The accuracy
test results are shown in Table 4. The overall interregional difference in the eastern-middle
region showed a fluctuating upward trend. The forecasting model comparison showed that
the ANN model has a large deviation from the actual value in general. FGM and CFDGM
have better fitting performance, but the generalization performance is inferior. AGMC
and DGMC obtains excellent performance through multivariate feature. DGMC accurately
forecast future trends by capturing features of the CDED relationship through an adaptive
accumulation process.
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Table 4. The accuracy test result in the eastern–middle region.

FGM DGMC AGMC CFDGM ANN

MAPE (%) 1.16 1.13 1.09 1.16 2.92
RMSPEPR (%) 1.56 1.36 1.31 1.51 2.79
RMSPEPO (%) 0.59 0.58 0.87 0.62 3.38

The feature selection results showed that difference between the eastern–middle
regions mainly result in total import/export differences. As the economic centre of China,
the eastern regions have a well-developed industrial base and high-technology equipment
for production and processing. With the industrial shift to the middle region, the rapid
development of an open economy in the middle will reduce the CDED. Eastern companies’
transfer provides advanced management and production technology and improves energy
utilization efficiency. External financial investment provides funds for cleaner production
technology transformations in the middle region. The middle region integrated into an
open economy extends the industrial chain and increases product’s added value. The
differences with the traditional economically developed regions will be gradually reduced.
As interregional linkages strengthen, interregional CDEDs will consequently decrease.

4.2.2. Western–Eastern Region

The eastern–middle interregional CDED curve is shown in Figure 8. The accuracy test
results are shown in Table 5. The overall interregional differences in the eastern–middle
regions showed a fluctuating upward trend. The forecasting model comparison showed
that the ANN model has a large deviation from the actual value in general. FGM and
CFDGM have better fitting performance, but the generalization performance is inferior.
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AGMC and DGMC obtain excellent performance through multivariate features. DGMC
accurately forecast future trends by capturing features of CDED relationship through an
adaptive accumulation process.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 8. Carbon dioxide emission interregional difference between the western and eastern re-
gion. 

Table 5. The accuracy test result in the western-eastern region. 

 FGM DGMC AGMC CFDGM ANN 
MAPE (%) 1.28 1.27 1.03 1.15 2.80 

RMSPEPR (%) 1.20 1.41 0.97 1.14 2.40 
RMSPEPO (%) 1.18 0.78 1.08 1.03 3.37 

The feature selection results showed that differences between the western and east-
ern regions mainly result from the total import/export, GDP, GDP per capita, and patent 
granted. The total import/export and GDP are important indicators of the current state of 
regional economic development. Economic differences narrowed, meaning the level of 
economic development in various regions has balanced. Economic development model in 
Western-Eastern region has been transformed from traditional high-energy-consuming 
industry to technology-intensive, service and other low-carbon industry. Interregional 
synergistic development effect has been significantly enhanced. Technology diffusion not 
only reduced interregional technological difference, but also increased the accessibility of 
low-carbon technology. GDP per capita difference narrowed signalled homogenizing liv-
ing standard and consumption capacity in Western-Eastern region. It will probably lead 
to similarities in consumption patterns, further reducing interregional CDED. 

4.2.3. Western–Middle Region 
The western–middle region interregional CDED curve is shown in Figure 9. The 

accuracy test results are shown in Table 6. The western–middle region interregional 
CDED is on a steady downward trend. The ANN model significantly differed from the 
actual value. FGM and CFDGM showed a smooth trend. The generalization of the model 
is low. DGMC and AGMC provided a better generalization performance by incorporating 
multivariate features. DGMC has a better generalization through preserving historical 
data feature. 
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Table 5. The accuracy test result in the western-eastern region.

FGM DGMC AGMC CFDGM ANN

MAPE (%) 1.28 1.27 1.03 1.15 2.80
RMSPEPR (%) 1.20 1.41 0.97 1.14 2.40
RMSPEPO (%) 1.18 0.78 1.08 1.03 3.37

The feature selection results showed that differences between the western and eastern
regions mainly result from the total import/export, GDP, GDP per capita, and patent
granted. The total import/export and GDP are important indicators of the current state
of regional economic development. Economic differences narrowed, meaning the level of
economic development in various regions has balanced. Economic development model
in Western-Eastern region has been transformed from traditional high-energy-consuming
industry to technology-intensive, service and other low-carbon industry. Interregional
synergistic development effect has been significantly enhanced. Technology diffusion not
only reduced interregional technological difference, but also increased the accessibility of
low-carbon technology. GDP per capita difference narrowed signalled homogenizing living
standard and consumption capacity in Western-Eastern region. It will probably lead to
similarities in consumption patterns, further reducing interregional CDED.

4.2.3. Western–Middle Region

The western–middle region interregional CDED curve is shown in Figure 9. The
accuracy test results are shown in Table 6. The western–middle region interregional CDED
is on a steady downward trend. The ANN model significantly differed from the actual
value. FGM and CFDGM showed a smooth trend. The generalization of the model is
low. DGMC and AGMC provided a better generalization performance by incorporating
multivariate features. DGMC has a better generalization through preserving historical
data feature.
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Table 6. The accuracy test result in the western–middle region.

FGM DGMC AGMC CFDGM ANN

MAPE (%) 0.81 0.51 0.56 0.75 3.92
RMSPEPR (%) 0.79 0.57 0.65 0.73 4.03
RMSPEPO (%) 0.59 0.32 0.36 0.54 5.40

According to feature selection results showed that difference between the western
and middle region mainly resulted from cargo turnover, the total retail sales of consumer
goods and the patent granted. The total retail sales of consumer good demonstrates the
further expansion of consumption capacity and consumer market in the middle region.
With the development of online trading platform and green logistics technology, retail
industry carbon emissions reduced. Despite the high level of logistics activity in the middle
region, the logistics industry carbon emissions have not increased significantly or benefitted
from technology optimization. Production technology advance has increased energy
consumption and carbon emission in the western region. Therefore, industrial upgrading
and green technology application reduced the trend of carbon emission expansion in the
middle region. Productivity improvement has increased carbon emissions in the western
region. The western–middle regions’ CDED will show a decreasing trend in the next
two years.

5. Conclusions and Policy Recommendation
5.1. Conclusions

The research takes the carbon dioxide emission regional difference problem as the
main line of research. Carbon dioxide regional difference forecast target is realized based
on a multidimensional Dagum Gini coefficient difference correlation relationship. After
empirical research, the specific research findings and policy suggestions are as follows.

(1) The Dagum Gini coefficient can correctly reflect the regional CDED. The Dagum Gini
coefficient can reflect CDED in China. Filtering and wrapping methods are useful for
multivariate grey time series forecasting. The grey correlation method can effectively
eliminate unnecessary influencing factors. It significantly saves the time overhead of
wrapping feature selection. Compared with other grey forecasting models, the new
multivariate convolution DGMC model can achieve better forecasting results. The
damping operator introduced into the current multivariate grey convolution model
forecast field can better forecast CDED in China.
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(2) The research analyzed CDED intraregional differences in the Chinese eastern, middle,
and western regions. The results show that the eastern region’s CDED intraregional
differences will narrow. However, the western and middle region CDED intraregional
differences will increase in the next two years.

(3) The research analyzes and forecasts interregional CDED in the eastern, middle, and
western regions. In the two years, the eastern–middle, western–eastern and western–
middle carbon dioxide emission interregional differences will decrease. CDED inter-
regional differences will show significantly improvement.

5.2. Policy Recommendations

The emitter burden carbon emission cost is a vital way to achieve carbon peaking and
neutrality goals. The carbon emission cost internalization will also impact social welfare.
Regional historical CDED will directly affect carbon credit allocation. Therefore, carbon
credit allocation is a crucial factor affecting emission reduction targets and maximizing
social welfare achievements. It is necessary to pay attention to regional CDED sources and
future trends and design emission reduction policies to achieve emission reduction targets.
Therefore, the following recommendations are proposed after the research.

(1) Chinese CDED has both an interregional and intraregional presence. Therefore, the
current stage of carbon dioxide emission reduction tasks in China should pay atten-
tion to regional differences and customize differentiated carbon reduction policies.
Regional carbon emission credits should allocate energy consumption, residents’ lives,
and industrial structure as decision factors, guaranteeing regional economic and social
development momentum.

(2) Interregional geographic, demographic, economic, and energy elements differ sig-
nificantly. Middle and western regional governments should sufficiently consider
regional industrial structures, energy intensity and residents life differences while
designing carbon emission reduction tasks. The intraregional city should explore
resource endowment to develop industries and form industrial mutual assistance and
synergistic development models. The eastern advanced demonstration area should
spread its mature energy consumption and environmental protection technology to
promote cleaner production in other regions and achieve carbon capture and storage
at carbon emission sources.

(3) Central government should pay attention to managing carbon emission regional
equity issues in the future. Intraregional governments should pay attention to man-
agement carbon dioxide emission sources, strengthen industrial collaboration within
urban clusters, improve factor resources spatial allocation efficiency, and promote
city cluster industry-coordinated development. The middle and western regions
should prevent the influx of high-energy-consuming and high-emission enterprises
in undertaking industrial transfer processes to achieve economic growth and carbon
emission decoupling.

5.3. Research Limitations

In addition, the study also has some shortcomings. Firstly, the study only researched
the Chinese CDED problem and lacks a more comprehensive range of institutional, cultural
background CDED empirical research. Secondly, the research only considers mainly CDED
source influence factors from the present literature, and future research will screen a more
extensive range of index to forecasting results accurately.
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Abbreviations

CDED carbon dioxide emission differences
GM Grey model
FGM Fractional-order grey model
DGMC Damping grey multivariable convolution model
AGMC Adjacent grey multivariable convolution model
ANN Artificial neural network
CFDGM Conformable fractional discrete grey model
MAPE Mean absolute percentage error
RMSPEPR Root Mean Square Percentage Error of Predicted Results
RMSPEPO Root Mean Square Percentage Error of Predicted Outputs
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