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Abstract: This study presents a differential evolution (DE)-based optimization approach for fractional-
order convolutional neural networks (FOCNNs) aimed at enhancing the accuracy of groove clas-
sification in music. Groove, an essential element in music perception, is typically influenced by
rhythmic patterns and acoustic features. While FOCNNs offer a promising method for capturing
these subtleties through fractional-order derivatives, they face challenges in efficiently converging
to optimal parameters. To address this, DE is applied to optimize the initial weights and biases of
FOCNNs, leveraging its robustness and ability to explore a broad solution space. The proposed
DE-FOCNN was evaluated on the Janata dataset, which includes pre-rated music tracks. Compar-
ative experiments across various fractional-order values demonstrated that DE-FOCNN achieved
superior performance in terms of higher test accuracy and reduced overfitting compared to a standard
FOCNN. Specifically, DE-FOCNN showed optimal performance at fractional-order values such as
v = 1.4. Further experiments demonstrated that DE-FOCNN achieved higher accuracy and lower
variance compared to other popular evolutionary algorithms. This research primarily contributes to
the optimization of FOCNNs by introducing a novel DE-based approach for the automated analysis
and classification of musical grooves. The DE-FOCNN framework holds promise for addressing
other related engineering challenges.

Keywords: fractional-order convolutional neural networks; differential evolution; groove classification;
music information retrieval; optimization algorithms

1. Introduction

Groove is a complex and integrated aspect of music, noted for its ability to provoke
both emotional and physical reactions in listeners [1,2]. It is generally described as the
capacity to discern the beat, identify recurring rhythmic patterns [3,4]. According to
psychological studies, groove is defined as a musical quality that makes us want to move
with the rhythm or beat, characterized by induced body movement that is rhythm- and
beat-dependent [3,5,6]. However, groove is not merely an emotional characteristic; its most
distinctive feature is the synchronization it induces between music and movement [3,4].
Groove holds significant relevance in various fields, including sports rehabilitation, motor
function promotion, and physical activity promotion [3,7,8]. Nonetheless, accurately
measuring and predicting groove remains a challenging endeavor.

1.1. Literature Review

Groove is influenced by multiple dimensions, making it difficult to directly define
using a single or a few musical characteristics. It is both a musical phenomenon and a
musical feature, shaped by a range of factors [3]. These include rhythmic features such
as syncopation, microtiming, tempo, beat salience, and event density, as well as acoustic
features like harmonic complexity and bass sounds [3]. Moreover, the groove experience
can vary significantly depending on the musical style, highlighting its multidimensional
nature [3]. Due to this complexity, previous studies often measure groove by evaluating
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the degree of sensorimotor coupling it induces, that is, the synchronization between music
and movement. Janata et al., for example, employed both behavioral and computational
techniques to establish groove ratings based on this coupling [9]. Their research included
the creation of a curated playlist with detailed groove ratings, which has been validated
and extensively utilized in practical applications [10–12]. However, these ratings are
typically obtained through physical measurements, which can be cumbersome and resource-
intensive. Therefore, there is a pressing need for new methodologies that simplify the
evaluation process while providing an objective assessment of groove without relying
solely on intricate behavioral approaches. Based on music information retrieval (MIR)
techniques, analyzing audio signals to extract acoustic features—which reflect musical
elements such as rhythm, beat, and rhythmic structure—has been shown to effectively
classify music [13,14]. Therefore, investigating whether machine learning can accurately
predict groove based on these acoustic features offers a promising approach to enhance our
understanding and measurement of groove in music.

Convolutional neural networks (CNNs) have been proposed and successfully applied
across various domains, demonstrating particular strength in processing images, audio,
and video [15]. A notable example is OpenL3, a pre-trained CNN widely used for tasks
such as music genre recognition, instrument identification, and emotion detection [16].
Fractional-order convolutional neural networks (FOCNNs) extend traditional CNNs by in-
corporating principles of fractional calculus into the network architecture. Unlike standard
CNNs that utilize integer-order derivatives, FOCNNs employ fractional-order derivatives,
such as the Caputo derivative, to update the weights and biases of fully connected and
convolutional layers [17,18]. This approach has demonstrated higher accuracy in practical
experiments [17,19,20]. In the context of groove classification, FOCNNs may offer a distinct
advantage by enabling the model to capture subtle variations in rhythmic patterns and
spectral features that are crucial to groove perception. This allows for a deeper understand-
ing of the underlying acoustic features that define groove, making FOCNNs particularly
well-suited for accurately classifying music into different groove levels. However, FOCNNs
face challenges in practice, particularly in efficiently converging to an optimal solution
when initial biases and weights are randomly selected [19]. This limitation necessitates the
use of additional algorithms to optimize these parameters effectively.

Evolutionary algorithms have played a pivotal role in optimizing neural network
structures and weights [21]. For instance, genetic algorithms (GAs) and grammatical evolu-
tion have been employed to automatically design CNN topologies, achieving promising
results even without data augmentation or preprocessing [22]. Additionally, methods like
population extremum optimization (PEO) have shown success in dynamically updating
biases and weights during CNN training [17]. Differential evolution (DE) stands out as a
robust optimization algorithm, beginning with a randomly initialized population of poten-
tial solutions [23]. At each iteration, DE generates new candidate solutions by applying
differential mutation and crossover operations. These candidates are then evaluated using
a fitness function, and the best solutions are retained for the next iteration. This process
continues until convergence. In the context of optimizing FOCNNs for groove classifi-
cation, DE is particularly advantageous due to its robustness and its ability to explore a
broad solution space efficiently. Studies have shown that DE outperforms other algorithms,
such as GA, PEO, and particle swarm optimization (PSO), by achieving lower variance in
prediction accuracy on datasets like MNIST, which is critical for stable and accurate groove
level classification [17]. Moreover, DE’s independence from gradient information makes it
especially suitable for optimizing FOCNNs, given the complex and non-convex nature of
the objective function, particularly when fractional-order derivatives are involved [21,24].

1.2. Research Gap and Motivation

Despite the success of previous approaches in predicting groove, current methods often
rely on intricate physical measurements and cumbersome behavioral evaluations, which
limit their practical applicability. There remains a need for a more streamlined approach that
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can objectively predict groove without relying on resource-intensive methods. Additionally,
existing CNN-based models have limitations in capturing the nuanced features necessary
for accurate groove classification, which suggests the need for an enhanced model capable
of better representing these complex rhythmic characteristics.

The novelty of this work lies in approaching groove classification as a novel engineer-
ing problem by applying fractional-order convolutional neural networks (FOCNNs), which
provide an enhanced ability to capture the subtle, complex features of groove. Further-
more, we employ differential evolution (DE) to optimize the initial biases and weights of
FOCNNs, thereby addressing the convergence issues faced by traditional FOCNN models.
By doing so, we aim to provide a robust and efficient framework for groove classification
that is both practical and highly accurate.

1.3. Contribution and Paper Organization

This paper proposes the use of differential evolution (DE) to optimize FOCNNs
utilizing Caputo fractional-order derivatives, with the aim of enhancing CNN performance
for groove classification. Specifically, Caputo derivatives are employed to update weights
and biases, while DE is applied to identify the optimal initial biases and weight settings.
The key contributions of this work are as follows:

1. Development of a DE-based optimization approach for FOCNNs: We introduce a
novel approach to identify the optimal selection from a broad range of initial biases
and weights, effectively enhancing the model’s convergence and accuracy.

2. Comparative experiments between DE-FOCNN and the original FOCNN: We perform
extensive comparisons across various fractional-order values, highlighting the efficacy
of DE in optimizing FOCNNs.

3. Implementation of experiments on the Janata dataset: We demonstrate that DE-
FOCNN outperforms other popular optimization algorithms in terms of accuracy and
robustness in groove classification

The remainder of this paper is organized as follows. Section 2 provides an overview
of related work in groove classification and FOCNN optimization. Section 3 presents the
proposed DE-based optimization approach for FOCNNs. Section 4 details the experimental
setup, including data collection and preprocessing. Section 5 discusses the results, and
Section 6 concludes the paper with potential future research directions.

This research contributes to the optimization of fractional-order convolutional neural
networks by introducing a novel DE-based approach for the automated analysis and
classification of musical groove. The proposed method offers potential applications in
music recommendation, education, and therapeutic settings.

2. Related Works
2.1. Music Groove Classification

The classification of emotional responses and perceived groove in music has been a
focal point of research, with various methodologies explored to understand these complex
phenomena. Hove et al. [25] identified key acoustic features that influence groove percep-
tion, revealing that enhancing low-frequency components significantly promotes groove.
Madison et al. [5] utilized linear regression to classify groove by identifying beat salience
as a significant predictor, while Stupacher et al. [1] found that variability in event density
strongly correlates with groove perception. However, these studies faced limitations, par-
ticularly in accuracy, with the highest correlations barely exceeding 0.61 [5]. Additionally,
the reliance on linear methods limited their ability to capture the nonlinear interactions
inherent in groove classification, underscoring the need for more sophisticated approaches.

In the domain of emotion classification in music, researchers have employed a variety
of machine learning techniques to classify emotional responses such as pleasure, sadness,
and arousal. Mori et al. [13] utilized machine learning to classify emotional responses
based on acoustic features, though they achieved limited accuracy with regression-based
methods. Vempala et al. [26] compared linear regression, random forests, and neural
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networks, finding that nonlinear approaches, particularly neural networks, were more
effective in capturing the emotional nuances in music.

Recent advancements in deep learning have furthered the field, particularly in pre-
dicting valence and arousal. Keunwoo et al. [27] enhanced this approach with transfer
learning using OpenL3, a pre-trained deep learning model, to extract high-dimensional
features from Mel-spectrograms for emotion prediction. The Mel-spectrogram is particu-
larly effective for mimicking human perception of different frequencies [28]. The use of
CNNs to analyze Mel-spectrograms of audio signals, which capture both time and fre-
quency patterns, is essential for classifying the rhythmic patterns and spectral features [28].
Despite the progress made, the complexity of the networks used in these studies was often
insufficient to capture the intricate relationships between music and emotions, indicating
potential benefits from more sophisticated CNN-based models for improved classification
performance and efficiency.

2.2. Fractional-Order Neural Networks

Fractional-order neural networks (FONNs) represent an extension of traditional neural
networks, incorporating fractional calculus to enhance their modeling capabilities. This
approach allows FONNs to handle complex, dynamic systems with greater precision, es-
pecially in scenarios where traditional integer-order networks may struggle [29]. FONNs
have found applications in diverse fields, including system identification, control sys-
tems [30], and signal processing [31], demonstrating their utility in addressing a wide range
of engineering challenges.

A notable application of fractional calculus in neural networks is the fractional-
order backpropagation (BP) neural network. By leveraging fractional derivatives, such
as the Caputo derivative, these networks optimize the learning process more effectively,
leading to faster convergence and better overall performance compared to standard BP
networks [32,33].

Recurrent neural networks (RNNs) have also seen significant improvements through
the application of fractional calculus [34]. Researchers have introduced fractional stochastic
gradient descent methods that utilize fractional derivatives like Caputo and Riemann–
Liouville [34]. These methods make them more robust in managing complex, dynamic time-
series data. Additionally, fractional-order Hopfield neural networks have been developed,
leveraging the advantages of fractional calculus, such as long-term memory and nonlocality,
to enhance their performance in capturing complex dynamics and improving stability [35].
By incorporating fractional-order activation functions, LSTMs have been optimized to
improve predictive accuracy, even in challenging scenarios like wind power forecasting
with missing data [36]. For instance, a hybrid LSTM-based FONN employing a fractional
arctan activation function has demonstrated enhanced performance in handling complex,
nonlinear time-series data [36]. These advancements underscore the potential of fractional-
order techniques in boosting the effectiveness of neural networks, particularly for sequential
and time-series applications.

Overall, the use of fractional derivatives in neural networks has significantly advanced
their capability to model and optimize complex systems. These improvements are not
limited to traditional networks but extend to CNNs as well. Fractional-order CNNs, by
integrating fractional calculus, could offer enhanced feature extraction capabilities [19] and
are likely to play a critical role in applications requiring detailed analysis of spatial and
temporal patterns.

2.3. Differential Evolution in Neural Network Optimization

DE has emerged as a powerful tool in the field of neural network optimization, applied
to optimize both the topology and parameters of neural networks [21]. Since the late 1990s
and early 2000s, DE-based optimizers for neural networks have been actively researched
and developed, showing promising results in a variety of applications, including time-series
forecasting and clinical dataset classification [37,38].
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Evolutionary algorithms can optimize non-differentiable objective functions without
relying on gradients. DE, in particular, has gained popularity due to its robustness, sim-
plicity, and ability to efficiently search both global and local optima [17,23]. DE operates
through simple operations—mutation, crossover, and selection—which enable it to explore
the solution space effectively and converge rapidly towards optimal solutions. Recent
developments in DE have focused on improving performance through adaptive control
parameters and mutation strategies [21,39]. The introduction of individual dependent
differential evolution, for example, enhances optimization by tailoring DE operations to
the characteristics of neural network parameters, effectively reducing issues like premature
convergence and stagnation [21].

Comparative studies have demonstrated the effectiveness of DE over other evolution-
ary algorithms like genetic algorithms (GAs) and estimation of distribution algorithms in
training neural networks [37]. DE has been particularly successful in optimizing neural net-
works for time-series forecasting and other complex tasks [40], where it has outperformed
other methods in terms of convergence speed and solution quality. Additionally, DE’s
flexibility in handling a variety of neural network architectures, from simple feedforward
networks to more complex structures like CNNs [41] and RNNs [42], makes it a versatile
tool in the arsenal of neural network optimization techniques.

In summary, the integration of DE into neural network optimization has significantly
enhanced the ability to fine-tune network parameters and architectures, leading to im-
proved performance in a wide range of applications.

3. Methodology
3.1. Fractional-Order Convolutional Neural Network Architecture
3.1.1. Caputo Fractional Derivatives

The Caputo fractional derivative, as defined by Equation (1), is applied to calculate
the derivative of the input signal f (x) with respect to the fractional order v, which can be
non-integer. Unlike traditional integer-order derivatives, fractional derivatives accumulate
information over the range of integration, providing greater sensitivity to prior inputs.
In this context, the Gamma function Γ(·) normalizes the derivative, ensuring the proper
scaling of fractional operators.

cDv
x f (x) =

1
Γ(r − v)

∫ x

ξ
(x − τ)r−v−1 f (r)(τ)dτ (1)

where

• v is the order of the derivative and can be a non-integer (0 < v < r).
• r is the smallest integer greater than α, so r − 1 < v < r.
• Γ(·) is the Gamma function, defined by Γ(z) =

∫ +∞
0 tz−1e−tdt.

• f (r)(τ) denotes the r-th derivative of f (τ).
• ξ is the lower bound of the integration domain, which can be any value within the

domain of f (x).
• τ represents the integration variable, which accumulates the changes of the function

f (x) over the interval [ξ, x].

We employ the Caputo fractional derivative because it incorporates historical informa-
tion through fractional-order differentiation while maintaining the same initial conditions
as integer-order derivatives [43]. This feature makes it particularly useful for updating
gradients in neural networks, providing smoother and more adaptive parameter updates
that improve convergence behavior.

3.1.2. Convolutional Neural Network Architecture

The convolutional neural network (CNN) used in this study is designed to process
Mel-spectrogram images of size 128 × 199 × 1 and classify the groove level of music into
three categories: low, moderate, and high. Therefore, the input to the model is image data,
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and the output is the corresponding classification of the image into one of the three groove
levels. The network architecture is composed of several sequential blocks, each performing
a specific function to progressively extract and refine features from the input data.

The core of the network consists of multiple convolutional blocks. Each block is
structured as follows: (1) Convolutional layer: Applies a series of 3 × 3 convolution filters
to the input, producing feature maps that capture spatial hierarchies in the data. The
number of filters increases progressively across blocks to allow for more complex feature
extraction as the network deepens. (2) Pooling layers: These layers use 2 × 2 pooling
windows to retain the most relevant information while reducing computational complexity.

The output of the last convolutional layer is flattened into a one-dimensional vector
by the flatten layer. This vector is then passed to the fully connected layers, where the final
classification into one of the three groove levels is made. The activation functions for the
convolutional and fully connected layers are ReLU functions and the activation function
for the output layer is the SoftMax function. See Figure 1.
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3.1.3. Application of Caputo Derivative in CNN

In the convolutional neural network (CNN) architecture, the Caputo fractional-order
gradient method (CFOGM) is applied to both convolutional and fully connected layers,
as these are the layers where parameter updates are required during training. Pooling
layers and the flattening layer do not involve learnable parameters, and thus, CFOGM is
not applied to them.

1. Forward Propagation

Forward propagation is used to calculate the output of each layer based on the inputs
and current weights and biases.

Fully Connected Layer:
In the fully connected layer, forward propagation is described by Equation (2), which

computes the activation values for each neuron. The input from the previous layer al−1

is linearly combined with the weight vector wl
i and bias bl

i for the i-th neuron, producing
the pre-activation output zl

i . An activation function f is then applied to yield the final
output al

i . This process enables the network to extract progressively more abstract features
across layers.

zl
i = wl

i · al−1 + bl
i

al
i = f

(
zl

i

) (2)
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where

• zl
i is the input to the i-th neuron in the l-th layer.

• al
i is the output of the i-th neuron in the l-th layer after applying the activation function.

• wl
i is the weight vector connecting the l − 1-th layer to the i-th neuron in the l-th layer.

• bl
i is the bias term for the i-th neuron in the l-th layer.

• f is the activation function.

Convolutional Layer:
The forward propagation in the convolutional layer similarly computes the output

feature maps via convolution operations. Equation (3) represents the application of the
weight filter wl

m to the input features al−1, adding the bias bl
m to generate the pre-activation

output zl
m. The final result al

m is obtained by passing zl
m through the activation function

f . This architecture allows the convolutional layer to effectively capture local spatial
features, and when combined with the updates from the fractional-order derivative method,
significantly enhances the precision of the learning process [33].

zl
m = conv

(
wl

m, al−1
)
+ bl

m

al
m = f

(
zl

m

) (3)

where

• conv(·) represents the convolution operation.
• zl

m is the output feature map before activation for the m-th filter in the l-th layer.
• al

m is the activated output of the m-th filter in the l-th layer.
• wl

m is the weight matrix (filter) for the m-th filter in the l-th layer.
• bl

m is the bias term associated with the m-th filter.

2. Backward Propagation with Fractional-Order Gradients

Fractional-Order Gradient Calculation
To enable the network to more flexibly adapt to varying scales of feature changes,

we employ the Caputo fractional derivative as a replacement for conventional gradient
calculations. Using Equation (4), we can compute the fractional-order derivative Dw

v L of
the loss function L with respect to each weight and bias. This method allows for a more
adaptable adjustment process based on the different states of the weights [44].

For both fully connected and convolutional layers, the gradients of the loss function L
with respect to weights and biases are approximated as

Dw
v L ≈ ∂L

∂z · ∂z
∂w · 1

Γ(2−v) · w1−v

Db
vL ≈ ∂L

∂z · 1
Γ(2−v) · b1−v (4)

where

• Dv denotes the Caputo fractional derivative operator.
• v is the fractional order.
• ∂L

∂z is the gradient of the loss with respect to the neuron’s pre-activation output z.
• w and b represent the current weights and biases.

Weight and Bias Update
Equation (5) illustrates the weight and bias update process using fractional-order

gradients. Unlike traditional update methods that rely on integer-order gradients, the
Caputo fractional derivative introduces memory effects by considering the cumulative
history of parameter changes. This allows for smoother, non-local updates, improving
convergence and reducing oscillations during training [33].
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The weights and biases are updated using the fractional-order gradients as follows:

wt+1 = wt − η · Dw
v L

bt+1 = bt − η · Db
vL

(5)

where

• wt+1 and bt+1 are the updated weights and biases.
• wt and bt are the current weights and biases.
• η is the learning rate.
• Dw

v L and Db
vL are the fractional-order gradients with respect to weights and biases.

3.2. Differential Evolution for Optimization
Differential Evolution Algorithm

Differential evolution (DE) is a population-based optimization algorithm, widely used
for complex optimization tasks due to its simplicity and efficiency [45]. The DE algorithm
was selected for this study because it is particularly well-suited to non-convex optimization
problems such as neural network training, where traditional gradient-based methods often
struggle with local optima [46]. DE’s mutation, crossover, and selection mechanisms enable
it to explore a wide solution space effectively, making it more likely to find global optima.

In our neural network architecture, DE is used to initialize the weights and biases
before training begins. This initialization ensures that the network starts with parameters
that are already close to an optimal configuration, thereby reducing the number of iterations
required for convergence during backpropagation [41]. As a result, the combination of DE
for initialization and fractional-order gradients for training leads to a more efficient and
effective learning process; see Figure 2.
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The optimization process in DE consists of three key steps: mutation, crossover, and
selection, which iteratively improve the solutions within a population [24]. Each individual
in the population represents a potential solution to the optimization problem, with the
fitness function measuring the network’s performance. Below, we explain the mathematical
formulation behind each step.

1. Mutation Step

In the mutation step, new candidate solutions (mutant vectors) are generated by
perturbing existing solutions. The basic formula for generating a mutant vector is given by

V(g+1)
i = X(g)

r1 + F ·
(

X(g)
r2 − X(g)

r3

)
(6)

where

• V(g+1)
i is the mutant vector for the i-th individual at generation g + 1.

• X(g)
r1 , X(g)

r2 , X(g)
r3 are randomly selected individuals from the population.

• F is a scaling factor controlling the amplification of the differential variation.

The purpose of this step is to explore the solution space more effectively by introducing
diversity into the population. By using differences between randomly selected solutions,
DE ensures that the exploration is adaptive and capable of escaping local optima.

2. Crossover Step

The crossover step combines the mutated vector with the current individual to generate
a trial vector. This is governed by the following equation:

U(g+1)
i,j = {

V(g+1)
i,j if randj(0, 1) ≤ CR or j = jrand

X(g)
i,j otherwise

(7)

where

• U(g+1)
i,j is the trial vector, for the i-th individual at the j-th dimension.

• CR is the crossover probability, determining how often components from the mutant
vector are used.

• jrand is a randomly chosen index to ensure that at least one component from the
mutant vector is inherited.

The crossover step balances exploration and exploitation by mixing information from
both the mutant vector and the current individual.

3. Selection Step

In the selection step, the algorithm evaluates the fitness of the trial vector against the
current individual. The individual with the better fitness value is retained for the next
generation.

X(g+1)
i = {

U(g+1)
i if f

(
U(g+1)

i

)
≤ f

(
X(g)

i

)
X(g)

i otherwise
(8)

where f (·) represents the fitness function, which measures the network’s performance.
This step ensures that only improved solutions are carried over to the next generation,
gradually guiding the population toward an optimal or near-optimal solution.

4. Experiments
4.1. Settings
4.1.1. Datasets

The dataset used in this study consists of both a classic music dataset and additional
real-world validation data. The classic dataset originates from the appendix of Janata’s
2012 study [9], which includes 312 music clips spanning various genres. These tracks were
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previously rated, with scores ranging from 40 to 107, and were subsequently normalized to
a 0–100 scale. The tracks were then divided into three groove levels (low, moderate, and
high) by splitting the scores into tertiles.

For real-world validation, 20 participants were recruited to perform a cycling task
while listening to randomly selected music tracks from the dataset. Each participant was
assigned 40 clips in total, presented in random order, during the cycling task. Their cadence
(pedal stroke rate) was recorded and analyzed. Tracks were excluded from the dataset if
the correlation between the participant’s pedal stroke rate and the music’s BPM was lower
than 0.5; see Figure 3.
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The use of pedal stroke rate to validate the groove levels in Janata’s dataset was chosen
because Janata also employed similar behavioral experiments to determine groove levels.
Groove’s most essential characteristic is its ability to induce synchronization between
movement and music, rather than evoking emotional responses. Therefore, conducting
such behavioral experiments provides the most direct way to assess groove.

Additionally, since Janata’s playlist has already been validated [10–12], this study
further refined the dataset by removing outdated tracks or those that failed to evoke a sense
of movement synchronization in modern participants. No new dataset was created, as the
purpose was to optimize the model training by filtering existing data effectively. Cycling
was chosen as the experimental activity because groove has significant potential to enhance
physical performance in cycling and improve motor rhythm in Parkinson’s patients [47],
where cycling has been shown to offer a safer and more effective intervention than other
forms of movement.

Cycling Task Setup
The cycling task was conducted using a stationary bicycle. The seat height was

adjusted to approximately 88% of each participant’s inner leg length, ensuring a comfortable
and natural pedaling posture. A standardized protocol was followed throughout each
session. Before starting the formal task, participants completed a 3-minute warm-up phase
at a torque of 2.5 N·m, maintaining a cadence of approximately 55–60 revolutions per
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minute (rpm). Following the warm-up, the formal cycling task began, with the torque
increased to 3 N·m. Participants began cycling at the start of each music stimulus, and after
one minute of cycling (with the music clip looping), data from the last 20 seconds were
recorded. The last 20 seconds were collected to ensure that participants had sufficient time
to adapt and reach a stable rhythm before their cadence was measured.

Motion capture was performed using the FAB inertial measurement unit (IMU) system
(BIOSYN, Surrey, BC, Canada) to continuously track joint trajectories and analyze partici-
pants’ pedal cycles. Seven IMUs were placed on the pelvis, thighs, shanks, and feet, with a
sampling frequency of 100 Hz, as shown in Figure 3b.

After the experiment, 54 music clips were excluded for not meeting the correlation
threshold, leaving a final dataset consisting of 258 music clips with corresponding groove
classification labels. These labels reflect the groove levels determined by participant rat-
ings in Janata’s study, where listeners evaluated how much each track encouraged bod-
ily movement. The training dataset comprises 80% of the data and the testing dataset
comprises 20%.

4.1.2. Implementation Details

The model used in this study follows a basic CNN architecture, as outlined in
Section 3.1.2 of the Methodology. The input to the model is image data, and the out-
put is the corresponding classification of the image into one of the three groove levels. The
loss function of the model is the cross-entropy loss function, as shown in Table 1.

Table 1. The parameters of FOCNN and DE-FOCNN.

Parameter

Loss function L = − 1
H

H
∑

S=1
yT

S log(OS)

Learning rate: 0.001
Batch size: 8

Initial weight: w ∈ [−0.5, 0.5]
Initial bias: b ∈ [−0.5, 0.5]

Number of iteration: 100

The first convolutional layer of the model outputs 64 channels, with a 3 × 3 kernel
size and a stride of 1, ensuring that the spatial dimensions of the input are preserved
through ‘same’ padding. For the subsequent three convolutional layers, the kernel size and
stride remain the same, but the number of channels doubles with each layer, progressively
extracting more complex features from the input data. The model also includes two fully
connected (dense) layers. The first fully connected layer consists of 2048 neurons, and
the second fully connected layer consists of 1024 neurons, providing the capacity to learn
intricate feature representations. For more details on the network architecture, please refer
to Figure 1.

The model was implemented using the PyTorch framework (version 2.0.1) in Python
(version 3.8.17), an open-source deep learning library widely used in research and industry.
The training was conducted on a machine running Windows 10 with 32 GB of RAM. The
model leveraged GPU acceleration for faster training, utilizing an NVIDIA RTX 4090 GPU
with 24 GB of VRAM. All software frameworks and training hardware used in this study
are open-source or commercially available and do not require any additional licenses for
research or academic purposes.

The specific parameters used during the iterative training process are detailed in
Tables 1 and 2. Each experiment for the different algorithms was repeated 10 times to ensure
consistency and reliability of the results. For each iteration, all parameters—including
weights, biases, and the order of sample inputs—were randomly initialized to avoid any
biases in the training process.
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Table 2. The parameters of DE-FOCNN, GA-FOCNN, and PEO-FOCNN.

Algorithm Parameters

DE-FOCNN v = 1.4, crossover probability CR = 0.7, scaling factor F = 0.8
GA-FOCNN v = 1.4, crossover probability CP = 0.6, mutation probability mp = 0.05
PEO-FOCNN v = 1.4, mutation parameter λ = 0.7

4.2. Experimental Results

We conducted experiments to compare the proposed DE-FOCNN with the standard
FOCNN across a range of different fractional-order values. As shown in Figure 4, the
DE-FOCNN consistently achieved higher average test accuracy than the standard FOCNN
and exhibited less overfitting on the training set. This demonstrates the effectiveness of the
DE algorithm in optimizing the performance of FOCNN. Additionally, for both DE-FOCNN
and FOCNN, the Caputo fractional-order gradient method (CFOGM) outperformed tradi-
tional integer-order gradient methods at specific fractional orders, such as v = 0.8, v = 0.9,
and v = 1.3. Notably, when the fractional order v = 1.4, DE-FOCNN achieved its best
performance.
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When v = 1, both FOCNN and DE-FOCNN function as integer-order neural networks,
equivalent to traditional CNNs and DE-optimized CNNs, respectively. Our results indicate
that the testing accuracy of FOCNN shows a slight downward trend compared to its
performance at v = 0.7, v = 0.9, and v = 0.9, although the decline is not significant. In
contrast, DE-FOCNN exhibits a more noticeable drop in performance at v = 1. Specifically,
the testing accuracy at fractional orders 0.9 and 1.1 is significantly higher than at v = 1,
further emphasizing the superiority of fractional-order models over integer-order ones.

A horizontal comparison between FOCNN and DE-FOCNN at v = 1 reveals a test-
ing accuracy of 0.69 vs. 0.73, respectively, demonstrating that the DE-optimized CNN
outperforms the traditional CNN.

To further validate the superiority of DE-FOCNN over other popular evolutionary
algorithm-based FOCNN models (such as GA-FOCNN and PEO-FOCNN), multiple exper-
iments were conducted on the Janata dataset. The upper and lower bounds of the initial
biases and weights were set to 0.5. The parameters for DE-FOCNN, GA-FOCNN, and
PEO-FOCNN are listed in Table 2.

The results for test accuracy across DE-FOCNN, GA-FOCNN, and PEO-FOCNN are
presented in Table 3. It is evident from Table 3 that DE-FOCNN exhibited higher average
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test accuracy compared to the other algorithms, and its variance was lower than that of
GA-FOCNN and PEO-FOCNN, further demonstrating its stability. The confusion matrix
of the 10 experiments for DE-FOCNN is shown in Figure 5.

Table 3. The statistical results of testing accuracy of DE-FOCNN, GA-FOCNN, and PEO-FOCNN.

Algorithm Average Standard Deviation

DE-FOCNN 0.859 0.027
GA-FOCNN 0.843 0.073
PEO-FOCNN 0.855 0.034
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Figure 6 illustrates the evolution of the loss functions for DE-FOCNN, GA-FOCNN,
and PEO-FOCNN on both the training and test sets. It is clearly visible that DE-FOCNN
achieves a lower loss value compared to the other three algorithms, indicating its superior
optimization performance.
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Additionally, to verify the generalizability of DE-FOCNN and its effectiveness on a new
dataset, we applied the model to classify the groove levels of music from the new dataset.
We also conducted a cycling task to measure the synchronization between movement
and music to validate the effectiveness of DE-FOCNN. The results indicated that DE-
FOCNN achieved good classification performance on the new data, demonstrating strong
generalizability. For detailed results, please refer to Supplementary Material, Figure S1.

5. Discussion

Groove plays a significant role in various fields, including motor rehabilitation, en-
hancement of motor function, and the promotion of physical activity. However, accurately
measuring and predicting groove remains a challenging task. This study proposes a dif-
ferential evolution (DE)-based optimization approach for fractional-order convolutional
neural networks (FOCNNs) aimed at enhancing the accuracy of groove classification in
music. Experimental results indicate that the Caputo fractional-order gradient method
(CFOGM) outperforms traditional integer-order gradient methods. Furthermore, DE-
FOCNN demonstrates significant performance improvement over standard FOCNN across
various fractional-order values, achieving higher test accuracy and significantly reducing
overfitting. Notably, DE-FOCNN achieved its best performance at the fractional-order
value of v = 1.4. Additional experiments showed that DE-FOCNN not only had superior
accuracy compared to other popular evolutionary algorithms (such as GA-FOCNN and
PEO-FOCNN) but also exhibited lower variance.

The experimental results clearly indicate that, firstly, FOCNN performs better at spe-
cific fractional-order values compared to integer-order values (v = 1). This suggests that
fractional-order convolutional neural networks have unique advantages in capturing the
fine features present in Mel-spectrograms of music [28]. Secondly, DE-FOCNN demon-
strates significant advantages in the optimization of fractional-order neural networks.
Standard FOCNNs, due to limitations in the selection of initial parameters, tend to fall into
local optima, resulting in slower convergence and suboptimal accuracy during training [19].
By contrast, DE, with its ability to effectively explore the global search space, significantly
improves the selection of initial weights and biases in FOCNN [21,23,38], thereby greatly
enhancing model training performance. This is particularly evident in reducing overfitting
on the training set and improving accuracy on the test set, which is consistent with previous
studies that utilized DE for optimizing neural networks [17,21,41].
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When comparing DE-FOCNN with other optimization methods (GA and PEO), DE-
FOCNN achieved slightly higher average test accuracy compared to PEO-FOCNN, with
noticeably lower variance. This suggests that DE-FOCNN not only has an advantage in
classification accuracy but also outperforms other optimization algorithms in terms of
robustness. The evolution of the loss function shows that DE-FOCNN experiences less
fluctuation on the training set and converges more quickly on the test set compared to
GA-FOCNN and PEO-FOCNN, further demonstrating its effectiveness in the optimiza-
tion process. Previous studies have also found that DE excels in terms of stability and
robustness [17].

Despite the promising results, there are several limitations of this study that need to
be acknowledged and addressed. This work is an exploratory study in a relatively new
research area, specifically the application of fractional-order convolutional neural networks
(FOCNNs) in music classification, which is still in its early stages. Our current optimization
approach primarily focuses on the selection of initial parameters (weights and biases),
while future work should explore further optimizations of the network structure itself.
We also limited our experiments to relatively simple CNN architectures. Future research
should investigate more complex CNN designs, such as multi-layer and multi-channel
convolutional networks, incorporating fractional-order transformations and appropriate
optimization techniques to achieve better performance. Additionally, DE-FOCNN faces
challenges related to training time, particularly when dealing with large datasets and
complex audio data. More efficient optimization algorithms could be explored in the future
to reduce training time. Finally, to further enhance the credibility and generalizability of
the results, future work should include a more diverse group of participants and larger
datasets to ensure broad applicability of the findings.

6. Conclusions

In this study, we proposed a differential evolution (DE)-based optimization approach
for fractional-order convolutional neural networks (FOCNNs) to enhance the performance
of groove classification in music. This method leverages DE to identify the optimal selection
of initial biases and weights from a wide range of values, improving the performance of
the model.

Through extensive testing on the Janata dataset, our comparative experiments demon-
strated that DE-FOCNN reduces overfitting and achieves higher test accuracy at specific
fractional-order values compared to the original FOCNN. The experiments also showed
that DE-FOCNN outperforms other popular optimization algorithms, such as GA-FOCNN
and PEO-FOCNN, in terms of accuracy and variance reduction, confirming the effectiveness
of DE as an optimization strategy for fractional-order models in groove classification tasks.

This research primarily contributes to the optimization of FOCNNs by introducing a
novel DE-based approach for the automated analysis and classification of musical groove,
offering potential applications in fields such as music recommendation, education, and
therapy. The versatility of the DE-FOCNN framework holds promise for addressing
other related engineering challenges. Future research could explore the application of
DE-FOCNN to broader music-related tasks and larger datasets, with the aim of further
optimizing its architecture and validating its generalizability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fractalfract8110616/s1, Figure S1: Scatter plot of the correlation
between tempo and cadence for music with different groove levels. (a) high-groove; (b) moderate-
groove; (c) low-groove.
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