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Abstract: Unlike existing memristive neural networks or fuzzy neural networks, this article inves-
tigates a class of Caputo fractional-order uncertain memristive neural networks (CFUMNNs) with
fuzzy operators and transmission delay to realistically model complex environments. Especially,
the fuzzy symbol AND and the fuzzy symbol OR as well as nonlinear activation behaviors are all
concerned in the generalized master-slave networks. Based on the characteristics of the neural net-
works being studied, we have designed distinctive information feedback control protocols including
three different functional sub-modules. Combining comparative theorems, inequality techniques,
and stability theory, novel delay-independent conditions can be derived to ensure the finite-time
synchronization (FTS) of fuzzy CFUMNNs. Besides, the upper bound of the settling time can be
effectively evaluated based on feedback coefficients and control parameters, which makes the achieve-
ments of this study more practical for engineering applications such as signal encryption and secure
communications. Ultimately, simulation experiments show the feasibility of the derived results.

Keywords: fuzzy operator; control technique; synchronization requirement; Caputo derivative;
neural network

1. Introduction

With the advancement of modern intelligence theory and software program technol-
ogy, multifarious neural networks (NNs) consisting of multilayer neurons have attracted
increased interest from scientific personnel because of their powerful adaptability, good
fault tolerance, adjustable topological structure, and superior parallel computing com-
petence [1–5]. Numerous intensive studies have shown that NNs can simulate human
brain thinking and have prospective utilizations in different fields, such as computational
neuroscience [6], secure processing [7], parameter optimization [8], intelligent detection [9],
and stability analysis [10–12]. Synchronization, as a significant characteristic dynamic be-
havior of complex systems and NNs, has succeeded in generating a wide range of academic
discussions [13–15]. So far, there are several dominant synchronization modes, such as µ-
synchronization [16], projective synchronization [17], event-triggered synchronization [18],
and finite-time synchronization [19–21].

Memristors, as the best hardware for effectuating neuronal synaptic functions in
neural networks, have a rapid rate of cross-array calculation. Engineers and researchers ap-
plied memristors to neural networks and established various memristive neural networks
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(MNNs) with different application backgrounds. For instance, in [22], Bao et al. considered
the nonlocal synchronization for MNNs with stochastic Wiener process and variable im-
pulsive delay by Lyapunov methods and system stabilization. In [23], Sun et al. designed
a class of nonlinear MNNs framework that can achieve delayed associative memory and
utilized circuit simulation to realize the functions of fast learning and slow forgetting,
providing a valuable research idea for the advancement of neuromorphic systems. In [24],
a novel memristive state neural network was built using the least mean square algorithm
and online learning techniques. This innovative achievement provided a distinctive per-
spective for devising neuromorphic computational networks. Under the balanced diagram
framework, Ding et al. [25] considered the synchronization and anti-synchronization tasks
for MNNs with proportional delays of unknown bounds through the self-triggered tech-
nique and parameter variation approach. By a concise and efficient information feedback
mechanism, Hua et al. [26] paid attention to the nonlocal synchronization challenge of
multi-layer MNNs with multiple delays based on the approach of system solutions. By the
nonlinear scalarization method, Li et al. [27] discussed the nonlocal synchronization for
nonlinear quaternion-valued MNNs with uncertain interferences.

It should be noted that the MNN models and synchronization applications mentioned
above mainly rely on traditional calculus operators. Fractional calculus, as a generalized
form of integer calculus, possesses an addition parameter and more historical information
from the starting moment to the current moment [28]. Comparing and analyzing the two
operators, the fractional form has the merits of being non-locality and memory, allowing
for a more accurate display of actual phenomena such as physical elasticity, non-rigid
motion, and heat transfer. Up to now, many researchers have applied fractional order
calculus to neural network modeling and synchronization problems. To mention a few,
in [29], Bao et al. established fractional Caputo-type MNNs with constant delay in the sense
of Filippov and obtained judgment conditions to ensure that the master-slave network
systems completed the synchronization through an adaptive feedback algorithm. In [30],
Liu et al. deliberated a kind of uncertain fractional-order MNNs and analyzed their robust
synchronization conditions by closure arithmetic and fractional stability theory. Utilizing
the Riemann-Liouville operator instead of the Caputo operator, Gu et al. [31] explored
the global synchronization of fractional MNNs including unknown factors, and derived
a parameter recognition method by adaptive mechanism. With the help of the fractional
comparison principle, the authors constructed a mixed loop controller for realizing the
nonlocal synchronization objective of multi-delay NNs with memristive features [32].
By establishing new fractional comparison inequality, Fan et al. [33] investigated a class of
generalized nontraditional projection synchronization for fractional-order uncertain MNNs
through the hybrid loop feedback scheme and impulsive sampling information. More
recent attention to synchronization control and analysis of memristor-based NNs with
fractional order can be found in the literature [34–37].

Regarding real applications in uncertain and complex environments, NNs are gen-
erally modeled with soft thresholds and fuzzy calculations. Fuzzy logic theory, as a soft
computing mechanism based on human thinking, can describe and handle various uncer-
tainties and fuzzy problems. By fuzzy operators OR and AND, in [38], Li et al. constructed
a kind of fractional-order delayed fuzzy NNs, and deduced network quasi-synchronization
case through the nabla convolution and nonlinear feedback function. In [39], asymptotic
synchronization circumstances of fractional-order NNs involving fuzziness and variable
delays were derived by means of a discrete-time control scheme and Caputo differential in-
equalities. By the Laplace transform and comparative inequalities, Du et al. [40] solved the
FTS of fractional-order NNs with fuzzy operations via adaptive control laws. Afterwards,
in [41], the practical FTS conditions for fuzzy cellular NNs with Caputo operators were
derived and the consequential upper bound of stable time was estimated. Expanding vari-
ables from the real number range to the complex number range, Jin et al. [42] constructed
complex-valued fuzzy NNs with multiple delays and evaluated the settling time of network
synchronization. Note that the fuzzy neural network models in [38–42] did not take into
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account the memristive characteristics and uncertain links. Combining fuzzy operators
and memristors in neural networks can better simulate real-world uncertain environments.
To our knowledge, few studies have considered the FTS problem for fractional-order uncer-
tain memristor-based NNs with fuzzy operators and transmission delay by delayed and
non-delayed information feedback mechanisms, which constitutes the main intention of
this article.

Enlightened by the above results and analysis, this study discusses the FTS for fuzzy
CFUMNNs with transmission delay. The principal research highlights comprise three parts.
First, memristive features, fuzzy operators, transmission delay, and uncertain weights
are all considered for modeling real fractional-order NNs, which expands the relevant
works [30–37] without fuzziness, and [38–42] without memristors. Second, different from
the control schemes in [19–21], novel discontinuous information feedback control protocols
are designed, which consist of three different functional sub-modules for eliminating
the quasi-linear growth error, overcoming the time-delay effect, and implementing the
synchronization task. Lastly, novel sufficient delay-independent conditions can be derived
to ensure the FTS of fuzzy CFUMNNs based on information feedback schemes and various
inequality techniques. Additionally, the settling time bound can be effectively evaluated
based on feedback coefficients and control parameters, making our achievements more
practical for engineering applications.

2. Fractional Knowledge and Mathematical Models

This part gives some related concepts, assumptions, and prominent results about
fractional calculus. Then, fractional-order master-slave MNN models are built in com-
plex situations.

Definition 1. Define fractional integral of a function N (t) as [43]

t0 Iϑ
t N (t) =

1
Γ(ϑ)

∫ t

t0

(t − τ)ϑ−1N (τ)dτ, (1)

where t ≥ t0, ϑ > 0, and Γ(ϑ) =
∫ +∞

0 τϑ−1e−τdτ.

Definition 2. For a function N (t), define its Caputo derivative as [43]

c
t0
Dϑ

t N (t) =
1

Γ(κ − ϑ)

∫ t

t0

(t − τ)κ−ϑ−1N (κ)(τ)dτ, t ≥ t0, (2)

where κ denotes a positive integer such that 0 ≤ κ − 1 < ϑ < κ. Moreover, if 0 < ϑ < 1,
c
t0
Dϑ

t N (t) = 1
Γ(1−ϑ)

∫ t
t0
(t − τ)−ϑN ′(τ)dτ; if ϑ = 1, c

t0
Dϑ

t N (t) becomes the traditional operator.

Consider a class of CFUMNNs with fuzzy operators and transmission delay as below:

c
t0
Dϑ

t ϕp(t) = −(cp + ∆cp(t))ϕp(t) +
m
∑

q=1
upq(ϕp(t)) fq(ϕq(t))

+
m
∑

q=1
vpq(ϕp(t − η)) fq(ϕq(t − η)) + Φp(ϕ(t)) + Ip,

(3)

where

Φp(ϕ(t)) =
m

∑
q=1

dpqξq +
m∧

q=1

ρpq fq(ϕq(t − η)) +
m∨

q=1

ϱpq fq(ϕq(t − η)) +
m∧

q=1

wpqξq +
m∨

q=1

w̃pqξq,

and

upq(ϕp(t)) =

{
úpq, |ϕp(t)| > ℸp,
ùpq, |ϕp(t)| ≤ ℸp,

vpq(ϕp(t − η)) =

{
v́pq, |ϕp(t − η)| > ℸp,
v̀pq, |ϕp(t − η)| ≤ ℸp.
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c
t0
Dϑ

t represents Caputo derivative with 0 < ϑ < 1, and p ∈ Nm
1 = {1, 2, · · · , m}. ϕp(t)

represents the state of the p-th unit at instant t.
∧

and
∨

represent the fuzzy AND and
fuzzy OR operations. ℸp represents the switching jump. úpq, ùpq, v́pq, and v̀pq denote
known constants regarding memristances. upq(ϕp(t)) and vpq(ϕp(t − η)) denote memris-
tive connection weights at different instants t and t − η, where η is the transmission delay.
cp is the self-feedback link weight. ∆cp(t) represent the bounded parameter uncertainty,
defined by |∆cp(t)| ≤ ℶp. dpq is the fuzzy feed-forward template. ρpq and ϱpq signify fuzzy
feedback MIN and MAX templates. wpq and w̃pq signify fuzzy feed-forward MIN and
MAX templates. fq(·) signify the network activation behaviors. Ip and ξp characterize the
external input and the bias of neuron p.

For the sake of characterization, denote u−
pq = min{úpq, ùpq}, v−pq = min{v́pq, v̀pq},

u+
pq = max{úpq, ùpq}, and v+pq = max{v́pq, v̀pq}. Using the differential inclusion technique,

there exist upq ∈ co(upq(ϕp(t))) = [u−
pq, u+

pq] and vpq ∈ co(vpq(ϕp(t − η))) = [v−pq, v+pq]
such that

c
t0
Dϑ

t ϕp(t) = −(cp + ∆cp(t))ϕp(t) +
m
∑

q=1
upq fq(ϕq(t)) +

m
∑

q=1
vpq fq(ϕq(t − η))

+Φp(ϕ(t)) + Ip.
(4)

The initial values of system (4) are ϕp(s) = ϕג
p(s), s ∈ [t0 − η, t0]. Take (4) as the master

system, and the consequential slave system is described as

c
t0
Dϑ

t ψp(t) = −(cp + ∆cp(t))ψp(t) +
m
∑

q=1
upq fq(ψq(t)) +

m
∑

q=1
vpq fq(ψq(t − η))

+Φp(ψ(t)) + Ip + Kp(t),
(5)

where

Φp(ψ(t)) =
m

∑
q=1

dpqξq +
m∧

q=1

ρpq fq(ψq(t − η)) +
m∨

q=1

ϱpq fq(ψq(t − η)) +
m∧

q=1

wpqξq +
m∨

q=1

w̃pqξq,

p ∈ Nm
1 = {1, 2, · · · , m}, and Kp(t) denote the feedback control protocols. The remaining

parameters of (5) have similar implications as system (4) and the initial values of network
system (5) are ψp(s) = ψג

p (s), s ∈ [t0 − η, t0].
Define the synchronization error of master-slave systems as ep(t) = ψp(t)− ϕp(t),

p ∈ Nm
1 = {1, 2, · · · , m}, and we can derive the below error equation

c
t0
Dϑ

t ep(t)

= −(cp + ∆cp(t))ep(t) +
m
∑

q=1
upq[ fq(ψq(t))− fq(ϕq(t))]

+
m
∑

q=1
vpq[ fq(ψq(t − η))− fq(ϕq(t − η))] +

m∧
q=1

ρpq[ fq(ψq(t − η))− fq(ϕq(t − η))]

+
m∨

q=1
ϱpq[ fq(ψq(t − η))− fq(ϕq(t − η))] + Kp(t).

(6)

Then, feedback control mechanisms for fuzzy master networks and fuzzy slave networks
with uncertainties and delays can be seen in Figure 1.

Remark 1. Unlike the fractional-order MNN models in [30–37], this paper introduces two types of
fuzzy operators that make our delayed model have both memristors and fuzzy features. In addition,
nonlinear activation behaviors and uncertain links are considered for network modeling. In terms of
the model’s generalization, the fuzzy CFUMNNs proposed in this article can adapt to more complex
environments than existing models in [30–37].

Remark 2. The synchronization problems for various kinds of integer-order MNNs have been
extensively studied. In [22], the nonlocal synchronization of stochastic MNNs with impulsive delay
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was studied. In [25], the synchronization and anti-synchronization of MNNs with unbounded
proportional delays were considered. In [26], the global synchronization of multi-layer MNNs with
various delays was investigated. Furthermore, the global synchronization conditions of nonlinear
quaternion-valued MNNs with uncertainties were derived in [27]. However, the above control
schemes and analyzed methods in [22,25–27] cannot be applied to our fractional-order model since
Caputo-type MNNs considered in this article have non-locality and memristive.

Figure 1. Feedback control mechanisms for fuzzy master networks and fuzzy slave networks with
uncertainties and delays.

Definition 3. Fuzzy CFUMNNs (4) and (5) can achieved the FTS if there is an instant t∗

making [44]
limt→t∗ ep(t) = 0 and ep(t) = 0, t > t∗, p ∈ Nm

1 , (7)

where t∗ represents the system settling time.

Lemma 1. Let ρpq, ϱpq, ψq(t− η), ϕq(t− η) ∈ R and fq : R → R represent continuous functions.
Then one can get [40]

∣∣∣ m∧
q=1

ρpq[ fq(ψq(t − η))− fq(ϕq(t − η))]
∣∣∣ ≤ m

∑
q=1

|ρpq|| fq(ψq(t − η))− fq(ϕq(t − η))|, (8)

and∣∣∣ m∨
q=1

ϱpq[ fq(ψq(t − η))− fq(ϕq(t − η))]
∣∣∣ ≤ m

∑
q=1

|ϱpq|| fq(ψq(t − η))− fq(ϕq(t − η))|, (9)

where p, q ∈ Nm
1 .

Assumption 1. Nonlinear functions fq : R → R satisfy the Lipshitz condition, i.e., there exist
positive scalars Lq such that

| fq(ψq(t))− fq(ϕq(t))| ≤ Lq|ψq(t)− ϕq(t)|, (10)
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for ∀ψq(t), ϕq(t) ∈ R, and q ∈ Nm
1 .

Lemma 2 ([45]). Let V(t) ∈ C1([t0,+∞),R) is differentiable, we get

c
t0
Dϑ

t |V(t)| ≤ sign(V(t))c
t0
Dϑ

t V(t), 0 < ϑ < 1. (11)

Lemma 3. Let W(t) ∈ C1([t0,+∞),R+) is differentiable and satisfies [44]

c
t0
Dϑ

t W(t) ≤ −bW−α(t)− aW−β(t), W(t) ∈ R+/{0}, (12)

where 0 < ϑ < 1, b > 0, a > 0, α ≥ 0, and α < β ≤ 1 + 2α. Then one has limt→t∗W(t) = 0 and
W(t) = 0, t ≥ t∗, where

t∗ ≤ T =

[
Γ(1 + ϑ)

a(1 + β)2
β−2α−1

1+α

((
W1+α(t0) + (

a
b
)

1+α
β−α

) 1+β
1+α − (

a
b
)

1+β
β−α

)] 1
ϑ

+ t0. (13)

Lemma 4. Let W(t) ∈ C1([t0,+∞),R+) is differentiable and satisfies [44]

c
t0
Dϑ

t W(t) ≤ −aW−β(t)− b, W(t) ∈ R+/{0}, (14)

where 0 < ϑ < 1, b > 0, a > 0, and 0 < β < 1. Then one has limt→t∗W(t) = 0 and
W(t) = 0, t ≥ t∗, where

t∗ ≤ T =

[
Γ(1 + ϑ)

a(1 + β)2β−1

((
W(t0) + (

a
b
)

1
β

)1+β
− (

a
b
)

1+β
β

)] 1
ϑ

+ t0. (15)

3. Novel Finite-Time Synchronization Requirements

To achieve the FTS tasks between master-slave systems (4) and (5), information feed-
back control inputs are given by

Kp(t) =

−γ
ep(t)|ep(t−η)|

|ep(t)| − δep(t)− ϵ
ep(t)

|ep(t)|σ − ζ
ep(t)

|ep(t)|λ
, |ep(t)| ̸= 0,

0, |ep(t)| = 0.
(16)

where p ∈ Nm
1 , and γ, δ, ϵ, ζ denote positive constants. σ ≥ 1 and σ < λ < 2σ represent

tunable parameters.

Theorem 1. Under Assumption 1 and control protocol (16), CFUMNNs (4) are synchronized with
CFUMNNs (5) in finite time if the below conditions

δ ≥ max1≤p≤m

[
− cp +ℶp +

m
∑

q=1
|uqp|Lp

]
(17)

and

γ ≥ max1≤p≤m

[
m
∑

q=1
(|vqp|+ |ρqp|+ |ϱqp|)Lp

]
(18)

hold. Furthermore, the settling time satisfies

t∗ ≤ t1 =

[
Γ(1 + ϑ)

mζλ2
λ−2σ

σ

((
Wσ(t0) + (

ζ

ϵ
)

σ
λ−σ

) λ
σ − (

ζ

ϵ
)

λ
λ−σ

)] 1
ϑ

+ t0. (19)
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Proof. Consider the auxiliary function

W(t) =
m
∑

p=1
|ep(t)|. (20)

Based on Lemmas 1 and 2 and Equation (6), calculating the fractional derivative of
W(t) gives

c
t0
Dϑ

t W(t)

≤
m
∑

p=1
sign(ep(t))c

t0
Dϑ

t ep(t)

=
m
∑

p=1
sign(ep(t))

[
− (cp + ∆cp(t))ep(t) +

m
∑

q=1
upq[ fq(ψq(t))− fq(ϕq(t))]

+
m
∑

q=1
vpq[ fq(ψq(t − η))− fq(ϕq(t − η))] +

m∧
q=1

ρpq[ fq(ψq(t − η))− fq(ϕq(t − η))]

+
m∨

q=1
ϱpq[ fq(ψq(t − η))− fq(ϕq(t − η))]− γ

ep(t)|ep(t−η)|
|ep(t)|

−δep(t)− ϵ
ep(t)

|ep(t)|σ − ζ
ep(t)

|ep(t)|λ

]

≤
m
∑

p=1

[
(−cp +ℶp)|ep(t)|+

m
∑

q=1
|upq|Lq|eq(t)|+

m
∑

q=1
|vpq|Lq|eq(t − η)|

+
m
∑

q=1
|ϱpq|Lq|eq(t − η)|+

m
∑

q=1
|ϱpq|Lq|eq(t − η)|

−γ|ep(t − η)| − δ|ep(t)| − ϵ|ep(t)|1−σ − ζ|ep(t)|1−λ

]

=
m
∑

p=1

[
− cp +ℶp +

m
∑

q=1
|uqp|Lp − δ

]
|ep(t)|

+
m
∑

p=1

[
− γ +

m
∑

q=1
(|vqp|+ |ρqp|+ |ϱqp|)Lp

]
|ep(t − η)|

−
m
∑

p=1
ϵ|ep(t)|1−σ −

m
∑

p=1
ζ|ep(t)|1−λ.

(21)

Substituting (17) and (18) into (21), one can obtain

c
t0
Dϑ

t W(t) ≤ −
m
∑

p=1
ϵ|ep(t)|1−σ −

m
∑

p=1
ζ|ep(t)|1−λ. (22)

For σ ≥ 1, m ∈ Z+, it is not difficult to attain

m
∑

p=1
|ep(t)|1−σ ≥ m

( m
∑

p=1
|ep(t)|

)1−σ
. (23)

Similarly, for σ < λ < 2σ and m ∈ Z+, one can easily derive

m
∑

p=1
|ep(t)|1−λ ≥ m

( m
∑

p=1
|ep(t)|

)1−λ
. (24)

Substituting (23) and (24) into (22), we can get

c
t0
Dϑ

t W(t) ≤ −mϵ
( m

∑
p=1

|ep(t)|
)1−σ

− mζ
( m

∑
p=1

|ep(t)|
)1−λ

≤ −mϵW−(σ−1)(t)− mζW−(λ−1)(t).
(25)
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Note that mϵ > 0, mζ > 0, σ − 1 ≥ 0, λ − 1 > 0, and σ − 1 < λ − 1 < 2σ − 1. The co-
efficients of differential inequality (25) satisfy the framework requirements of Lemma 3.
According to Lemma 3, CFUMNNs (4) are synchronized with CFUMNNs (5) in finite time
under feedback controller (16) and the settling time satisfies

t∗ ≤ t1 =

[
Γ(1 + ϑ)

mζλ2
λ−2σ

σ

((
Wσ(t0) + (

ζ

ϵ
)

σ
λ−σ

) λ
σ − (

ζ

ϵ
)

λ
λ−σ

)] 1
ϑ

+ t0. (26)

Remark 3. Different from the control protocols in [19–21], this article designs discontinuous
information feedback control protocols consisting of three functional sub-modules to achieve the FTS

target. In particular, −γ
ep(t)|ep(t−η)|

|ep(t)| has the function of overcoming the time-delay interference;

−δep(t) has the effect of eliminating the quasi-linear growth error; −ϵ
ep(t)

|ep(t)|σ − ζ
ep(t)

|ep(t)|λ
has the

role of implementing the synchronization task, where the control parameters ϵ and ζ affect the
synchronization efficiency.

Remark 4. Evidently, the first equation in the information feedback protocols (16) shows that

limep(t)→0Kp(t) = ∞. In practical applications, a simple approach is to replace −γ
ep(t)|ep(t−η)|

|ep(t)| −

δep(t) − ϵ
ep(t)

|ep(t)|σ − ζ
ep(t)

|ep(t)|λ
in (16) with −γ

ep(t)|ep(t−η)|
|ep(t)|+ε

− δep(t) − ϵ
ep(t)

|ep(t)|σ+ε
− ζ

ep(t)
|ep(t)|λ+ε

,

where ε > 0 denotes a small enough constant.

When control parameter σ = 1, the information feedback control input Kp(t) can be
adjusted as

Kp(t) =

−γ
ep(t)|ep(t−η)|

|ep(t)| − δep(t)− ϵ
ep(t)
|ep(t)| − ζ

ep(t)
|ep(t)|λ

, |ep(t)| ̸= 0,

0, |ep(t)| = 0.
(27)

where p ∈ Nm
1 , γ, δ, ϵ, ζ denote positive constants, and 1 < λ < 2 represents a tunable

parameter. Significantly, by constructing the Lyapunov function and utilizing a similar
analysis for inequality (25), we can get

c
t0
Dϑ

t W(t) ≤ −mϵ − mζW−(λ−1)(t). (28)

Then, using Lemma 4, one can derive the following Theorem 2.

Theorem 2. Under Assumption 1 and control protocol (27), CFUMNNs (4) are synchronized
with CFUMNNs (5) in finite time if conditions (17) and (18) hold. Furthermore, the settling time
satisfies

t∗ ≤ t2 =

[
Γ(1 + ϑ)

mζλ2λ−2

((
W(t0) + (

ζ

ϵ
)

1
λ−1

)λ
− (

ζ

ϵ
)

λ
λ−1

)] 1
ϑ

+ t0. (29)

Remark 5. Based on inequalities (19) and (29), it is not difficult to evaluate the settling time t1
and t2. Clearly, the settling time t1 and t2 rely on not only the degree ϑ, neuron number m, and the
starting value W(t0), but also the control parameters ζ, ϵ, and λ. The only difference between the
two inequalities is that there exists an additional control parameter σ in inequality (19), making it
more generalizable.

Remark 6. It should be noted that the feedback control strategies and finite time synchronization
results in this article are still applicable to integer-order fuzzy MNNs with transmission delays.
The main reason is that the fractional-order lemmas utilized in this article can be directly extended
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to integer-order ones. However, the comparison theorems and synchronization results in most
integer-order NNs cannot be directly extended to fractional-order NNs.

Especially, if the parameter uncertainty is not considered for modeling networks, then
CFUMNNs (4) representing the master system will be degenerated into

c
t0
Dϑ

t ϕp(t) = −cpϕp(t) +
m
∑

q=1
upq fq(ϕq(t)) +

m
∑

q=1
vpq fq(ϕq(t − η)) + Φp(ϕ(t)) + Ip. (30)

Correspondingly, CFUMNNs (5) representing the slave system will be degenerated
into

c
t0
Dϑ

t ψp(t) = −cpψp(t) +
m
∑

q=1
upq fq(ψq(t)) +

m
∑

q=1
vpq fq(ψq(t − η)) + Φp(ψ(t)) + Ip + Kp(t). (31)

Based on the synchronization criteria in Theorems 1 and 2, one gets the below monu-
mental corollaries.

Corollary 1. Under Assumption 1 and control protocol (16), CFUMNNs (30) are synchronized
with CFUMNNs (31) in finite time if the below conditions

δ ≥ max1≤p≤m

[
− cp +

m
∑

q=1
|uqp|Lp

]
(32)

and

γ ≥ max1≤p≤m

[
m
∑

q=1
(|vqp|+ |ρqp|+ |ϱqp|)Lp

]
(33)

hold. Furthermore, the settling time satisfies

t∗ ≤ t3 =

[
Γ(1 + ϑ)

mζλ2
λ−2σ

σ

((
Wσ(t0) + (

ζ

ϵ
)

σ
λ−σ

) λ
σ − (

ζ

ϵ
)

λ
λ−σ

)] 1
ϑ

+ t0. (34)

Corollary 2. Under Assumption 1 and control protocol (27), CFUMNNs (30) are synchronized
with CFUMNNs (31) in finite time if conditions (32) and (33) hold. Furthermore, the settling time
satisfies

t∗ ≤ t4 =

[
Γ(1 + ϑ)

mζλ2λ−2

((
W(t0) + (

ζ

ϵ
)

1
λ−1

)λ
− (

ζ

ϵ
)

λ
λ−1

)] 1
ϑ

+ t0. (35)

4. Verification Experiments

To illustrate the applicability of the principal FTS results derived in this study, two
verification examples are constructed below.

Example 1. Take the following fractional-order uncertain MNNs with fuzzy operators and trans-
mission delay as the drive system:

c
t0
D0.95

t ϕp(t) = −(cp + ∆cp(t))ϕp(t) +
3
∑

q=1
upq fq(ϕq(t)) +

3
∑

q=1
vpq fq(ϕq(t − η))

+Φp(ϕ(t)) + Ip,
(36)

where η = 0.08, cp = 1, ∆cp(t) = 0.1sint, dpq = −1, Ip = 0, wpp = w̃pp = −0.1, wpq = w̃pq =
0.1(p ̸= q), ρ11 = ρ13 = ρ22 = ρ23 = ρ31 = ρ32 = ϱ23 = ϱ32 = 0.1, ρ12 = ρ21 = ϱ12 = ϱ21 =
−0.2, ρ33 = ϱ33 = −0.1, ϱ11 = ϱ13 = ϱ22 = ϱ31 = 0.2, and the memristive connection weights
are defined as
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u11(ϕ1) =

{
2.0, |ϕ1(t)| > 1,
2.2, |ϕ1(t)| ≤ 1,

u12(ϕ1) =

{
−1.0, |ϕ1(t)| > 1,
−1.2, |ϕ1(t)| ≤ 1,

u13(ϕ1) =

{
1.8, |ϕ1(t)| > 1,
2.0, |ϕ1(t)| ≤ 1,

u21(ϕ2) =

{
0.8, |ϕ2(t)| > 1,
1.0, |ϕ2(t)| ≤ 1,

u22(ϕ2) =

{
1.5, |ϕ2(t)| > 1,
1.8, |ϕ2(t)| ≤ 1,

u23(ϕ2) =

{
−1.0, |ϕ2(t)| > 1,
−1.5, |ϕ2(t)| ≤ 1,

u31(ϕ3) =

{
−1.1, |ϕ3(t)| > 1,
−1.0, |ϕ3(t)| ≤ 1,

u32(ϕ3) =

{
2.0, |ϕ3(t)| > 1,
1.7, |ϕ3(t)| ≤ 1,

u33(ϕ3) =

{
1.5, |ϕ3(t)| > 1,
2.0, |ϕ3(t)| ≤ 1,

v11(ϕ1) =

{
−2.0, |ϕ1(t)| > 1,
−1.5, |ϕ1(t)| ≤ 1,

v12(ϕ1) =

{
−0.5, |ϕ1(t)| > 1,
−1.0, |ϕ1(t)| ≤ 1,

v13(ϕ1) =

{
1.5, |ϕ1(t)| > 1,
2.0, |ϕ1(t)| ≤ 1,

v21(ϕ2) =

{
2.5, |ϕ2(t)| > 1,
2.2, |ϕ2(t)| ≤ 1,

v22(ϕ2) =

{
5.0, |ϕ2(t)| > 1,
4.5, |ϕ2(t)| ≤ 1,

v23(ϕ2) =

{
−2.5, |ϕ2(t)| > 1,
−3.0, |ϕ2(t)| ≤ 1,

v31(ϕ3) =

{
2.4, |ϕ3(t)| > 1,
2.0, |ϕ3(t)| ≤ 1,

v32(ϕ3) =

{
−2.0, |ϕ3(t)| > 1,
−1.8, |ϕ3(t)| ≤ 1,

v33(ϕ3) =

{
4.5, |ϕ3(t)| > 1,
5.0, |ϕ3(t)| ≤ 1,

Let the activation functions fq(ϕq(t)) = tanh(|ϕq(t)| − 1). Through simple calculations, one
derives that L1 = L2 = L3 = 1 satisfies Assumption 1. Based on drive system (36), one can obtain
the response system as

c
t0
D0.95

t ψp(t) = −(cp + ∆cp(t))ψp(t) +
3
∑

q=1
upq fq(ψq(t)) +

3
∑

q=1
vpq fq(ψq(t − η))

+Φp(ψ(t)) + Ip + Kp(t),
(37)

where

u11(ψ1) =

{
2.0, |ψ1(t)| > 1,
2.2, |ψ1(t)| ≤ 1,

u12(ψ1) =

{
−1.0, |ψ1(t)| > 1,
−1.2, |ψ1(t)| ≤ 1,

u13(ψ1) =

{
1.8, |ψ1(t)| > 1,
2.0, |ψ1(t)| ≤ 1,

u21(ψ2) =

{
0.8, |ψ2(t)| > 1,
1.0, |ψ2(t)| ≤ 1,

u22(ψ2) =

{
1.5, |ψ2(t)| > 1,
1.8, |ψ2(t)| ≤ 1,

u23(ψ2) =

{
−1.0, |ψ2(t)| > 1,
−1.5, |ψ2(t)| ≤ 1,

u31(ψ3) =

{
−1.1, |ψ3(t)| > 1,
−1.0, |ψ3(t)| ≤ 1,

u32(ψ3) =

{
2.0, |ψ3(t)| > 1,
1.7, |ψ3(t)| ≤ 1,

u33(ψ3) =

{
1.5, |ψ3(t)| > 1,
2.0, |ψ3(t)| ≤ 1,

v11(ψ1) =

{
−2.0, |ψ1(t)| > 1,
−1.5, |ψ1(t)| ≤ 1,

v12(ψ1) =

{
−0.5, |ψ1(t)| > 1,
−1.0, |ψ1(t)| ≤ 1,

v13(ψ1) =

{
1.5, |ψ1(t)| > 1,
2.0, |ψ1(t)| ≤ 1,

v21(ψ2) =

{
2.5, |ψ2(t)| > 1,
2.2, |ψ2(t)| ≤ 1,

v22(ψ2) =

{
5.0, |ψ2(t)| > 1,
4.5, |ψ2(t)| ≤ 1,
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v23(ψ2) =

{
−2.5, |ψ2(t)| > 1,
−3.0, |ψ2(t)| ≤ 1,

v31(ψ3) =

{
2.4, |ψ3(t)| > 1,
2.0, |ψ3(t)| ≤ 1,

v32(ψ3) =

{
−2.0, |ψ3(t)| > 1,
−1.8, |ψ3(t)| ≤ 1,

v33(ψ3) =

{
4.5, |ψ3(t)| > 1,
5.0, |ψ3(t)| ≤ 1,

and other network parameters have similar forms as network (36).
Let control parameters in response system (37) as γ = 11.5, δ = 5.5, ϵ = 0.2, ζ = 0.2, σ =

1.1, λ = 1.2. Uncomplicated calculations yield that δ − max1≤p≤m

[
− cp +ℶp +

m
∑

q=1
|uqp|Lp

]
>

0.9, and γ−max1≤p≤m

[
m
∑

q=1
(|vqp|+ |ρqp|+ |ϱqp|)Lp

]
> 0.8, which satisfies the synchronization

constraints of Theorem 1.
To test the robustness of the results in this article, the starting values for the neural states

of fuzzy CFUMNNs (36) and (37) are randomly produced in [−1, 1] and prediction correction
methods have been utilized for experiment simulations. Under the above system parameters and
control strengths, the evolution trajectories of drive-response systems (36) and (37) gradually
overlap, as shown in the first three subgraphs in Figure 2. Meanwhile, the synchronization errors
between systems (36) and (37) asymptotically converge to zero, as shown in Figure 2d–f. Hence,
the synchronization objective can be achieved in finite time t∗ ≤ 5.3372 and the effectiveness
of Theorem 1 has been validated. To discuss the influence of different parameters on the derived

results, we define the overall system error as E(t) =
m
∑

p=1
|ep(t)|. First, maintain the same control

intensity and regulate the size of the transmission delay with an initialization of 0.10 and a step
of 0.04, it can be concluded that the greater the delay, the longer the control time for the system
to achieve synchronization, as illustrated in Figure 3a. Second, the uncertainties are adjusted to
0.20sint, 0.40sint, and 0.60sint, respectively. One can easily find that the greater the magnitude of
the uncertainty function, the more difficult to achieve the FTS objective. To further investigate the
effect of fractional order on the synchronization results. We adjusted the fractional order to 0.7, 0.8
and 1.0, and the experimental results in Figure 4 showed that the synchronization results in this
paper are still valid.

Remark 7. Due to the non-local nature of fractional neural networks, a prediction correction
technique named Adams-Bashforth-Moulton [46] is applied in numerical simulations of Matlab
R2020b to solve delayed fractional order differential equations. The whole solution process contains
two main phases: prediction and correction. Firstly, a grid method is used to delimit the time
interval. A product rectangle rule is used to evaluate the prediction term, and a product trapezoidal
summation rule is employed to obtain the correction formulators. Based on two important rules,
the numerical solution is easily implemented.

Example 2. Consider the below fractional-order uncertain delayed MNNs with fuzzy operators as
the drive system:

c
t0
D0.92

t ϕp(t) = −(cp + ∆cp(t))ϕp(t) +
3
∑

q=1
upq fq(ϕq(t)) +

3
∑

q=1
vpq fq(ϕq(t − η))

+Φp(ϕ(t)) + Ip,
(38)

where η = 0.10, cp = 1, ∆cp(t) = 0.1cost, dpq = 1, Ip = 0, wpq = w̃pq = 0.1, ρ11 = ρ13 =
ρ22 = ρ23 = ρ31 = ρ32 = 0.1, ρ12 = ρ21 = −0.2, ρ33 = −0.1, ϱ11 = ϱ13 = ϱ22 = ϱ31 = 0.2,
ϱ12 = ϱ21 = −0.2, ϱ23 = ϱ32 = 0.1, ϱ33 = −0.1 and the memristive connection weights are
selected as

u11(ϕ1) =

{
2.1, |ϕ1(t)| > 1,
2.0, |ϕ1(t)| ≤ 1,

u12(ϕ1) =

{
−1.0, |ϕ1(t)| > 1,
−1.1, |ϕ1(t)| ≤ 1,
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u13(ϕ1) =

{
1.8, |ϕ1(t)| > 1,
2.1, |ϕ1(t)| ≤ 1,

u21(ϕ2) =

{
0.8, |ϕ2(t)| > 1,
1.1, |ϕ2(t)| ≤ 1,

u22(ϕ2) =

{
1.5, |ϕ2(t)| > 1,
1.8, |ϕ2(t)| ≤ 1,

u23(ϕ2) =

{
−1.0, |ϕ2(t)| > 1,
−1.3, |ϕ2(t)| ≤ 1,

u31(ϕ3) =

{
−1.1, |ϕ3(t)| > 1,
−1.2, |ϕ3(t)| ≤ 1,

u32(ϕ3) =

{
2.1, |ϕ3(t)| > 1,
1.7, |ϕ3(t)| ≤ 1,

u33(ϕ3) =

{
1.5, |ϕ3(t)| > 1,
2.1, |ϕ3(t)| ≤ 1,

v11(ϕ1) =

{
−2.1, |ϕ1(t)| > 1,
−1.8, |ϕ1(t)| ≤ 1,

v12(ϕ1) =

{
−0.5, |ϕ1(t)| > 1,
−1.1, |ϕ1(t)| ≤ 1,

v13(ϕ1) =

{
1.8, |ϕ1(t)| > 1,
2.1, |ϕ1(t)| ≤ 1,

v21(ϕ2) =

{
2.5, |ϕ2(t)| > 1,
2.2, |ϕ2(t)| ≤ 1,

v22(ϕ2) =

{
5.1, |ϕ2(t)| > 1,
4.5, |ϕ2(t)| ≤ 1,

v23(ϕ2) =

{
−2.5, |ϕ2(t)| > 1,
−3.1, |ϕ2(t)| ≤ 1,

v31(ϕ3) =

{
2.4, |ϕ3(t)| > 1,
2.1, |ϕ3(t)| ≤ 1,

v32(ϕ3) =

{
−2.1, |ϕ3(t)| > 1,
−1.8, |ϕ3(t)| ≤ 1,

v33(ϕ3) =

{
4.5, |ϕ3(t)| > 1,
5.1, |ϕ3(t)| ≤ 1,

Let the activation functions fq(ϕq(t)) = tanh(|ϕq(t)| − 1). Clearly, L1 = L2 = L3 = 1
satisfies Assumption 1. Based on drive system (38), one can obtain the response system as

c
t0
D0.92

t ψp(t) = −(cp + ∆cp(t))ψp(t) +
3
∑

q=1
upq fq(ψq(t)) +

3
∑

q=1
vpq fq(ψq(t − η))

+Φp(ψ(t)) + Ip + Kp(t),
(39)

where

u11(ψ1) =

{
2.1, |ψ1(t)| > 1,
2.0, |ψ1(t)| ≤ 1,

u12(ψ1) =

{
−1.0, |ψ1(t)| > 1,
−1.1, |ψ1(t)| ≤ 1,

u13(ψ1) =

{
1.8, |ψ1(t)| > 1,
2.1, |ψ1(t)| ≤ 1,

u21(ψ2) =

{
0.8, |ψ2(t)| > 1,
1.1, |ψ2(t)| ≤ 1,

u22(ψ2) =

{
1.5, |ψ2(t)| > 1,
1.8, |ψ2(t)| ≤ 1,

u23(ψ2) =

{
−1.0, |ψ2(t)| > 1,
−1.3, |ψ2(t)| ≤ 1,

u31(ψ3) =

{
−1.1, |ψ3(t)| > 1,
−1.2, |ψ3(t)| ≤ 1,

u32(ψ3) =

{
2.1, |ψ3(t)| > 1,
1.7, |ψ3(t)| ≤ 1,

u33(ψ3) =

{
1.5, |ψ3(t)| > 1,
2.1, |ψ3(t)| ≤ 1,

v11(ψ1) =

{
−2.1, |ψ1(t)| > 1,
−1.8, |ψ1(t)| ≤ 1,

v12(ψ1) =

{
−0.5, |ψ1(t)| > 1,
−1.1, |ψ1(t)| ≤ 1,

v13(ψ1) =

{
1.8, |ψ1(t)| > 1,
2.1, |ψ1(t)| ≤ 1,

v21(ψ2) =

{
2.5, |ψ2(t)| > 1,
2.2, |ψ2(t)| ≤ 1,

v22(ψ2) =

{
5.1, |ψ2(t)| > 1,
4.5, |ψ2(t)| ≤ 1,

v23(ψ2) =

{
−2.5, |ψ2(t)| > 1,
−3.1, |ψ2(t)| ≤ 1,

v31(ψ3) =

{
2.4, |ψ3(t)| > 1,
2.1, |ψ3(t)| ≤ 1,
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v32(ψ3) =

{
−2.1, |ψ3(t)| > 1,
−1.8, |ψ3(t)| ≤ 1,

v33(ψ3) =

{
4.5, |ψ3(t)| > 1,
5.1, |ψ3(t)| ≤ 1.
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Figure 2. The evolution curves of state and error vectors for fuzzy CFUMNNs (36) and (37) under
information feedback (16) in Example 1. (a) ϕ1(t)&ψ1(t); (b) ϕ2(t)&ψ2(t); (c) ϕ3(t)&ψ3(t); (d) e1(t);
(e) e2(t); (f) e3(t).
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Figure 3. The overall system error E(t) between fuzzy CFUMNNs (36) and (37) under information
feedback (16) with adjusted parameters in Example 1. (a) E(t) under different transmission delays;
(b) E(t) under different uncertain links.
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Figure 4. The overall system error E(t) between fuzzy CFUMNNs (36) and (37) under information
feedback (16) with different fractional order in Example 1.

Let control parameters in response system (39) as γ = 11.6, δ = 5.4, ϵ = 0.2, ζ = 0.2,

λ = 1.2. Simple calculations give that δ −max1≤p≤m

[
− cp +ℶp +

m
∑

q=1
|uqp|Lp

]
> 0.8, and γ −

max1≤p≤m

[
m
∑

q=1
(|vqp|+ |ρqp|+ |ϱqp|)Lp

]
> 0.6, which implies the synchronization constraints

of Theorem 2 hold.
To achieve the FTS objective, information feedback control protocol (27) is applied for fuzzy

CFUMNNs (38) and (39), and the initial values for the neural states are also randomly produced
in [−1, 1]. As illustrated in Figure 5, the time evolution of state variables and error variables
indicates that the FTS can be achieved between drive-response systems (38) and (39) under control
protocol (27) with suitable parameters. Meanwhile, the finite time measurement can be obtained as
t∗ ≤ 5.5354. To verify the robustness of the control strategy to different parameters, we maintain
the same control intensity and regulate the size of the transmission delay with an initialization
0.15 and a step 0.05, one can conclude that the greater the delay, the longer the evolution time
to reach synchronization, as illustrated in Figure 6a. Moreover, changing the uncertainties as
0.20cost, 0.40cost, and 0.60cost, as illustrated in Figure 6b, we can readily derive that the greater
the magnitude of the uncertainty function, the more difficult to achieve the synchronization goal.
Both examples in this section demonstrate that transmission delays and uncertainties affect the
stability of error systems and the synchronization efficiency of drive-response networks.
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Figure 5. The curves of state and error vectors for fuzzy CFUMNNs (38) and (39) under information
feedback (27) in Example 2. (a) ϕ1(t)&ψ1(t); (b) ϕ2(t)&ψ2(t); (c) ϕ3(t)&ψ3(t); (d) e1(t); (e) e2(t);
(f) e3(t).
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Figure 6. The overall system error E(t) between fuzzy CFUMNNs (38) and (39) under information
feedback (27) with adjusted parameters in Example 2. (a) E(t) under different transmission delays;
(b) E(t) under different uncertain links.

5. Conclusions

The research in this article focuses on the finite-time synchronization challenge for
fractional-order uncertain MNNs with transmission delay. In particular, two kinds of fuzzy
operators and nonlinear activation behaviors are introduced into the generalized master-
slave systems. It becomes a challenging task to design a suitable controller to overcome
the multiple factors in the networks. We have considered a composite control protocol
consisting of three parts to eliminate the quasi-linear growth error, overcome the time-
delay effect, and implement the synchronization tasks. Using the comparative theorem
and Lyapunov function approach, novel delay-independent synchronization criteria have
been presented in the form of inequalities. Furthermore, the estimation of the settling
time boundary and the impact of major factors on synchronization results have also been
studied. In future research, additional optimization studies of intermittent feedback control
techniques based on event-triggering mechanisms are necessary to reduce the control
burden and enhance information safety.
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