Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology
Abstract
:1. Introduction
2. Einstein–Gauss–Bonnet Scalar Field Gravity
3. Exact Scaling Solutions
- For and ,and . For and , and .
- For and we haveand .
- For and we have and . For and we haveand .
- For and we haveand .
- For and we have and .
4. Stability Analysis of the Exact Solution
4.1. Stability of the Scaling Solution
- , or
- , or
- , or
- , or
- , or
- , or
- .
- , or
- , or
- , or
- , or
- , or
- .
- , or
- , or
- , or
- , or
- .
4.2. Dynamics at Infinity
- 1.
- with eigenvalues (73). The stability analysis is the same as in the previous finite regime.
- 2.
- are antipodal points, whereThese points exist for the following intervals
- (1)
- , or
- (2)
- , or
- (3)
- , or
- (4)
- , or
- (5)
- , or
- (6)
- , or
- (7)
- , or
- (8)
- , or
- (9)
- , or
- (10)
- , or
- (11)
- , or
- (12)
- , or
- (13)
- , or
- (14)
- , or
- (15)
- , or
- (16)
- , or
- (17)
- , or
- (18)
- , or
- (19)
- , or
- (20)
- , or
- (21)
- , or
- (22)
- , or
- (23)
- , or
- (24)
- , or
- (25)
- , or
- (26)
- , or
- (27)
- , or
- (28)
- , or
- (29)
- , or
- (30)
- , or
- (31)
- , or
- (32)
- , or
- (33)
- , or
- (34)
- , or
- (35)
- , or
- (36)
- , or
- (37)
- , or
- (38)
- , or
- (39)
- , or
- (40)
Recall that the flow in a neighborhood of antipodal points is topologically equivalent, and it may be reversed [98], but in this case, both points share the same eigenvalues. Therefore, the stability is the same for both B and We will write and to represent their eigenvalues. Given that many existence conditions and the eigenvalues depend on both free parameters, we will only consider some cases to analyze the stability of B and In particular, if we only consider the existence conditions for which the points are hyperbolic (most), we verify by numerical inspection that the points can never be attractors. However, they can be sources or saddles. When one parameter is fixed and the other free, the behavior is as depicted in Figure 6. On the other hand, when both parameters are free, the behaviour is as shown in Figure 7. - 3.
5. Observational Constraints
5.1. Hubble Parameter for the Exponential Potential
5.2. Cosmic Chronometers
5.3. Type Ia Supernovae
5.4. Gravitational Lensing
5.5. Black Hole Shadows
5.6. Results and Discussion
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Variational Equations
Appendix B. Stability Analysis of Power-Law Solutions
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 1968, 11, 381. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Ziaie, A.H.; Marto, J.; Moniz, P.V. Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space. Phys. Rev. D 2014, 89, 044028. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Rasouli, S.M.M.; Moniz, P.V. Quantum cosmology, minimal length and holography. Phys. Rev. D 2014, 90, 023541. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Vargas Moniz, P. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation. Phys. Rev. D 2014, 90, 083533. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Vargas Moniz, P. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting. Odessa Astron. Pub. 2016, 29, 19. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Capistrano, A.J.S.; Moniz, P.V. Quantum deformation of quantum cosmology: A framework to discuss the cosmological constant problem. Phys. Dark Univ. 2017, 18, 55–66. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V. Non-singular Brans–Dicke collapse in deformed phase space. Ann. Phys. 2016, 375, 154–178. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Farhoudi, M.; Vargas Moniz, P. Modified Brans–Dicke theory in arbitrary dimensions. Class. Quant. Grav. 2014, 31, 115002. [Google Scholar] [CrossRef]
- Melchiorri, A.; Mersini-Houghton, L.; Odman, C.J.; Trodden, M. The State of the dark energy equation of state. Phys. Rev. D 2003, 68, 043509. [Google Scholar] [CrossRef]
- Vikman, A. Can dark energy evolve to the phantom? Phys. Rev. D 2005, 71, 023515. [Google Scholar] [CrossRef]
- Nesseris, S.; Perivolaropoulos, L. Crossing the Phantom Divide: Theoretical Implications and Observational Status. J. Cosmol. Astropart. Phys. 2007, 2007, 018. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D 2004, 70, 043539. [Google Scholar] [CrossRef]
- Guo, Z.K.; Piao, Y.S.; Zhang, X.M.; Zhang, Y.Z. Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 2005, 608, 177–182. [Google Scholar] [CrossRef]
- Zhang, X.F.; Li, H.; Piao, Y.S.; Zhang, X.M. Two-field models of dark energy with equation of state across-1. Mod. Phys. Lett. A 2006, 21, 231–242. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.L.; Zhang, X.M. Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 2005, 607, 35–41. [Google Scholar] [CrossRef]
- Cai, Y.F.; Saridakis, E.N.; Setare, M.R.; Xia, J.Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rept. 2010, 493, 1–60. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R.G. Cosmological evolution of hessence dark energy and avoidance of big rip. Phys. Rev. D 2005, 72, 123507. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R.G.; Zeng, D.F. Hessence: A New view of quintom dark energy. Class. Quant. Grav. 2005, 22, 3189–3202. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R.G. A note on crossing the phantom divide in hybrid dark energy model. Phys. Lett. B 2006, 634, 9–13. [Google Scholar] [CrossRef]
- Zhao, G.B.; Xia, J.Q.; Li, M.; Feng, B.; Zhang, X. Perturbations of the quintom models of dark energy and the effects on observations. Phys. Rev. D 2005, 72, 123515. [Google Scholar] [CrossRef]
- Feng, B.; Li, M.; Piao, Y.S.; Zhang, X. Oscillating quintom and the recurrent Universe. Phys. Lett. B 2006, 634, 101–105. [Google Scholar] [CrossRef]
- Xia, J.Q.; Feng, B.; Zhang, X.M. Constraints on oscillating quintom from supernova, microwave background and galaxy clustering. Mod. Phys. Lett. A 2005, 20, 2409–2416. [Google Scholar] [CrossRef]
- Zhang, X. An interacting two-fluid scenario for quintom dark energy. Commun. Theor. Phys. 2005, 44, 762–768. [Google Scholar] [CrossRef]
- Zhang, X. Statefinder diagnostic for holographic dark energy model. Int. J. Mod. Phys. D 2005, 14, 1597–1606. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, F.Q. Constraints on holographic dark energy from Type Ia supernova observations. Phys. Rev. D 2005, 72, 043524. [Google Scholar] [CrossRef]
- Zhang, X. Dynamical vacuum energy, holographic quintom, and the reconstruction of scalar-field dark energy. Phys. Rev. D 2006, 74, 103505. [Google Scholar] [CrossRef]
- Lazkoz, R.; Leon, G. Quintom cosmologies admitting either tracking or phantom attractors. Phys. Lett. B 2006, 638, 303–309. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Sadjadi, H.M. The w = -1 crossing of the quintom model with arbitrary potential. Phys. Lett. B 2007, 648, 113–118. [Google Scholar] [CrossRef]
- Lazkoz, R.; Leon, G.; Quiros, I. Quintom cosmologies with arbitrary potentials. Phys. Lett. B 2007, 649, 103–110. [Google Scholar] [CrossRef]
- Leon, G.; Leyva, Y.; Socorro, J. Quintom phase-space: Beyond the exponential potential. Phys. Lett. B 2014, 732, 285–297. [Google Scholar] [CrossRef]
- Mohseni Sadjadi, H.; Alimohammadi, M. Transition from quintessence to phantom phase in quintom model. Phys. Rev. D 2006, 74, 043506. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the Universe history, from inflation to acceleration, with phantom and canonical scalar fields. Phys. Rev. D 2008, 77, 106005. [Google Scholar] [CrossRef]
- Leon, G.; Paliathanasis, A.; Morales-Martínez, J.L. The past and future dynamics of quintom dark energy models. Eur. Phys. J. C 2018, 78, 753. [Google Scholar] [CrossRef]
- Tot, J.; Yildirim, B.; Coley, A.; Leon, G. The dynamics of scalar-field Quintom cosmological models. Phys. Dark Univ. 2023, 39, 101155. [Google Scholar] [CrossRef]
- Leon, G.; Coley, A.; Paliathanasis, A.; Tot, J.; Yildirim, B. Global dynamics of two models for Quintom Friedman–Lemaître– Robertson–Walker Universes. Phys. Dark Univ. 2024, 45, 101503. [Google Scholar] [CrossRef]
- Apostolopoulos, P.S.; Tetradis, N. Late acceleration and w = −1 crossing in induced gravity. Phys. Rev. D 2006, 74, 064021. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. Inflationary cosmology and the late-time accelerated expansion of the Universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity. Phys. Rev. D 2008, 77, 123532. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Nojiri, S.; Odintsov, S.D. Crossing of the phantom divide in modified gravity. Phys. Rev. D 2009, 79, 083014. [Google Scholar] [CrossRef]
- Setare, M.R.; Saridakis, E.N. Braneworld models with a non-minimally coupled phantom bulk field: A Simple way to obtain the -1-crossing at late times. J. Cosmol. Astropart. Phys. 2009, 2009, 002. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy Universe. Phys. Rev. D 2006, 74, 086005. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D.; Troisi, A. Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 2006, 639, 135–143. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Leon, G.; Saridakis, E.N. Phase-space analysis of Horava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 2009, 11, 006. [Google Scholar] [CrossRef]
- Bellorin, J.; Borquez, C.; Droguett, B. Effective action of the Hořava theory: Cancellation of divergences. Phys. Rev. D 2024, 109, 084007. [Google Scholar] [CrossRef]
- Bellorin, J.; Borquez, C.; Droguett, B. Renormalization of the nonprojectable Hořava theory. Phys. Rev. D 2024, 110, 084020. [Google Scholar] [CrossRef]
- Leon, G. On the Past Asymptotic Dynamics of Non-minimally Coupled Dark Energy. Class. Quant. Grav. 2009, 26, 035008. [Google Scholar] [CrossRef]
- Lim, S.C. Fractional derivative quantum fields at positive temperature. Physica A 2006, 363, 269–281. [Google Scholar] [CrossRef]
- Lim, S.C.; Eab, C.H. (Eds.) Fractional quantum fields. In Volume 5 Applications in Physics, Part B; De Gruyter: Berlin, Germany, 2019; pp. 237–256. [Google Scholar] [CrossRef]
- El-Nabulsi, A.R. Fractional derivatives generalization of Einstein’s field equations. Indian J. Phys. 2013, 87, 195–200. [Google Scholar] [CrossRef]
- El-Nabulsi, A.R. Non-minimal coupling in fractional action cosmology. Indian J. Phys. 2013, 87, 835–840. [Google Scholar] [CrossRef]
- Moniz, P.V.; Jalalzadeh, S. From Fractional Quantum Mechanics to Quantum Cosmology: An Overture. Mathematics 2020, 8, 313. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S.; Moniz, P.V. Broadening quantum cosmology with a fractional whirl. Mod. Phys. Lett. A 2021, 36, 2140005. [Google Scholar] [CrossRef]
- Moniz, P.V.; Jalalzadeh, S. Challenging Routes in Quantum Cosmology; World Scientific Publishing: Singapore, 2020. [Google Scholar] [CrossRef]
- Vacaru, S.I. Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes. Int. J. Theor. Phys. 2012, 51, 1338–1359. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; da Silva, F.R.; Moniz, P.V. Prospecting black hole thermodynamics with fractional quantum mechanics. Eur. Phys. J. C 2021, 81, 632. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Cosmology with a fractional action principle. Rom. Rep. Phys. 2007, 59, 763–771. [Google Scholar]
- El-Nabulsi, A.R. Fractional Lagrangian formulation of general relativity and emergence of complex, spinorial and noncommutative gravity. Int. J. Geom. Meth. Mod. Phys. 2009, 6, 25–76. [Google Scholar] [CrossRef]
- EL-Nabulsi, R.A. Fractional dynamics, fractional weak bosons masses and physics beyond the standard model. Chaos Solitons Fractals 2009, 41, 2262–2270. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Rashid, M.A. Fractional Action Cosmology with Power Law Weight Function. J. Phys. Conf. Ser. 2012, 354, 012008. [Google Scholar] [CrossRef]
- Shchigolev, V.K. Testing Fractional Action Cosmology. Eur. Phys. J. Plus 2016, 131, 256. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. non-local-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J.-Non-Linear Mech. 2017, 93, 65–81. [Google Scholar] [CrossRef]
- Rami, E.N.A. Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 2011, 217, 9492–9496. [Google Scholar] [CrossRef]
- Barrientos, E.; Mendoza, S.; Padilla, P. Extending Friedmann equations using fractional derivatives using a Last Step Modification technique: The case of a matter dominated accelerated expanding Universe. Symmetry 2021, 13, 174. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Torres, D.F. Fractional Action-Like Variational Problems. J. Math. Phys. 2008, 49, 053521. [Google Scholar] [CrossRef]
- Baleanu, D.; Trujillo, J. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1111–1115. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.; Torres, D. A generalized fractional calculus of variations. Comput. Math. Appl. 2012, 64, 3351–3366. [Google Scholar] [CrossRef]
- García-Aspeitia, M.A.; Fernandez-Anaya, G.; Hernández-Almada, A.; Leon, G.; Magaña, J. Cosmology under the fractional calculus approach. Mon. Not. Roy. Astron. Soc. 2022, 517, 4813–4826. [Google Scholar] [CrossRef]
- González, E.; Leon, G.; Fernandez-Anaya, G. Exact solutions and cosmological constraints in fractional cosmology. Fractal Fract. 2023, 7, 368. [Google Scholar] [CrossRef]
- Leon Torres, G.; García-Aspeitia, M.A.; Fernandez-Anaya, G.; Hernández-Almada, A.; Magaña, J.; González, E. Cosmology under the fractional calculus approach: A possible H0 tension resolution? PoS 2023, 248, 1–15. [Google Scholar] [CrossRef]
- Micolta-Riascos, B.; Millano, A.D.; Leon, G.; Erices, C.; Paliathanasis, A. Revisiting Fractional Cosmology. Fractal Fract. 2023, 7, 149. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Sasaki, M. Gauss–Bonnet dark energy. Phys. Rev. D 2005, 71, 123509. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D 2006, 74, 046004. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.; Zerbini, S. String-inspired Gauss–Bonnet gravity reconstructed from the Universe expansion history and yielding the transition from matter dominance to dark energy. Phys. Rev. D 2007, 75, 086002. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tretyakov, P.V. Dark energy from modified F(R)-scalar-Gauss–Bonnet gravity. Phys. Lett. B 2007, 651, 224–231. [Google Scholar] [CrossRef]
- Chakraborty, S.; Paul, T.; SenGupta, S. Inflation driven by Einstein–Gauss–Bonnet gravity. Phys. Rev. D 2018, 98, 083539. [Google Scholar] [CrossRef]
- Fomin, I.V. Cosmological Inflation with Einstein–Gauss–Bonnet Gravity. Phys. Part. Nucl. 2018, 49, 525–529. [Google Scholar] [CrossRef]
- Kanti, P.; Gannouji, R.; Dadhich, N. Gauss–Bonnet Inflation. Phys. Rev. D 2015, 92, 041302. [Google Scholar] [CrossRef]
- Hikmawan, G.; Soda, J.; Suroso, A.; Zen, F.P. Comment on “Gauss–Bonnet inflation”. Phys. Rev. D 2016, 93, 068301. [Google Scholar] [CrossRef]
- Motaharfar, M.; Sepangi, H.R. Warm-tachyon Gauss–Bonnet inflation in the light of Planck 2015 data. Eur. Phys. J. C 2016, 76, 646. [Google Scholar] [CrossRef]
- Rashidi, N.; Nozari, K. Gauss–Bonnet Inflation after Planck2018. Astrophys. J. 2020, 890, 58. [Google Scholar] [CrossRef]
- Millano, A.D.; Leon, G.; Paliathanasis, A. Phase-Space Analysis of an Einstein–Gauss–Bonnet Scalar Field Cosmology. Mathematics 2023, 11, 1408. [Google Scholar] [CrossRef]
- Millano, A.D.; Leon, G.; Paliathanasis, A. Global dynamics in Einstein–Gauss–Bonnet scalar field cosmology with matter. Phys. Rev. D 2023, 108, 023519. [Google Scholar] [CrossRef]
- Millano, A.D.; Michea, C.; Leon, G.; Paliathanasis, A. Dynamics of a higher-dimensional Einstein–Scalar–Gauss–Bonnet cosmology. Phys. Dark Univ. 2024, 46, 101589. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V.; Fronimos, F. Rectifying Einstein–Gauss–Bonnet inflation in view of GW170817. Nucl. Phys. B 2020, 958, 115135. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef]
- Liddle, A.R.; Scherrer, R.J. A Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 1999, 59, 023509. [Google Scholar] [CrossRef]
- Uzan, J.P. Cosmological scaling solutions of nonminimally coupled scalar fields. Phys. Rev. D 1999, 59, 123510. [Google Scholar] [CrossRef]
- Frederico, G.A.S.F.; Torres, D. Necessary Optimality Conditions for Fractional Action-like Problems with Intrinsic and Observer Times. WSEAS Trans. Math. 2008, 7, 6–11. [Google Scholar]
- Goodman, J.; Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 2010, 5, 65–80. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306–312. [Google Scholar] [CrossRef]
- Perko, L. Differential Equations and Dynamical Systems, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Cosmographic analysis with Chebyshev polynomials. Mon. Not. R. Astron. Soc. 2018, 476, 3924–3938. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42. [Google Scholar] [CrossRef]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Carr, A.; Zuntz, J.; Kessler, R.; Davis, T.M.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Tripp, R. A Two-parameter luminosity correction for type Ia supernovae. Astron. Astrophys. 1998, 331, 815–820. [Google Scholar]
- Kessler, R.; Scolnic, D. Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples. Astrophys. J. 2017, 836, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; An, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Treu, T.; Marshall, P.J. Time Delay Cosmography. Astron. Astrophys. Rev. 2016, 24, 11. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.-F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420–1439. [Google Scholar] [CrossRef]
- Jee, I.; Suyu, S.H.; Komatsu, E.; Fassnacht, C.D.; Hilbert, S.; Koopmans, L.V.E. A measurement of the Hubble constant from angular diameter distances to two gravitational lenses. Science 2019, 365, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Birrer, S.; Treu, T.; Rusu, C.E.; Bonvin, V.; Fassnacht, C.D.; Chan, J.H.H.; Agnello, A.; Shajib, A.J.; Chen, G.C.-F.; Auger, M.; et al. H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 2019, 484, 4726. [Google Scholar] [CrossRef]
- Rusu, C.E.; Wong, K.C.; Bonvin, V.; Sluse, D.; Suyu, S.H.; Fassnacht, C.D.; Chan, J.H.; Hilbert, S.; Auger, M.W.; Sonnenfeld, A.; et al. H0LiCOW XII. Lens mass model of WFI2033 - 4723 and blind measurement of its time-delay distance and H0. Mon. Not. R. Astron. Soc. 2020, 498, 1440–1468. [Google Scholar] [CrossRef]
- Chen, G.C.; Fassnacht, C.D.; Suyu, S.H.; Rusu, C.E.; Chan, J.H.; Wong, K.C.; Auger, M.W.; Hilbert, S.; Bonvin, V.; Birrer, S.; et al. A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. Mon. Not. R. Astron. Soc. 2019, 490, 1743–1773. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; Torres Castillejos, R. H0 Tension on the Light of Supermassive Black Hole Shadows Data. Universe 2023, 9, 14. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azuly, R. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Krishnan, C.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yang, T. Running Hubble tension and a H0 diagnostic. Phys. Rev. D 2021, 103, 103509. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Gupta, R.P. JWST early Universe observations and ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2023, 524, 3385–3395. [Google Scholar] [CrossRef]
- Valcin, D.; Jimenez, R.; Verde, L.; Bernal, J.L.; Wandelt, B.D. The age of the Universe with globular clusters: Reducing systematic uncertainties. J. Cosmol. Astropart. Phys. 2021, 2021, 17. [Google Scholar] [CrossRef]
Data | Total Steps | ||||
---|---|---|---|---|---|
CDM cosmology | |||||
SNe Ia | 1250 | ⋯ | |||
SNe Ia+CC | 1300 | ⋯ | |||
joint | 1350 | ⋯ | |||
Fractional cosmology | |||||
SNe Ia | 1300 | ⋯ | |||
SNe Ia+CC | 1600 | ⋯ | |||
joint | 1350 | ⋯ |
Data | Best-Fit Values | ||||
---|---|---|---|---|---|
CDM cosmology | |||||
SNe Ia | ⋯ | 1523 | |||
SNe Ia+CC | ⋯ | 1547 | |||
Joint | ⋯ | 1681 | |||
Fractional cosmology | |||||
SNe Ia | ⋯ | 1532 | |||
SNe Ia+CC | ⋯ | 1564 | |||
Joint | ⋯ | 1706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micolta-Riascos, B.; Millano, A.D.; Leon, G.; Droguett, B.; González, E.; Magaña, J. Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology. Fractal Fract. 2024, 8, 626. https://doi.org/10.3390/fractalfract8110626
Micolta-Riascos B, Millano AD, Leon G, Droguett B, González E, Magaña J. Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology. Fractal and Fractional. 2024; 8(11):626. https://doi.org/10.3390/fractalfract8110626
Chicago/Turabian StyleMicolta-Riascos, Bayron, Alfredo D. Millano, Genly Leon, Byron Droguett, Esteban González, and Juan Magaña. 2024. "Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology" Fractal and Fractional 8, no. 11: 626. https://doi.org/10.3390/fractalfract8110626
APA StyleMicolta-Riascos, B., Millano, A. D., Leon, G., Droguett, B., González, E., & Magaña, J. (2024). Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology. Fractal and Fractional, 8(11), 626. https://doi.org/10.3390/fractalfract8110626