The Uniqueness and Iterative Properties of Positive Solution for a Coupled Singular Tempered Fractional System with Different Characteristics
Abstract
:1. Introduction
- To overcome the obstruction of opposite monotonicity, a new double iterative technique is introduced.
- The nonlinear term of the system of equations can have stronger singularity in space variables.
- Different from [29], the assumption of the upper and lower solutions is not required in our work.
2. Preliminaries and Lemmas
3. Main Results
- ()
- ) is increasing on the second variable, is decreasing on the second variable.
- ()
- There exists a constant such that
- ()
- For the above and any , there exist two real functions with and such that
- , and is decreasing in u and, for any , there exists a constant such that, for anyIn recent work [67], Zhang et al. used the following condition to establish the convergence analysis of the unique solution for a Dirichlet problem of the general k-Hessian equation in a ball:
- is continuous and nondecreasing and, for any there exists a constant such that, for anyClearly () generalizes and improves the conditions and and includes and as special cases.
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations, in North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Sokolov, I.; Klafter, J. Anomalous diffusion spreads its wings. Phys. World. 2005, 18, 29–32. [Google Scholar] [CrossRef]
- Einstein, A. On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat. Ann. Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Cartea, Á.; Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 041–105. [Google Scholar] [CrossRef]
- Meerschaert, M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M. Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 2011, 47, W08601. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.; Yor, M. The fine structure of asset returns: An empirical investigation. J. Bus. 2002, 75, 305–333. [Google Scholar] [CrossRef]
- Nielsen, O. Processes of normal inverse Gaussian type. Finance Stoch. 1998, 2, 41–68. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, C.; Liu, L.; Wu, Y. Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 2017, 16, 205–222. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Zhang, X.; Liu, L. Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Boundary Value Probl. 2017, 2017, 118. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties. Boundary Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Grafakos, L.; Wu, Y. Fractional Fourier transforms on Lp and applications. Appl. Comput. Harmon. Anal. 2021, 55, 71–96. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Z. An initial and boundary value problem of fractional Jeffreys’ fluid in a porous half spaces. Comput. Math. Appl. 2019, 78, 1801–1810. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. A tracing of the fractional temperature field. Sci. China Math. 2017, 60, 2303–2320. [Google Scholar] [CrossRef]
- Dong, B.; Fu, Z.; Xu, J. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci. China Math. 2018, 61, 1807–1824. [Google Scholar] [CrossRef]
- Shi, S. Some notes on supersolutions of fractional p-Laplace equation. J. Math. Anal. Appl. 2018, 463, 1052–1074. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L. Dual characterization of fractional capacity via solution of fractional p-Laplace equation. Math. Nachr. 2020, 293, 2233–2247. [Google Scholar] [CrossRef]
- Tang, H.; Wang, G. Limiting weak type behavior for multilinear fractional integrals. Nonlinear Anal. 2020, 2020, 197. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity. Adv. Calc. Var. 2024, 17, 195–207. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. Fractional capacities relative to bounded open Lipschitz sets complemented. Calc. Var. Partial. Differ. Equ. 2017, 56, 1–22. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jhang, S.; Kang, Q. Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations. Fractal. Fract. 2022, 6, 625. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. On fractional capacities relative to bounded open Lipschitz sets. Potential Anal. 2016, 45, 261–298. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 2018, 23, 611–626. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, 2018, 189. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional Non-linear Regularity, Potential and Balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Zhang, H. Iterative solutions for fractional nonlocal boundary value problems involving integral conditions. Bound. Value Probl. 2016, 2016, 3. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 2018, 82. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Pang, H. Iterative positive solutions to a coupled fractional differential system with the multistrip and multipoint mixed boundary conditions. Adv. Differ. Equ. 2019, 2019, 389. [Google Scholar] [CrossRef]
- Chang, D.; Duong, X.; Li, J.; Wang, W.; Wu, Q. An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J. 2021, 70, 2451–2477. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Liu, S. Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces. Adv. Nonlinear Stud. 2018, 18, 517–535. [Google Scholar] [CrossRef]
- Gong, R.; Vempati, M.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 3656. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces. Sci. China Math. 2017, 60, 1837–1856. [Google Scholar] [CrossRef]
- Cao, J.; Chang, D.; Fu, Z.; Yang, D. Real interpolation of weighted tent spaces. Appl. Anal. 2016, 59, 2415–2443. [Google Scholar] [CrossRef]
- Chang, D.; Fu, Z.; Yang, D.; Yang, S. Real-variable characterizations of Musielak-Orlicz-Hardy spaces associated with Schrödinger operators on domains. Math. Methods Appl. Sci. 2016, 39, 533–569. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. The existence and nonexistence of entire large solutions for a quasilinear Schrodinger elliptic system by dual approach. J. Math. Anal. Appl. 2018, 464, 1089–1106. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term. Appl. Math. Lett. 2017, 74, 85–93. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y. Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows. Appl. Math. Lett. 2019, 90, 229–237. [Google Scholar] [CrossRef]
- Chen, P.; Duong, X.; Li, J.; Wu, Q. Compactness of Riesz transform commutator on stratified Lie groups. J. Funct. Anal. 2019, 277, 1639–1676. [Google Scholar] [CrossRef]
- Shi, S.; Fu, Z.; Lu, S. On the compactness of commutators of Hardy operators. Pac. J. Math. 2020, 307, 239–256. [Google Scholar] [CrossRef]
- Duong, X.; Lacey, M.; Li, J.; Wick, B.; Wu, Q. Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness. Indiana Univ. Math. J. 2021, 70, 1505–1541. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, S.; Lu, S.; Yuan, W. Weighted multilinear Hardy operators and commutators. Forum Math. 2015, 27, 2825–2852. [Google Scholar] [CrossRef]
- Shi, S.; Lu, S. Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl. 2015, 429, 713–732. [Google Scholar] [CrossRef]
- Ruan, J.; Fan, D.; Wu, Q. Weighted Herz space estimates for Hausdorff operators on the Heisenberg group. Banach J. Math. Anal. 2017, 11, 513–535. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Lin, R. Some integral representation formulas and Schwarz lemmas related to perturbed Dirac operators. J. Appl. Anal. Comput. 2022, 12, 2475–2487. [Google Scholar] [CrossRef]
- Wu, Q.; Fu, Z. Boundedness of Hausdorff operators on Hardy spaces in the Heisen-berg group. Banach J. Math. Anal. 2018, 12, 909–934. [Google Scholar] [CrossRef]
- Gu, L.; Ma, D. Dirac Operators with gradient potentials and related monogenic functions. Complex Anal. Oper. Theory 2020, 14, 53. [Google Scholar] [CrossRef]
- Liu, F.; Fu, Z.; Wu, Y. Variation operators for commutators of rough singular intehrals on weighted morrey spaces. J. Appl. Anal. Comput. 2024, 14, 263–282. [Google Scholar] [CrossRef]
- Shi, S.; Fu, Z.; Wu, Q. On the average operators, oscillatory integrals, singulars, singular integrals and their applications. J. Appl. Anal. Comput. 2024, 14, 334–378. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and lower solution method for a singular tempered fractional equation with a p-Laplacian operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. The radial solution for an eigenvalue problem of singular augmented Hessian equation. Appl. Math. Lett. 2022, 134, 108330. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y. The eigenvalue problem of a singular k-Hessian equation. Appl. Math. Lett. 2022, 124, 107666. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Chen, L. Classification of solutions for an integral system with negative exponents. Complex Var. Elliptic Equ. 2019, 64, 204–222. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strong indefinite Schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, Z. Riemann boundary value problem for Harmonic functions in Clifford analysis. Math. Nachr. 2014, 287, 1001–1012. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar] [CrossRef]
- Bu, R.; Fu, Z.; Zhang, Y. Weighted estimates for bilinear square function with non-smooth kernels and commutators. Front. Math. China. 2020, 15, 1–20. [Google Scholar] [CrossRef]
- Yang, S.; Chang, D.; Yang, D.; Fu, Z. Gradient estimates via rearrangements for solutions of some Schrödinger equations. Anal. Appl. 2018, 16, 339–361. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Wu, Y. Positive solutions for nonlinear Schrödinger Kirchhoff equation in R3. Appl. Math. Lett. 2020, 104, 106274. [Google Scholar] [CrossRef]
- Xu, M.; Liu, S.; Lou, Y. Persistence and extinction in the anti-symmetric Lotka-Volterra systems. J. Differ. Equ. 2024, 387, 299–323. [Google Scholar] [CrossRef]
- Chen, T.; Li, F.; Yu, P. Nilpotent center conditions in cubic switching polynomial Liénard systems by higher-order analysis. J. Differ. Equ. 2024, 379, 258–289. [Google Scholar] [CrossRef]
- Gözen, M. On the existence and uniqueness of positive periodic solutions of neutral differential equations. J. Nonlinear Var. Anal. 2023, 7, 367–379. [Google Scholar] [CrossRef]
- Wang, M.; Xu, F.; Tang, Q. The positive solutions to the boundary value problem of a nonlinear singular impulsive differential system. Nonlinear Anal. Differ. Equ. 2022, 10, 7–14. [Google Scholar] [CrossRef]
- Difonzo, F.; Garrappa, R. A Numerical Procedure for Fractional-Time-Space Differential Equations with the Spectral Fractional Laplacian; Springer INdAM Series; Springer: Singapore, 2023; Volume 50. [Google Scholar] [CrossRef]
- Bonito, A.; Lei, W.; Pasciak, J. Numerical approximation of the integral fractional Laplacian. Numer. Math. 2019, 142, 235–278. [Google Scholar] [CrossRef]
- Cayama, J.; Cuesta, C.; Hoz, F. Numerical approximation of the fractional Laplacian on R using orthogonal families. Appl. Numer. Math. 2020, 158, 164–193. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Jiang, J.; Wu, Y.; Cui, Y. The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations. Appl. Math. Lett. 2020, 102, 106–124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zhang, X.; Wang, Y.; Wu, Y. The Uniqueness and Iterative Properties of Positive Solution for a Coupled Singular Tempered Fractional System with Different Characteristics. Fractal Fract. 2024, 8, 636. https://doi.org/10.3390/fractalfract8110636
Chen P, Zhang X, Wang Y, Wu Y. The Uniqueness and Iterative Properties of Positive Solution for a Coupled Singular Tempered Fractional System with Different Characteristics. Fractal and Fractional. 2024; 8(11):636. https://doi.org/10.3390/fractalfract8110636
Chicago/Turabian StyleChen, Peng, Xinguang Zhang, Ying Wang, and Yonghong Wu. 2024. "The Uniqueness and Iterative Properties of Positive Solution for a Coupled Singular Tempered Fractional System with Different Characteristics" Fractal and Fractional 8, no. 11: 636. https://doi.org/10.3390/fractalfract8110636
APA StyleChen, P., Zhang, X., Wang, Y., & Wu, Y. (2024). The Uniqueness and Iterative Properties of Positive Solution for a Coupled Singular Tempered Fractional System with Different Characteristics. Fractal and Fractional, 8(11), 636. https://doi.org/10.3390/fractalfract8110636