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Abstract: In this paper, we focus on the uniqueness and iterative properties of positive solution for a
coupled p-Laplacian system of singular tempered fractional equations with differential order and
characteristics. Firstly, the system is converted to an integral equation, and then, a coupled iterative
technique and some suitable growth conditions are proposed; furthermore, some elaborate results
about the uniqueness and iterative properties of positive solutions of the system are established, which
include the uniqueness, the convergence analysis, the asymptotic behavior, and error estimation, as
well as the convergence rate of the positive solution. The interesting points of this paper are that
the order of the system of equations is different and the nonlinear terms of the system possess the
opposite monotonicity and allow for stronger singularities at space variables.

Keywords: iterative solutions; uniqueness; double iterative techniques; convergence analysis;
iterative properties

1. Introduction

In this paper, we consider the following coupled p-Laplacian system of singular
tempered fractional equations with different characteristics

R
0 Dt

α,λ
(

φp(
R
0 Dt

β,λu(t))
)
= f1(t, v(t)),

R
0 Dt

ȷ,λ
(

φp(
R
0 Dt

ℓ,λv(t))
)
= f2(t, u(t)),

u(0) = v(0) = 0,
R
0 Dt

β,λu(0) = R
0 Dt

ℓ,λv(0) = 0,

u(1) =
∫ 1

0
e−λ(1−t)u(t)dt, v(1) =

∫ 1

0
e−λ(1−t)v(t)dt.

(1)

where α, ȷ ∈ (0, 1) and β, ℓ ∈ (1, 2) are real constants, which represent the order of tempered
fractional derivatives, λ is a positive constant, φp(t) = |t|p−2t denotes the p-Laplacian
operator with conjugate exponent 1

p + 1
q = 1, p > 1, R

0 Dt
ς,λ(ς = ȷ, ℓ, α, β) are tempered

fractional derivatives, which have the following relationship with the Riemann–Liouville
fractional derivative R

0 Dt
ς

R
0 Dt

ς,λx(t) = e−λtR
0 Dt

ς
(

eλtx(t)
)

, (2)
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where R
0 Dt

ςx(t) = dn

dtn

(
In−ς

t x(t)
)

and

In−ς
t x(t) =

∫ 1

0
(t − s)ς−1x(s)ds, (3)

is a Riemann–Liouville fractional integral; see [1].
System (1) comes from the dynamics phenomenon for modeling a particle’s random

walk in Brownian motion, where the transition has a feature of a semi-heavy tail from a
power law to a Gaussian. Let g(x, t) be the particle jump density function. To more accu-
rately describe the long-range dependence property that the particle diffusion possesses,
Sokolov and Klafter [2] replaced Einstein’s classical diffusion equation [3] by the following
fractional variant:

∂
ȷ
tg(x, t) = ∂ℓxg(x, t), (4)

where the space fractional derivative ∂ℓx(0 < ℓ < 2) describes particle jumps P[J > x] ≈ x−ℓ

and the time fractional derivative ∂
ȷ
t(0 < ȷ ≤ 1) represents the waiting time P[W > t] ≈ t−ȷ

between particle jumps. Obviously, ∂ℓx and ∂
ȷ
t all obey a heavy-tailed power law. However,

in anomalous diffusion, the delivery speed of a particle’s random walk in Brownian motion
is faster than that expected in traditional diffusion, which means the decay of the particle
abides by a power law in moderate time, but follows an exponential rule on long time
scales, i.e., the particle’s Brownian motion in anomalous diffusion possesses a feature of a
semi-heavy tail. In order to temper the feature of the semi-heavy tail, Sabzikar et al. [4]
introduced an exponential factor into the particle jump density by a Fourier transform

F [∂ℓ,λ
±,xg](x, t) = Bℓ,λ

± (x)
[
e−[pBℓ,λ

+ (x)+(1−p)Bℓ,λ
− (x)]µt

]
, 0 ≤ p ≤ 1,

where

Bℓ,λ
± (x) =

{
(λ ± xi)ℓ − λℓ, 0 < ℓ < 1,

(λ ± xi)ℓ − λℓ −±ℓλℓ−1xi, 1 < ℓ < 2,

and derived a tempered anomalous diffusion equation:

∂tg(x, t) = (−1)kCT{p∂ℓ,λ
+,x + (1 − p)∂ℓ,λ

−,x}g(x, t), ℓ ∈ (k − 1, k), k = 1, 2, (5)

Thus, the tempered anomalous diffusion Equation (5) offers an exponential decay advan-
tage over the fractional diffusion model (4) at long time scales, and has more applications
in the tempered Lévy flight diffusion [5], in geophysics [6,7], and in finance [8,9].

In recent years, many new concepts of fractional derivatives and integral operators
have been proposed, either to model natural phenomena where the existing fractional
integral or derivative operators are inadequate, or to derive some wonderful mathematic
properties that the traditional derivatives do not possess, for example, in the study of
dynamic systems model for bioprocesses [10], eco-economical processes [11], fractional
Kelvin–Voigt models [12], fractional Fourier transforms [13], fractional Jeffreys fluid in
a porous medium [14], fractional temperature fields [15], mathematical properties for
fractional problems [16–26], and so on. In a single equation, the author [27] established
iterative solutions for a class of fractional nonlocal equations subject to integral conditions:

R
0 Dt

αx(t) + f (t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = 0, R
0 Dt

βx(1) =
∫ 1

0

R
0 Dt

βx(t)dA(t),
(6)

where 2 < α ≤ 3, 0 < β ≤ 1,
∫ 1

0
R
0 Dt

βx(t)dA(t) denotes a Riemann–Stieltjes integral, and
the nonlinearity f (·, ·) is continuous and increasing on the second variable in the local inter-
val. By two iterative sequences with known initial values, it was proven that Equation (6)
has two nontrivial solutions. However, the author neither obtained the positive solution
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of the problem nor established the uniqueness and iterative properties of the solution. In
a recent work [28], Wu et al. considered the unique positive solution for a p-Laplacian
fractional differential equation in the sense of Riemann–Liouville fractional derivatives:

− R
0 Dt

α
(

φp

(
−R

0 Dt
γx
))

(t) = f (t, x(t)), 0 < t < 1,

x(0) = 0, R
0 Dt

γx(0) = R
0 Dt

γx(1) = 0, x(1) =
∫ 1

0
x(t)dχ(t),

(7)

where γ, α ∈ (1, 2],
∫ 1

0 z(t)dχ(t) is a Riemann–Stieltjes integral and χ is a function of
bounded variation. By using an iterative technique, the uniqueness and iterative properties
of the positive solution were established in the case where the nonlinearity was decreasing
in the space variable. Recently, by employing the monotone iterative technique, Zhao
et al. [29] studied the existence of iterative positive solutions for a coupled system of
fractional differential equations,{ R

0 Dt
α1 x(t) + f1(t, x(t), y(t), R

0 Dt
γ1 x(t), R

0 Dt
γ2 y(t)), 0 < t < 1,

R
0 Dt

α2 y(t) + f2(t, x(t), y(t), R
0 Dt

γ1 x(t), R
0 Dt

γ2 y(t)), 0 < t < 1,
(8)

subject to multipoint mixed boundary conditions:
x(0) = x′(0) = 0, x(1) =

m

∑
i=1

aiI
β1
t y(ξi) +

n

∑
j=1

bjy(ηi),

y(0) = y′(0) = 0, y(1) =
m

∑
i=1

ciI
β2
t x(ξi) +

n

∑
j=1

bjx(ηi),
(9)

where αi ∈ (2, 3], βi ∈ (1, 2], 0 < γi < αi − 2, i = 1, 2 and ai, ci > 0, bj ≥ 0, 0 <
ξi, ηj < 1, i = 1, 2, · · · , m, j = 1, 2, · · · , n. Under the condition that the nonlinearities
fi(t, x1, x2, x3, x4) (i = 1, 2) are all increasing in xj ∈ [0, l] for j = 1, 2, 3, 4, the iterative
positive solutions and iterative sequence were established. In addition, to make our paper
more self-integrated and readers conveniently understand our work, here we also recall
some theories and methods related to this paper such as space theory [30–35], iterative
techniques [36–38], regular theory [39–41], operator theory [42–49], upper–lower solution
methods [50–52], the method of moving spheres [53], critical point theory [20,54–61], fixed
point theorem [62,63], and many numerical techniques [64–66], etc.

By reviewing the above work, we find that the nonlinear terms of the equations
of the systems in existing work are almost all required to have the same characteristic:
from an analytical point of view, there is no essential difference to studying a single
equation, [27–29]. However, in system (1), f1, f2 have opposite monotonicity, i.e., f1(·, ·) is
increasing, and f2(·, ·) is decreasing on the second variable, respectively. No work has been
performed on this type of system of equations with different characteristics as far as we
know. The research of this paper is motivated by this source; to fill this gap, we propose a
new double iterative technique and introduce some new growth conditions to overcome the
difficulty of systems of equations with different characteristics, in particular, we not only
establish the uniqueness of the iterative positive solution for system (1), but also derive the
explicit iterative properties of the positive solution, which include the iterative sequence,
the convergence analysis, error estimation, and the asymptotic behavior of the positive
solution of system (1). The new contributions of this paper are listed as follows:

• The nonlinear terms of the system of equations possess opposite monotonicity, the
method in [29] cannot be applied to solve the system (1).

• To overcome the obstruction of opposite monotonicity, a new double iterative tech-
nique is introduced.

• The nonlinear term of the system of equations can have stronger singularity in
space variables.
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• Some new growth conditions are introduced which generalize and improve the condi-
tions and results of [28,67].

• Different from [29], the assumption of the upper and lower solutions is not required
in our work.

• The explicit iterative properties of the solution for (1) are established, which makes up
for the lack of work on it [29].

This paper is structured as follows. In Section 2, some preliminaries and lemmas are
given. The main results are stated in Section 3. In Section 4, we give an example to illustrate
our main results.

2. Preliminaries and Lemmas

In this sections, we firstly gather some properties of the Riemann–Liouville fractional
derivative and integral for the subsequent studies.

Lemma 1 ([1]). The Riemann–Liouville fractional derivative and integral have the following properties:
(1) Let z(t) ∈ L1[0, 1] ∩ C[0, 1], then

Ih̄
t

R
0 Dh̄

t x(t) = x(t) +
n

∑
i=1

bith̄−i,

where bi ( i = 1, 2, 3, · · ·, n, n = [h̄] + 1) are real numbers, and [·] denotes the integer function.
(2) If z(t) ∈ L1(0, 1), ȷ > ℓ > 0, then

R
0 Dℓ

t Iȷ
tz(t) = Iȷ−ℓ

t z(t), Iȷ
tI
ℓ
t z(t) = Iȷ+ℓ

t z(t), R
0 Dℓ

t Iℓt z(t) = z(t);

(3) Let ȷ > 0, ℓ > 0, then

R
0 Dȷ

tt
ℓ−1 =

Γ(ℓ)
Γ(ℓ− ȷ)

tℓ−ȷ−1.

Lemma 2 (see [50]). If h(t) is a positive continuous function in [0, 1], then the linear tempered
fractional equation 

R
0 D

β,λ
t x(t) = h(t),

x(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

(10)

has a unique positive solution

x(t) =
∫ 1

0
H1(t, s)h(s)ds, (11)

where H1(t, s) is the Green function of (10)

H1(t, s) =


[
β(1 − s)β−1(β − 1 + s)eλstβ−1 − β(β − 1)eλs(t − s)β−1]e−λt

(β − 1)Γ(β + 1)
, 0 ≤ s ≤ t ≤ 1;

β(1 − s)β−1(β − 1 + s)eλs

(β − 1)Γ(β + 1)
tβ−1e−λt, 0 ≤ t ≤ s ≤ 1.

(12)

For 
R
0 D

ȷ,λ
t x(t) = h(t),

x(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

we write the Green function as
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H2(t, s) =



[
ℓ(1 − s)ℓ−1(ℓ− 1 + s)eλstℓ−1 − ℓ(ℓ− 1)eλs(t − s)ℓ−1

]
e−λt

(ℓ− 1)Γ(ℓ+ 1)
, 0 ≤ s ≤ t ≤ 1;

ℓ(1 − s)ℓ−1(ℓ− 1 + s)eλs

(ℓ− 1)Γ(ℓ+ 1)
tℓ−1e−λt, 0 ≤ t ≤ s ≤ 1.

(13)

According to [50], H1(t, s) and H2(t, s) satisfy the following properties:
(a) Hi(t, s) is a non-negative and continuous function for (t, s) ∈ [0, 1]× [0, 1].
(b) For all t, s ∈ [0, 1], Hi(t, s), i = 1, 2 satisfy

A1(s)e−λttβ−1 ≤ H1(t, s) ≤ A2(s)e−λttβ−1,

A3(s)e−λttℓ−1 ≤ H2(t, s) ≤ A4(s)e−λttℓ−1,

where

A1(s) =
βs(1 − s)β−1eλs

(β − 1)Γ(β + 1)
, A2(s) =

β(β − 1 + s)(1 − s)β−1eλs

(β − 1)Γ(β + 1)
,

A3(s) =
ℓs(1 − s)ℓ−1eλs

(ℓ− 1)Γ(ℓ+ 1)
, A4(s) =

ℓ(ℓ− 1 + s)(1 − s)ℓ−1eλs

(ℓ− 1)Γ(ℓ+ 1)
.

Lemma 3. Let g(t) ∈ L1(0, 1), then the tempered fractional equation
R
0 D

α,λ
t

(
φp(

R
0 D

β,λ
t x(t))

)
= g(t),

x(0) = 0, R
0 D

β,λ
t x(0) = 0, x(1) =

∫ 1

0
e−λ(1−t)x(t)dt,

(14)

has one unique solution:

x(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ g(τ)dτ

)q−1

ds. (15)

Proof. Let ρ = R
0 D

β,λ
t x(t), y = φp(ρ), we firstly consider the following initial value problem:{

R
0 D

α,λ
t y(t) = g(t), t ∈ [0, 1],

y(0) = 0.
(16)

It follows from (2) and Lemma 1 that

eλty(t) = 0Iα
t eλtg(t)− b1tα−1,

that is,

eλty(t) =
∫ t

0

(t − s)α−1

Γ(α)
g(s)eλsds − b1tα−1.

Since y(0) = 0, α ∈ (0, 1], one obtains b1 = 0, and then,

y(t) =
∫ t

0

(t − s)α−1e−λt

Γ(α)
g(s)eλsds.

On the other hand, by y = φp(ρ), one obtains

y(t) = φp

(
R
0 D

β,λ
t x(t)

)
=
∫ t

0

(t − s)α−1e−λt

Γ(α)
g(s)eλsds.

Consequently, Equation (14) can be converted to the following form:
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R
0 D

β,λ
t x(t) = φ−1

p

(∫ t

0

(t − s)α−1eλt

Γ(α)
g(s)eλsds

)
x(0) = 0, x(1) =

∫ 1

0
e−λ(1−t)x(t)dt.

(17)

Notice that g(s) ≥ 0, s ∈ [0, 1], then we have φp(t) = tp−1, and due to

φ−1
p

(∫ t

0

(t − s)α−1eλt

Γ(α)
g(s)eλsds

)
=

(∫ t

0

(t − s)α−1eλt

Γ(α)
g(s)eλsds

)q−1

,

then from Lemma 2, we know that Equation (14) has a unique solution that can be ex-
pressed by

x(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1g(τ)eλτdτ

)q−1

ds.

The proof is completed.

Thus, it follows from Lemmas 2 and 3 that system (1) is equivalent to the following
system of integral equations:

u(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, v(τ))dτ

)q−1

ds, t ∈ [0, 1],

v(t) =
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(ȷ)
(s − τ)ȷ−1eλτ f2(τ, u(τ))dτ

)q−1

ds, t ∈ [0, 1].

(18)

To simplify the above system, we define an operator Q as follows,

(Qu)(t) = v(t) =
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(ȷ)
(s − τ)ȷ−1eλτ f2(τ, u(τ))dτ

)q−1

ds, t ∈ [0, 1], (19)

and then, substituting (19) into the first equation of (18), we derive

u(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qu)(τ))dτ

)q−1

ds, t ∈ [0, 1]. (20)

Thus, if u(t) is a solution of the integral Equation (20), then (u, (Qu)) = (u, v) is a solution
of system (1). So in order to find the solution of system (1), we only need to focus on the
study of Equation (20).

Now, define a Banach space E = C[0, 1] with ||u|| = maxt∈[0,1] |u(t)|, and then, define
a cone P in E:

P = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}.

Obviously, P is a normal cone with normality constant 1. Next, define a nonlinear operator
T : E → E by

(Tu)(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qu)(τ))dτ

)q−1

ds, t ∈ [0, 1].

Thus, the fixed point of the operator T is a solution of Equation (20). Based on the above
discussion, we state the main results and proceed to the proof of the main results in the
next section.

3. Main Results

For the following studies, define two positive constants a, b satisfying

ab ∈ (0, 1), ab(q − 1)2 ∈ (0, 1),
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where 1
p + 1

q = 1.
To derive our main results, we introduce a double iterative process with the help of

the following hypothesis and growth conditions:

(P1) f1 ∈ C((0, 1)× [0,+∞), [0,+∞)) is increasing on the second variable, f2 ∈ ((0, 1)×
(0,+∞), [0,+∞)) is decreasing on the second variable.

(P2) There exists a constant σ > 0 such that

0 <
∫ 1

0
e

λt
σ f

1
σ

2 (t, e−λttβ−1)dt < +∞,

0 <
∫ 1

0
e

λt
σ f

1
σ

1 (t, e−λttℓ−1)dt < +∞.
(21)

(P3) For the above a, b and any 0 < δ < 1, there exist two real functions ϕ, ψ : (0, 1) →
[0,+∞) with ϕ(δ) > δb and ψ(δ) < δ−a such that

f1(t, δv) ≥ ϕ(δ) f1(t, v), f2(t, δu) ≤ ψ(δ) f2(t, u). (22)

Remark 1. If (P3) holds, for δ ≥ 1, by a simple proof, we have

f1(t, δv) ≤ ϕ−1(δ−1) f1(t, v), f2(t, δu) ≥ ψ−1(δ−1) f2(t, u). (23)

Remark 2. In [28], the following condition was employed to study the convergence analysis and
error estimation for the unique solution of a single p-Laplacian fractional differential equation with
singular decreasing nonlinearity,

(F1) f ∈ C((0, 1)× (0,+∞), [0,+∞)), and f (t, u) is decreasing in u and, for any δ ∈ (0, 1),
there exists a constant 0 < a < 1

p−1 such that, for any (t, u) ∈ (0, 1)× (0,+∞),

f (t, δu) ≤ δ−a f (t, u). (24)

In recent work [67], Zhang et al. used the following condition to establish the convergence
analysis of the unique solution for a Dirichlet problem of the general k-Hessian equation in a
ball:

(F2) f : [0,+∞) → (0,+∞) is continuous and nondecreasing and, for any δ ∈ (0, 1), there exists
a constant 0 < b < 1 such that, for any v ∈ [0,+∞),

f (δv) ≥ δb f (v).

Clearly (P3) generalizes and improves the conditions (F1) and (F2) and includes (F1) and
(F2) as special cases.

To facilitate further study, we define a subset of P,

K =
{

u ∈ P : there exists a number 0 < L < 1 such that

Le−λttβ−1 ≤ u(t) ≤ L−1e−λttβ−1, t ∈ [0, 1]
}

,

and state our main results as follows.

Theorem 1. Assume that (P1), (P2), and (P3) hold, then the following conclusions hold:
(C1) Uniqueness: The tempered fractional system (1) has one unique positive solution

(u∗(t), (Qu∗)(t)) in K × K.
(C2) Iterative sequence: For any initial value ν0 ∈ K, construct an iterative sequence as

νi(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qνi−1)(τ))dτ

)q−1

ds, t ∈ [0, 1],
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(Qνi−1)(t) =
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(ȷ)
(s − τ)ȷ−1eλτ f2(τ, νi−1(τ))dτ

)q−1

ds, t ∈ [0, 1].

Then,
lim

i→+∞
νi(t) = u∗(t), lim

i→+∞
(Qνi−1)(t) = (Qu∗)(t)

uniformly hold for t ∈ [0, 1].
(C3) Error estimation and convergence rate: There is an error estimation between u∗(t) and

the ith iterative value νi(t),

||νi − u∗|| ≤ 2
(

1 − ϵ[ab(q−1)2]2i
)

ϵ−
1
2 ,

where ϵ ∈ (0, 1), and the following convergence rate holds:

||νi − u∗|| = o
(

1 − ϵ[ab(q−1)2]2i
)

.

(C4) Asymptotic behavior: The unique solution (u∗(t), (Qu∗)(t)) of the tempered fractional
system (1) has the following asymptotic behavior:

There exist two positive constants ϖ, ω ∈ (0, 1) such that for any t ∈ [0, 1],

ϖe−λttβ−1 ≤ u∗(t) ≤ ϖ−1e−λttβ−1,

ωe−λttℓ−1 ≤ (Qu∗)(t) ≤ ω−1e−λttℓ−1.

Proof. Let us firstly prove that T : K → K is a completely continuous operator. In fact, for
any u ∈ K, according to the definition of K, there exists a constant L1 ∈ (0, 1) such that

L1e−λttβ−1 ≤ u(t) ≤ L−1
1 e−λttβ−1. (25)

It follows from (P1)–(P3), (25), and the Hölder inequality that

(Qu)(t) =
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f2(τ, u(τ))dτ

)q−1

ds

≤ e−λttℓ−1
∫ 1

0
A4(s)

(∫ s

0

e−λs

Γ(ȷ)
(s − τ)ȷ−1eλτ f2(τ, L1e−λττβ−1

)
dτ

q−1

ds

≤ e−λttℓ−1
∫ 1

0
A4(s)

(
e−λs

Γ(ȷ)

)q−1(∫ s

0
(s − τ)

α−1
1−σ dτ

)(1−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ

2 (τ, L1e−λττβ−1)dτ

)σ(q−1)
ds

≤
(

1 − σ

α − σ

)(1−σ)(q−1)
e−λttℓ−1

∫ 1

0

ℓ(1 − s)ℓ−1(ℓ− 1 + s)eλs

(ℓ− 1)Γ(ℓ+ 1)

(
e−λs

Γ(ȷ)

)q−1

× s(α−σ)(q−1)ds
(∫ 1

0
e

λτ
σ f

1
σ

2 (τ, L1e−λττβ−1)dτ

)σ(q−1)

≤
(

1 − σ

α − σ

)(1−σ)(q−1)
e−λttℓ−1 ℓ2eλ

(ℓ− 1)Γ(ℓ+ 1)

(
1

Γ(ȷ)

)q−1

×
(∫ 1

0
e

λτ
σ f

1
σ

2 (τ, L1e−λττβ−1)dτ

)σ(q−1)

≤
(
(1 − σ)(1−σ)L−a

1

(α − σ)(1−σ)Γ(ȷ)

)q−1
ℓ2eλ

(ℓ− 1)Γ(ℓ+ 1)

×
(∫ 1

0
e

λτ
σ f

1
σ

2 (τ, e−λττβ−1)dτ

)σ(q−1)

e−λttℓ−1.

(26)
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By a similar method, the following inequality is still valid:

(Qu)(t) =
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f2(τ, u(τ))dτ

)q−1

ds

≥ e−λttℓ−1
∫ 1

0
A3(s)

(∫ s

0

e−λs

Γ(ȷ)
(s − τ)ȷ−1eλτ f2(τ, u(t))dτ

)q−1

ds

≥ e−λttℓ−1
∫ 1

0
A3(s)

(∫ s

0

e−λs

Γ(ȷ)
(s − τ)ȷ−1eλτ f2(τ, L−1

1 e−λττβ−1)dτ

)q−1

ds

≥ e−λttℓ−1
(

La
1

Γ(ȷ)

)(q−1) ∫ 1

0
A3(s)

(
e−λs

)q−1
(∫ s

0
(s − τ)ȷ−1eλτ f2(τ, e−λττβ−1)dτ

)q−1
ds.

(27)

Take

L∗
1 = min

{
1
2

,
(

La
1

Γ(ȷ)

)(q−1) ∫ 1

0
A3(s)

(
e−λs

)q−1
(∫ s

0
(s − τ)ȷ−1eλτ f2(τ, e−λττβ−1)dτ

)q−1
ds,

( (1 − σ)(1−σ)L−a
1

(α − σ)(1−σ)Γ(ȷ)

)q−1
ℓ2eλ

(ℓ− 1)Γ(ℓ+ 1)

(∫ 1

0
e

λτ
σ f

1
σ

2 (τ, e−λττβ−1)dτ

)σ(q−1)
−1

,

then we have
L∗

1e−λttℓ−1 ≤ (Qu)(t) ≤ L∗
1
−1e−λttℓ−1, t ∈ [0, 1].

Now, by (P2), (P3), and the monotonicity of f1, we have

(Tu)(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qu)(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
A2(s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, L∗

1
−1e−λττℓ−1

)q−1

ds

≤ e−λttβ−1
∫ 1

0
A2(s)

(
e−λs

Γ(α)

)q−1(∫ s

0
(s − τ)

α−1
1−σ dτ

)(1−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ

1 (τ, L∗
1
−1eλττℓ−1)dτ

)σ(q−1)
ds

≤
(

1 − σ

α − σ

)(1−σ)(q−1) β2eλ

(β − 1)Γ(β + 1)

(
1

Γ(α)

)q−1

×
(∫ 1

0
e

λτ
σ f

1
σ

1 (τ, L∗
1
−1e−λττℓ−1)dτ

)σ(q−1)

e−λttβ−1

=

(
(1 − σ)(1−σ)L∗

1
−b

(α − σ)(1−σ)Γ(α)

)q−1
β2eλ

(β − 1)Γ(β + 1)

×
(∫ 1

0
e

λτ
σ f

1
σ

1 (τ, e−λττℓ−1)dτ

)σ(q−1)

e−λttβ−1

< +∞.

(28)
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Therefore, the operator T is uniformly bounded.
On the other hand, notice that H1(t, s) is uniformly continuous on [0, 1]× [0, 1], thus

for any ε > 0, there exists ζ > 0 such that for any 0 ≤ t1 < t2 ≤ 1 and |t1 − t2| < ζ, we have

|H(t1, s)− H(t2, s)|

<

( (1 − σ)(1−σ)L∗
1
−b

(α − σ)(1−σ)Γ(α)

)q−1
β2eλ

(β − 1)Γ(β + 1)

(∫ 1

0
e

λτ
σ f

1
σ

1 (τ, e−λττℓ−1)dτ

)σ(q−1)
−1

ε.

Consequently, for any u ∈ K and |t1 − t2| < ζ, it follows from (P2), (P3), (26), and (28) that

|(Tu)(t1)− (Tu)(t2)|

≤
∫ 1

0
|H(t1, s)− H(t2, s)|

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qu)(τ))dτ

)q−1

ds

≤
∫ 1

0
|H(t1, s)− H(t2, s)|ds

×
(
(1 − σ)(1−σ)L∗

1
−b

(α − σ)(1−σ)Γ(α)

)q−1
β2eλ

(β − 1)Γ(β + 1)

(∫ 1

0
e

λτ
σ f

1
σ

1 (τ, e−λττℓ−1)dτ

)σ(q−1)

< ε,

(29)

which implies that T(K) is equicontinuous.
Next, we show that T(K) ⊂ K. From (P2), (P3), (26), and (27), we have

(Tu)(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qu)(τ))dτ

)q−1

ds

≥ e−λttβ−1
∫ 1

0
A1(s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, L∗

1e−λττℓ−1
)q−1

ds

≥ e−λttβ−1L∗
1

b(q−1)
∫ 1

0
A1(s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, e−λττℓ−1

)q−1

ds

≥
(

L∗
1

b

Γ(α)

)q−1 ∫ 1

0
A1(s)

(
e−λs

)q−1
(∫ s

0
(s − τ)α−1 f1(τ, eλττℓ−1)dτ

)q−1
dse−λttβ−1.

(30)

Take

LT = min

1
2

,

(
L∗

1
b

Γ(α)

)q−1 ∫ 1

0
A1(s)

(
e−λs

)q−1
(∫ s

0
(s − τ)α−1 f1(τ, eλττℓ−1)dτ

)q−1
ds,

( (1 − σ)(1−σ)L∗
1
−b

(α − σ)(1−σ)Γ(α)

)q−1
β2eλ

(β − 1)Γ(β + 1)

(∫ 1

0
e

λτ
σ f

1
σ

1 (τ, e−λττℓ−1)dτ

)σ(q−1)
−1

,

it follows from (28) and (30) that

LTe−λttβ−1 ≤ (Tu)(t) ≤ L−1
T e−λttβ−1,

which implies that T(K) ⊂ K. Obviously, T is a continuous operator; thus, according to the
Arzela–Ascoli theorem, T : K → K is a completely continuous operator.

Next, let µ(t) = e−λttβ−1. Obviously µ ∈ K, and then, Tµ(t) ∈ K, thus there is a
constant L∗

T ∈ (0, 1) such that

L∗
Tµ(t) ≤ Tµ(t) ≤ L∗

T
−1µ(t). (31)
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Fixing 0 < γ < 1, since ab(q − 1)2 ∈ (0, 1), one has

lim
ϑ→+∞

γϑ[−ab(q−1)2+1] = 0,

which implies that there is a sufficiently large real number ϑ > 1 such that

γϑ[−ab(q−1)2+1] ≤ L∗
T . (32)

In the following, we select u0(t) = γϑµ(t) as an initial value; clearly,

(Qu0)(t) =
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f2(τ, γϑµ(τ))dτ

)q−1

ds

≤ γ−aϑ(q−1)
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f2(τ, µ(τ))dτ

)q−1

ds

= γ−aϑ(q−1)(Qµ)(t).

(33)

Let u1(t) = (Tu0)(t), and construct an iterative sequence as follows:

ui(t) = (Tui−1)(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qui−1)(τ))dτ

)q−1

ds, i = 1, 2, 3, · · ·. (34)

Since the operator T is decreasing in u, by (32)–(34), we have

u0(t) ≤ µ(t),

and

u1(t) = Tu0(t) ≥ Tµ(t) ≥ L∗
Tµ(t) ≥ γϑ[−ab(q−1)2+1]µ(t) = γ−ϑ(q−1)2abγϑµ(t) ≥ u0(t).

Consequently,
u2(t) = (Tu1)(t) ≤ (Tu0)(t) = u1(t).

As a result, by (28), (32), and (33), one obtains

u1(t) = (Tu0)(t) =
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qu0)(τ))dτ

)q−1

ds

≤
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, γ−ϑa(q−1)Qµ(τ))dτ

)q−1

ds

≤ 1[
ϕ(γϑa(q−1))

]q−1

∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, Qµ(τ))dτ

)q−1

ds

≤ γ−ϑab(q−1)2
Tµ(t) ≤ γ−ϑab(q−1)2

L∗
T
−1µ(t) ≤ γ−ϑγϑ[−ab(q−1)2+1]L∗

T
−1µ(t)

≤ γ−ϑµ(t).

(35)

It follows from (35) that

u2(t) = Tu1(t) ≥ T
(

γ−ϑµ(t)
)

=
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, Q(γ−ϑµ(τ)))dτ

)q−1

ds

≥
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, γϑa(q−1)Qµ(τ))dτ

)q−1

ds

≥ γϑab(q−1)2
Tµ(t) ≥ γϑab(q−1)2

L∗
Tµ(t) ≥ γϑµ(t) = u0(t),

(36)
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which implies that
u0 ≤ u2 ≤ u1.

Thus, according to induction, we have

u0 ≤ u2 ≤, ... ≤ u2i ≤ ... ≤ u2i+1 ≤ ... ≤ u3 ≤ u1. (37)

On the other hand, for any fixed ξ ∈ (0, 1), from (P3), one has

T(ξu) ≤ ξ−ab(q−1)2
(Tu), T2(ξu) ≥ ξ [(q−1)2ab]2 T2u. (38)

Notice that the operator T2 is nondecreasing in u; from (35), (37), and (38), one obtains

u2i(t) = Tu2i−1(t) = T2iu0(t) = T2i(γϑµ(t)) = T2i(γ2ϑγ−ϑµ(t))

≥ T2i(γ2ϑu1(t)) ≥ T2i−2
((

γ2ϑ
)[ab(q−1)2]2

T2u1(t)
)

≥ T2i−4
((

γ2ϑ
)[ab(q−1)2]4

T4u1(t)
)
≥ ... ≥

(
γ2ϑ
)[ab(q−1)2]2i

T2iu1(t)

=
(

γ2ϑ
)[ab(q−1)2]2i

T2i+1u0(t) =
(

γ2ϑ
)[ab(q−1)2]

2i

u2i+1(t),

(39)

that is,

u2i(t) ≥ γ2ϑ[ab(q−1)2]2i
u2i+1(t).

Consequently, for any i, j ∈ N, we have

0 ≤ u2(i+j)(t)− u2i(t) ≤ u2i+1(t)− u2i(t)

≤ (1 − γ2ϑ[ab(q−1)2]2i
)u2i+1(t) ≤ (1 − γ2ϑ[ab(q−1)2]2i

)u1(t)

≤ (1 − γ2ϑ[ab(q−1)2]2i
)γ−ϑµ(t)

(40)

and
0 ≤ u2i+1(t)− u2(i+j)+1(t) ≤ u2i+1(t)− u2i(t)

≤ (1 − γ2ϑ[ab(q−1)2]2i
)γ−ϑµ(t).

(41)

Thus, for any j ∈ N, by the normality of P and (40) and (41), we obtain

||ui+j(t)− ui(t)|| ≤ (1 − γ2ϑ[ab(q−1)2]2i
)γ−ϑ → 0, i → +∞,

which indicates that {ui}i≥1 is a Cauchy sequence in K, and then, there exists u∗ ∈ K
such that

ui → u∗, i → ∞,

and (37) implies that
u2i ≤ u∗ ≤ u2i+1.

Thus, it follows from the fact that T is a decreasing operator that

u2i+2(t) = Tu2i+1(t) ≤ Tu∗ ≤ Tu2i(t) = u2i+1(t).

Taking the limit on both sides of the above inequality, we have

u∗ = Tu∗,

which implies that u∗(t) is a positive solution of (19) and (u∗(t), (Qu∗)(t)) is a positive
solution of the tempered fractional system (1).
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In the following, we assert that (u∗(t), (Qu∗)(t)) is also a unique solution of the
tempered fractional system (1) in K × K. In fact, if (ν(t), (Qν(t))) is another solution of the
tempered fractional system (1), let

θ∗ = sup{θ > 0|ν ≥ θ∗u∗}.

Obviously, θ∗ ∈ (0,+∞). Now, we show θ∗ ≥ 1. If not, one has 0 < θ∗ < 1, which leads to

ν(t) = Tν(t) = T2ν ≥ T2(θ∗u∗(t)) ≥ θ
[ab(q−1)2]

2

∗ T2u∗(t) = θ
[ab(q−1)2]

2

∗ u∗(t).

From the definition of θ, one obtains θ∗ ≥ θ
[ab(q−1)2]

2

∗ . However, since ab(q − 1)2 ∈ (0, 1)

and θ∗ ∈ (0, 1), we have θ∗ < θ
[ab(q−1)2]

2

∗ , which is a contradiction. Thus, θ∗ ≥ 1, which
yields ν ≥ u∗. Follows the same strategy, we also have ν ≤ u∗, thus u∗ = ν. So u∗(t) is the
unique solution of Equation (19), and thus, the solution of system (1) in K × K is unique.

Finally, we focus on the iterative properties of the unique solution of system (1). Take
any ν0 ∈ K as the initial value and construct an iterative sequence:

νi(t) = Tνi−1(t)

=
∫ 1

0
H1(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f1(τ, (Qνi−1)(τ))dτ

)q−1

ds, t ∈ [0, 1], i = 1, 2, 3, · · · ,
(42)

and

(Qνi−1)(t)

=
∫ 1

0
H2(t, s)

(∫ s

0

e−λs

Γ(α)
(s − τ)α−1eλτ f2(τ, νi−1(τ))dτ

)q−1

ds, t ∈ [0, 1], i = 1, 2, 3, · · · .
(43)

Since T(K) ⊂ K and ν1 = Tν0 ∈ K, there exist two constants L∗
0 , L∗

1 ∈ (0, 1) such that

L∗
0µ(t) ≤ ν0(t) ≤ L∗

0
−1µ(t), L∗

1µ(t) ≤ ν1(t) ≤ L∗
1
−1µ(t).

As
lim

ϑ→+∞
γϑ[−ab(q−1)2+1] = 0,

take a large enough constant ϑ > 1 such that

γϑ[−ab(q−1)2+1] ≤ min{L∗
0 , L∗

1 , L∗
T}.

For this ϑ, still let u0(t) = γϑµ(t); then, the iterative process of (33)–(41) is valid. Thus,
we have

u0(t) = γϑµ(t) ≤ γ−ϑab(q−1)2
γϑµ(t) ≤ L∗

0µ(t) ≤ ν0(t),

u0(t) = γϑµ(t) ≤ γ−ϑab(q−1)2
γϑµ(t) ≤ L∗

1µ(t) ≤ ν1(t),

which yield
ν1(t) = Tν0(t) ≤ Tu0(t) = u1(t),

u0(t) ≤ ν1(t) ≤ u1(t),

u2(t) ≤ ν2(t) ≤ u1(t),

(44)

and the continuous iteration

u2i(t) ≤ ν2i+1(t) ≤ u2i+1(t),

u2i+2(t) ≤ ν2i+2(t) ≤ u2i+1(t).
(45)
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Taking the limit on both sides of (45), one obtains νi → u∗ and (Qνi) → (Qu∗) as i → ∞.
Meanwhile, according to (40), (41), and (45), one obtains

||ν2i+1(t)− u∗(t)|| ≤ ||ν2i+1(t)− u2i(t)||+ ||u2i(t)− u∗(t)||
≤ ||u2i+1(t)− u2i(t)||+ ||u2i(t)− u∗(t)||
≤ ||u2i+1(t)− u2i(t)||+ ||u2i+1(t)− u2i(t)||

≤ 2(1 − γ2ϑ[ab(q−1)2]2i
)γ−ϑ

= 2
(

1 − ϵ[ab(q−1)2]2i
)

ϵ−
1
2 ,

(46)

and
||ν2i+1(t)− u∗(t)|| ≤ ||ν2i+2(t)− u2i+2(t)||+ ||u2i+2(t)− u∗(t)||
≤ ||u2i+1(t)− u2i+2(t)||+ ||u2i+2(t)− u∗(t)||
≤ ||u2i+1(t)− u2i+2(t)||+ ||u2i+1(t)− u2i+2(t)||

≤ 2(1 − γ2ϑ[ab(q−1)2]2i
)γ−ϑ

= 2
(

1 − ϵ[ab(q−1)2]2i
)

ϵ−
1
2 .

(47)

It follows from (46) and (47) that

||νi(t)− u∗(t)|| ≤ 2
(

1 − ϵ[ab(q−1)2]2i
)

ϵ−
1
2 ,

where ϵ = γ2ϑ ∈ (0, 1) is a constant determined by µ(t) and ν0. Moreover, there is a
accurate convergence rate:

||νi − u∗|| = o
(

1 − ϵ[ab(q−1)2]2i
)

.

Finally, it follows from u∗ ∈ K, (26)–(28), and (30) that there exist two constants
ϖ, ω ∈ (0, 1) such that for any t ∈ [0, 1],

ϖe−λttβ−1 ≤ u∗(t) ≤ ϖ−1e−λttβ−1,

ωe−λttℓ−1 ≤ (Qu∗)(t) ≤ ω−1e−λttℓ−1.

Consequently, by the above proofs, we can conclude that the above conclusions
are valid.

4. Numerical Results

Example 1. In system (1), take

α =
1
2

, β =
3
2

, λ = 2, p =
3
2

, ȷ =
1
3

, ℓ =
4
3

and
f1(t, v) = (1 + t

1
3 )3(1 + v

1
2 ), f2(t, u) = t−

1
3 (1 − t

1
2 )

1
2 u− 1

6 ,

then we have

H1(t, s) =



[
3
2 (1 − s)

1
2 ( 1

2 + s)t
1
2 − 3

4 (t − s)
1
2

]
e−2te2s

1
2 Γ( 5

2 )
, 0 ≤ s ≤ t ≤ 1;

3
2 (1 − s)

1
2 ( 1

2 + s)t
1
2 e−2te2s

1
2 Γ( 5

2 )
, 0 ≤ t ≤ s ≤ 1,
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and

H2(t, s) =



[
4
3 (1 − s)

1
3 ( 1

3 + s)t
1
3 − 4

9 (t − s)
1
3

]
e−2te2s

1
3 Γ( 7

3 )
, 0 ≤ s ≤ t ≤ 1;

4
3 (1 − s)

1
3 ( 1

3 + s)t
1
3 e−2te2s

1
3 Γ( 7

3 )
, 0 ≤ t ≤ s ≤ 1.

Consider the following coupled p-Laplacian system of singular tempered fractional equations with
different characteristics:

R
0 Dt

1
2 ,2
(

φ 3
2
(R

0 Dt
3
2 ,2u(t))

)
= (1 + t

1
3 )3(1 + v

1
2 ),

R
0 Dt

1
3 ,2
(

φ 3
2
(R

0 Dt
4
3 ,2v(t))

)
= t−

1
3 (1 − t

1
2 )

1
2 u− 1

6 ,

u(0) = v(0) = 0,
R
0 Dt

3
2 ,2u(0) = R

0 Dt
4
3 ,2v(0) = 0,

u(1) =
∫ 1

0
e−2(1−t)u(t)dt, v(1) =

∫ 1

0
e−2(1−t)v(t)dt.

(48)

For system (48), the following conclusions hold:
(i) The singular tempered fractional system (48) has one unique positive solution (u∗, (Qu∗))

in K × K.
(ii) For any initial value ν0 ∈ K, construct the iterative sequences

νi(t) =∫ t

0

[
3
2 (1 − s)

1
2 ( 1

2 + s)t
1
2 − 3

4 (t − s)
1
2

]
e−2t

Γ( 5
2 )Γ(

3
2 )

(∫ s

0
(s − τ)−

1
2 e2τ(1 + τ

1
3 )3(1 + ((Qνi−1))

1
2 (τ))dτ

)− 1
2
ds

+
∫ 1

t

3
2 (1 − s)

1
2 ( 1

2 + s)t
1
2 e−2t

Γ( 5
2 )Γ(

3
2 )

(∫ s

0
(s − τ)−

1
2 e2τ(1 + τ

1
3 )3(1 + ((Qνi−1))

1
2 (τ))dτ

)− 1
2
ds,

(Qνi−1)(t) =∫ t

0

[
4
3 (1 − s)

1
3 ( 1

3 + s)t
1
3 − 4

9 (t − s)
1
3

]
e−2t

Γ( 4
3 )Γ(

7
3 )

(∫ s

0
(s − τ)−

2
3 e2ττ− 1

3 (1 − τ
1
2 )

1
2 ν

− 1
6

i−1(τ)dτ

)− 1
2
ds

+
∫ 1

t

4
3 (1 − s)

1
3 ( 1

3 + s)t
1
3 e−2t

Γ( 4
3 )Γ(

7
3 )

(∫ s

0
(s − τ)−

2
3 e2ττ− 1

3 (1 − τ
1
2 )

1
2 ν

− 1
6

i−1(τ)dτ

)− 1
2
ds.

Then, we have that

lim
i→+∞

νi(t) = u∗(t), lim
i→+∞

(Qνi−1)(t) = (Qu∗)(t)

uniformly holds for t ∈ [0, 1].
(iii) The error between u∗(t) and the iterative value νi(t) can be expressed by

||νi − u∗|| ≤ 2
(

1 − ϵ(
1
9 )

i
)

ϵ−
1
2 ,

where ϵ ∈ (0, 1), and the convergence rate is

||νi − u∗|| = o
(

1 − ϵ(
1
9 )

i
)

.

(iv) There exist two constants ϖ, ω ∈ (0, 1) such that

ϖe−2tt
1
2 ≤ u∗(t) ≤ ϖ−1e−2tt

1
2 , t ∈ [0, 1],
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ωe−2tt
1
3 ≤ (Qu∗)(t) ≤ ω−1e−2tt

1
3 , t ∈ [0, 1].

Proof. Take a = 1
2 , b = 1

3 , ϕ(δ) = 1 + δ
1
2 , ψ(δ) = δ−

1
6 , then ϕ(δ) > δb, ψ(δ) < δ−a, and

0 < ab(q − 1)2 = 2
3 < 1. Thus, (P1) and (P3) are satisfied.

Now, we verify (P2). Taking σ = 2, we have

0 <
∫ 1

0
et f

1
2

1 (t, e−2tt
1
3 )dt =

∫ 1

0
et(1 + t

1
3 )

3
2 (1 + e−tt

1
6 )

1
2 dt ≤ 4e < +∞,

0 <
∫ 1

0
et f

1
2

2 (t, e−2tt
1
2 )dt =

∫ 1

0
e

7t
6 t−

5
24 (1 − t

1
2 )

1
4 dt ≤ 24

19
e

7
6 < +∞.

Thus, the condition (P2) holds; according to Theorem 1, the above conclusions hold.

Example 2. In system (1), take

α =
1
4

, β =
5
4

, λ = 3, p = 4, ȷ =
1
5

, ℓ =
6
5

and
f1(t, v) = t−

1
12 (1 − t

1
4 )

1
3 v

2
3 , f2(t, u) = t−

1
10 (1 − t

1
3 )

1
2 u− 1

5 ,

then we have

H1(t, s) =



[
5
4 (1 − s)

1
4 ( 1

4 + s)t
1
4 − 5

16 (t − s)
1
4

]
e−3te3s

1
4 Γ( 9

4 )
, 0 ≤ s ≤ t ≤ 1;

5
4 (1 − s)

1
4 ( 1

4 + s)t
1
4 e−3te3s

1
4 Γ( 9

4 )
, 0 ≤ t ≤ s ≤ 1,

and

H2(t, s) =



[
6
5 (1 − s)

1
5 ( 1

5 + s)t
1
5 − 6

25 (t − s)
1
5

]
e−3te3s

1
5 Γ( 11

5 )
, 0 ≤ s ≤ t ≤ 1;

6
5 (1 − s)

1
5 ( 1

5 + s)t
1
5 e−3te3s

1
5 Γ( 11

5 )
, 0 ≤ t ≤ s ≤ 1.

Consider the following coupled p-Laplacian system of singular tempered fractional equations with
different characteristics:

R
0 Dt

1
4 ,3
(

φ3(
R
0 Dt

5
4 ,3u(t))

)
= t−

1
12 (1 − t

1
4 )

1
3 v

2
3 ,

R
0 Dt

1
5 ,3
(

φ3(
R
0 Dt

6
5 ,3v(t))

)
= t−

1
10 (1 − t

1
3 )

1
2 u− 1

5 ,

u(0) = v(0) = 0,
R
0 Dt

5
4 ,3u(0) = R

0 Dt
6
5 ,3v(0) = 0,

u(1) =
∫ 1

0
e−2(1−t)u(t)dt, v(1) =

∫ 1

0
e−2(1−t)v(t)dt.

(49)

For system (49), the following conclusions hold:
(i) The singular tempered fractional system (49) has one unique positive solution (u∗, (Qu∗))
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in K × K.
(ii) For any initial value ν0 ∈ K, construct the iterative sequences

νi(t) =
∫ t

0

[
5(1 − s)

1
4 ( 1

4 + s)t
1
4 − 5

4 (t − s)
1
4

]
e−3te

3
2 s

Γ( 9
4 )(Γ(

1
4 )

1
2

×
(∫ s

0
(s − τ)−

3
4 e3ττ− 1

12 (1 − τ
1
4 )

1
3 (Qνi−1)

2
3 (τ)dτ

) 1
2
ds

+
∫ 1

t

5(1 − s)
1
4 ( 1

4 + s)t
1
4 e−3te

3
2 s

Γ( 9
4 )(Γ(

1
4 )

1
2

(∫ s

0
(s − τ)−

3
4 e3ττ− 1

12 (1 − τ
1
4 )

1
3 (Qνi−1)

2
3 (τ)dτ

) 1
2
ds,

(Qνi−1)(t) =
∫ t

0

[
6(1 − s)

1
5 ( 1

5 + s)t
1
5 − 6

5 (t − s)
1
5

]
e−3te

3
2 s

Γ( 11
5 )(Γ( 1

5 ))
1
2

×
(∫ s

0
(s − τ)−

2
3 e2ττ− 1

10 (1 − τ
1
3 )

1
2 ν

− 1
5

i−1(τ)dτ

) 1
2
ds

+
∫ 1

t

6(1 − s)
1
5 ( 1

5 + s)t
1
5 e−3te

3
2 s

Γ( 11
5 )(Γ( 1

5 ))
1
2

(∫ s

0
(s − τ)−

2
3 e2ττ− 1

10 (1 − τ
1
3 )

1
2 ν

− 1
5

i−1(τ)dτ

) 1
2
ds.

Then, we have that

lim
i→+∞

νi(t) = u∗(t), lim
i→+∞

(Qνi−1)(t) = (Qu∗)(t)

uniformly holds for t ∈ [0, 1].
(iii) The error between u∗(t) and the iterative value νi(t) can be expressed by

||νi − u∗|| ≤ 2
(

1 − ϵ
( 4

272 )
i
)

ϵ−
1
2 ,

where ϵ ∈ (0, 1), and the convergence rate is

||νi − u∗|| = o
(

1 − ϵ
( 4

272 )
i
)

.

(iv) There exist two constants ϖ, ω ∈ (0, 1) such that

ϖe−3tt
1
4 ≤ u∗(t) ≤ ϖ−1e−3tt

1
4 , t ∈ [0, 1],

ωe−3tt
1
5 ≤ (Qu∗)(t) ≤ ω−1e−3tt

1
5 , t ∈ [0, 1].

Proof. Take a = 2, b = 1
3 , ϕ(δ) = (1 + δ)

1
3 , ψ(δ) = (1 + δ)−

1
3 , then

ϕ(δ) = (1 + δ)
1
3 > δ

1
3 , ψ(δ) = (1 + δ)−

1
3 < δ−2,

and 0 < ab(q − 1)2 = 2
27 < 1. Thus, (P1) and (P3) are satisfied.

Now, take σ = 1
6 , we have

0 <
∫ 1

0
e18t f 6

1 (t, e−3tt
1
5 )dt =

∫ 1

0
e18t
(

t−
1
12 (1 − t

1
4 )

1
3

(
e−3tt

1
5

) 2
3
)6

dt ≤ 30
39

e6 < +∞,

0 <
∫ 1

0
e18t f 6

2 (t, e−3tt
1
4 )dt =

∫ 1

0

(
t−

1
10 (1 − t

1
3 )

1
2

(
e−3tt

1
4

)− 1
5
)6

dt ≤ 5
108

(e
108
5 − 1) < +∞.
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Thus, the condition (P2) holds; according to Theorem 1, the above conclusions hold.

5. Conclusions

Tempered fractional system can describe some dynamics phenomena arising from a
particle’s random walk in Brownian motion, where the transition has a feature of a semi-
heavy tail from a power law to a Gaussian. In this paper, by proposing a coupled iterative
technique and offering some suitable growth conditions, we establish the uniqueness of
the positive solution for a coupled p-Laplacian system of singular tempered fractional
equations with differential order and characteristics. Moreover, some elaborate iterative
properties of positive solutions of the system are given, such as the convergence analysis,
the asymptotic behavior, error estimation as well as the convergence rate of the positive
solution. The interesting points of this paper are that the order of the system of equations
is different and the nonlinear terms of the system possess the opposite monotonicity and
permit stronger singularities at space variables. Finally, we shall also address that in
this paper we only consider the coupled case of a system by coupling techniques; if the
nonlinearities of the system rely on both time variables and space variables, then further
study will become more challenging and interesting.
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