
Citation: Abdelfattah, W.M.; Ragb, O.;

Salah, M.; Mohamed, M. A Robust

and Versatile Numerical Framework

for Modeling Complex Fractional

Phenomena: Applications to Riccati

and Lorenz Systems. Fractal Fract.

2024, 8, 647. https://doi.org/

10.3390/fractalfract8110647

Academic Editors: Faranak Rabiei,

Dongwook Kim and Zeeshan Ali

Received: 16 September 2024

Revised: 30 October 2024

Accepted: 5 November 2024

Published: 6 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Robust and Versatile Numerical Framework for Modeling
Complex Fractional Phenomena: Applications to Riccati and
Lorenz Systems
Waleed Mohammed Abdelfattah 1,* , Ola Ragb 2, Mohamed Salah 2 and Mokhtar Mohamed 3,*

1 College of Engineering, University of Business and Technology, Jeddah 23435, Saudi Arabia
2 Department of Engineering Mathematics and Physics, Faculty of Engineering, Zagazig University,

Zagazig 44519, Egypt; ormohamed@eng.zu.edu.eg (O.R.); msalaheldin@zu.edu.eg (M.S.)
3 Basic Science Department, Faculty of Engineering, Delta University for Science and Technology,

Gamasa 11152, Egypt
* Correspondence: w.abdelfattah@ubt.edu.sa (W.M.A.); mokhtar.alsaidi@deltauniv.edu.eg (M.M.)

Abstract: The fractional differential quadrature method (FDQM) with generalized Caputo derivatives
is used in this paper to show a new numerical way to solve fractional Riccati equations and fractional
Lorenz systems. Unlike previous FDQM applications that have primarily focused on linear problems,
our work pioneers the use of this method for nonlinear fractional initial value problems. By combining
Lagrange interpolation polynomials and discrete singular convolution (DSC) shape functions with the
generalized Caputo operator, we effectively transform nonlinear fractional equations into algebraic
systems. An iterative method is then utilized to address the nonlinearity. Our numerical results,
obtained using MATLAB, demonstrate the exceptional accuracy and efficiency of this approach, with
convergence rates reaching 10−8. Comparative analysis with existing methods highlights the superior
performance of the DSC shape function in terms of accuracy, convergence speed, and reliability. Our
results highlight the versatility of our approach in tackling a wider variety of intricate nonlinear
fractional differential equations.

Keywords: fractional derivative; generalized Caputo; differential quadrature technique; discrete
singular convolution; fractional Riccati; fractional Lorenz system

1. Introduction

Many phenomena in chemistry, biology, acoustics, psychology, control theory, rheol-
ogy, damping laws, diffusion processes, and other fields of science have been successfully
modeled using fractional-order derivatives in recent years. This is because fractional calcu-
lus can be used to successfully model a physical phenomenon that is dependent not only
on the time instant but also on the prior time history [1–6]. Hence, numerous physical prob-
lems are defined by fractional differential equations (FDEs), and solving these equations
has been the focus of several studies in recent years. Several techniques have recently been
developed to solve FDEs, including numerical and analytical techniques. Various methods,
including homotopy perturbation [7–9], homotopy analysis [10,11], Taylor matrix [12], Ado-
mian decomposition [11], and Haar wavelet [13] methods, have been employed to solve the
fractional-order Riccati differential equation. Unfortunately, the convergence region for the
corresponding outcomes is relatively limited. The fractional derivative operator’s unique
properties can make the numerical solution of fractional equations challenging, particularly
in high-dimensional spaces. To address this challenge, numerical methods such as the
Finite Difference Method (FDM) [14–17], Galerkin [18–21], Collocation [22–25], and finite
volume element methods [26–28] have been utilized to tackle such fractional equations.

Liu et al. [29] introduced a radial basis function finite difference approach for study-
ing the time fractional convection equation. Saadeh [30] employed the finite-difference
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and space finite-volume techniques to solve fractional diffusion equations. To address
a two-dimensional space fractional diffusion equation, Tuan et al. [31] employed finite
difference discretization with Caputo derivatives. Devshali and Arora [32] proposed differ-
ential transform and differential quadrature methods for solving the fractional diffusion
equation. Odibat and Momani [9] utilized a modified homotopy perturbation technique to
solve fractional Riccati differential equations (FRDEs). Khader [33] applied the fractional
Chebyshev FDM to solve FRDEs. Li et al. [34] solved FRDEs via the quasi-linearization
method. Sakar et al. [34] explained an iterative reproducing kernel Hilbert space technique
to obtain the solutions of FRDEs. Agheli [35] explained an iterative reproducing kernel
Hilbert space technique to obtain the solutions of FRDEs. Agheli [36] presented numerical
solutions for solving FRDEs using trigonometric basic functions. Liu et al. [37] offered the
Laplace transform and quadrature rule with Caputo sense to solve FRDEs.

In the last ten years, chaos has emerged as a popular topic in fractional calculus [38].
The chaotic behavior becomes more complicated because the equation contains fractional
orders. Numerical methods were developed to analyze nonlinear dynamics to better un-
derstand physical phenomena. To find numerical solutions to various nonlinear fractional
differential equations, the predictor–corrector method (P-C) was developed [39–41]. Fuzzy
fractional differential and fractional delay equations [42–45] demonstrate the emergence of
new trends in fractional differential equations.

Despite yielding fruitful results, finding more general chaotic differential equations
remains an intriguing task. A generalized fractional derivative was recently proposed
in [46]. Fractional derivatives have demonstrated superior performance compared to regu-
lar derivatives in several respects and may have even more real-world applications. One
such application is in image encryption, where fractional differential equations have been
suggested as a means of introducing chaos [47,48]. This means that image encryption results
can be made more secure by using fractional chaotic equations with two parameters. This
derivative was recently proposed in quantum mechanics [49]. Furthermore, two-parameter
models in control theory and diffusion issues can have degrees of freedom in control and
fitting. This derivative and its applications are depicted as a new direction in fractional
calculus. Li and Chen [50] demonstrated the chaotic behaviors in the fractional order Chen
system. Alomari [51] used the step homotopy analysis technique to solve the fractional
chaotic Chen system. Luo and Wang [44] solved chaos in the fractional-order complex
Lorenz system and its synchronization. Petráš [2] introduced a new classification of the
fractional-order Lorenz-type systems. Erturka and Kumar [52] presented a solution for a
COVID-19 model using new generalized Caputo-type fractional derivatives. Xu et al. [53]
studied numerical and analytical solutions of a new generalized fractional diffusion equa-
tion. Kumar et al. [54] proposed a new technique to solve generalized Caputo-type FDEs
with the example of a computer virus model.

The primary goal of this paper is to apply the novel fractional Differential Quadrature
Method (FDQM) with generalized Caputo definition fractional to solve nonlinear initial
value fractional problems. Two different shape functions, the Lagrange interpolation [55,56]
and the regularized Shannon kernel [57–60], have been successfully employed to address
initial value problems involving fractional derivatives. To exhibit the efficacy, efficiency,
and capabilities of the proposed algorithm, two test problems were investigated, including
FRDEs and the fractional Lorenz system. Then, by the proposed methods, the given prob-
lems are reduced to a system of nonlinear algebraic equations, and by solving this system
via the iterative method, we obtain the solution of FRDEs and the fractional Lorenz system.
Furthermore, we create a MATLAB code for each approach to obtain a numerical solution
for the two problems under consideration. A comparison between the computed results
and previous analytical and numerical [61–65] methodologies is included to demonstrate
the validity and applicability of the proposed methods. Furthermore, we conducted some
parametric investigations to showcase the reliability of our techniques in the presence of
fractional order derivatives.
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This paper introduces a novel fractional Differential Quadrature Method (FDQM) to
solve nonlinear initial value fractional problems. This method employs the generalized
Caputo fractional derivative and utilizes Lagrange interpolation and the Regularized
Shannon kernel as shape functions. Numerical simulations demonstrate the method’s
superior accuracy, efficiency, and versatility in handling fractional Riccati and Lorenz
systems. The FDQM’s potential applications extend to various fields where it can be used
to model complex systems with memory effects and nonlinearities [66].

2. Formulation of the Problem

The following two nonlinear fractional differential equations serve as examples to
illustrate the capabilities of our proposed methods:

2.1. Our 1st Example Is the Fractional Riccati Equation

dα,ρυ(t)
dt

= 2υ(t)− υ2(t) + 1, when (0 < t and 0 < α ≤ 1) (1)

where dα,ρ

dt is the operator of the generalized Caputo-type fractional derivative [61].
Also, the initial condition for FRDE is:

υ(0) = 0 (2)

In addition, the exact solution of FRDE at α = 1, and ρ = 1 is given by [67]:

υ(x, t) = 1 +
√

2 tanh

√2t + log

√√
2 − 1√
2 + 1

 (3)

2.2. Our 2nd Example Is the Fractional Lorenz System

dα,ρX(t)
dt

= λ(Y(t)− X(t)) (4)

dα,ρY(t)
dt

= (ϕ− λ)X(t)− X(t)Z(t) +ϕY(t) (5)

dα,ρZ(t)
dt

= X(t)Y(t)− β Z(t) (6)

where λ, ϕ, and β are constant parameters ∈ R that affect chaotic behavior.
Consequently, the fractional Lorenz system is subject to the following initial condition:

X(0) = x0, Y(0) = y0, Z(0) = z0 (7)

3. Method of Solution

This paper introduces a novel application of the FDQM to solve initial value fractional
problems. We employ two distinct shape functions, Lagrange interpolation and the regular-
ized Shannon kernel, in conjunction with the generalized Caputo fractional derivative to
transform fractional problems into nonlinear algebraic systems.

We begin by defining a fractional derivative, of which several definitions exist. In this
work, we utilize the recently proposed generalized Caputo definition.

3.1. Generalized Caputo-Kind Fractional Derivative [63]

The fractional derivative has good memory effects compared to ordinary calculus.
FDEs are realized in model problems in fluid flow, viscoelasticity, finance, engineering, and
other areas of applications.

Caputo’s Fractional Derivative
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A concise overview of Caputo’s fractional derivative is presented in this section. This
definition, which is derived from the Riemann–Liouville Fractional Derivative [68], is
explained in greater detail in our prior publication [69].

Suppose α ∈ R+, If N is a positive integer, and N− 1 < α ≤ N. According to Riemann–
Liouville fractional, which is one of the most researched definitions, the fraction derivative
of a function υ(t) of order α is defined as follows:

Dα
c υ(t) =

1
Γ(N− α)

dN

dtN

t∫
c

(t − x)N−α−1 υN(x) dx (8)

Generalized Caputo’s Fractional Derivative of operator Dα,ρ
c+ and order α is

defined as [52–54]:

Dα,ρ
c+ υ(t) =

ρα−N+1

Γ(N− α)

t∫
c

xρ−1(tρ − xρ)N−α−1
(

x1−ρ d
dx

)N
υ(x) dx,

N− 1 < α < N, ρ > 0, c ≥ 0
(9)

where c is the lower limit of integration.
Consequently, the solution to Equation (9) can be written as [52–54]:

Dα,ρ
c+ (tρ − xρ)γ = ρα Γ(γ + 1)

Γ(γ − α + 1)
(tρ − cρ)γ−α (10)

Next, we will discuss the differential quadrature technique using the specified
shape functions.

3.2. Our First Shape Function Is Lagrange Interpolation Polynomial Based DQM (PDQM)

Within this partition, the functional values of any unknown P at a specific set of N
grid points can be represented using this shape function, as described in [55,56]:

P(ti) =
N

∑
j=1

1
ti − tj

×

N
∏

k=1
(ti − tk)

N
∏

j=1,j ̸=k
(tj − tk)

P(tj) , (i = 1 : N) (11)

As a result, the following are the different derivatives of this unknown P:

∂rP
∂tr

∣∣∣∣t = ti
=

N

∑
j=1

a(r)ij P(tj) , (i = 1 : N) (12)

where a(r)ij is the rth derivative weighting coefficient. However, determining the weighting
coefficients is critical to DQM accuracy. As a result, they differ based on the shape function.

Differentiating Equation (12) results in the calculation of the weighting coefficients
a(1)ij and a(2)ij , representing the first and second derivatives.

a(1)ij =



1
(ti − tj)

N
∏

k = 1,
k ̸= i, j

(ti − tk)

(tj − tk)
i ̸= j

−
N
∑

j = 1,
j ̸= i

a(1)ij i = j

, a(2)ij =
[
a(1)ij

][
a(1)ij

]
(13)
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The distribution of grid points N, whether uniform or non-uniform, significantly
influences the accuracy of the PDQM results. The non-uniform distribution is defined by
the following equation, based on Chebyshev’s distribution:

xi =
1
2

Lx

(
1 − cos

(
π(i − 1)
N − 1

))
, (i = 1 : N) (14)

3.3. Discrete Singular Convolution-Based DQM (DSCDQM)

In this part, according to previous research [59,70,71], singular convolution can be
expressed as follows:

Y(t) = (F ∗ H)(t) =
∞∫

−∞

F(t − s) H(s) ds (15)

F(t− s) and H(t) denote a singular kernel and a test function space element, respectively.
The choice of kernel type determines the shape function used in this technique. Given

the variety of available kernels, we have selected the kernel demonstrated to have the
highest accuracy [69] to represent the functional values of the unknown P and its derivatives
at a specified number of grid points N:

• Our second shape function is the Regularized Shannon kernel (DSCDQM–RSK)

P(ti) =
M
∑

j=−M

〈 sin
[
π(ti − tj)

∆

]
π(ti − tj)

∆

exp(
−(ti − tj)

2

2σ2 )

〉
P(xj),

(i = −N : N),σ = (h × ∆ ) > 0

(16)

The parameters σ, h, and ∆ represent the Regularized Shannon factor, the computa-
tional parameter, and the mesh size, respectively.

∂rP
∂tr |t = ti =

N
∑

j=1
a(r)ij P(tj)

(i = −N : N)

(17)

Differentiating Equation (15) allows us to determine the coefficients a(1)ij and a(2)ij , as
described in [72]:

a(1)ij =


(−1)i−j

∆(i−j) exp(−∆2(
(i−j)2

2σ2 )), i ̸= j

0 i = j

, a(2)ij =


[

2 (−1)i−j+1

a2(i−j)2 + 1
σ2

]
exp

(
−∆2(

(i−j)2

2σ2

)
, i ̸= j

− 1
σ2 − π2

3∆2 i = j

(18)

The kernel type, grid points (N), and bandwidth (2K + 1) are all important parameters
that affect the convergence and accuracy of the solutions, as our analysis shows.

Now, after mentioning DQM based on two shape functions, we will demonstrate the
effect of the generalized Caputo’s fractional derivative, which is shown in Equation (9) on
the FDQM in Equation (12), to determine the weighting coefficients aα

ij for α ∈ (0, 1] and
ρ > 0, as follows [69]:

Dα,ρ
c+ P(t) =


N
∑

j=1
aα,ρ

ij P(tj, x), 0 < α ≤ 1 , ρ > 0

N
∑

j=1
a(1)ij P(tj, x) α = ρ = 1

(19)
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Hence, the weighting coefficient aα,ρ
ij is calculated as:

aα,ρ
ij = A1−αρα a(1)ij +

ραa(1)1,j

Γ(2 − α)
(tρ − cρ)1−α, Aij = a(1)ij − a(1)1j (20)

3.4. Algorithm: Fractional Differential Quadrature Method (FDQM) for Nonlinear Initial
Value Problems

This pseudo-code (Algorithm 1) outlines the key steps for implementing the proposed
numerical framework for solving nonlinear fractional differential equations using the
FDQM approach.

Algorithm 1: Fractional Differential Quadrature Method (FDQM) for Nonlinear Initial
Value Problems

Input:

- Fractional order, constants in the fractional differential equation
- Nonlinear fractional differential equation.
- Initial conditions.
- Grid points (N)
- Shape functions (Lagrange, Regularized Shannon)
- Tolerance for convergence (ε)

Output:

- The solution of the fractional differential equation numerically.

1. Define the generalized Caputo fractional derivative operator.
2. Initialize grid points x1, x2, . . ., xN based on Chebyshev distribution or uniform distribution.
3. For each time step “t:

■ Construct the shape functions using Lagrange interpolation and Regularized
Shannon kernel.

■ Formulate the algebraic system from the fractional differential equation using FDQM:

a. Apply shape functions to approximate the unknown function and its derivatives.
b. Substitute into the original FDE to derive a system of nonlinear algebraic equations.

4. Initialize solution guess for the unknown function.
5. While not converged (|| fnew − fold|| > ε)
6. Solve the algebraic system iteratively:

a. Use a numerical method (iterative differential quadrature method) to update
the solution.

b. Update fold with fnew

7. End while
8. Return the numerical solution for the fractional differential equation at the specified

time steps.

End Algorithm

4. Numerical Results

Now that it is easier to understand FDQM with different shape functions such as
PDQM [55,56], and DSCDQM–RSK [59,70,71] based on the generalized Caputo definition
fractional derivative, two examples will be given here and then will be discussed. In
all these examples, MATLAB software(R2022b) is used for computations and graphs.
The primary goal of this article is to learn about the performance, validity, efficiency,
and accuracy of developed techniques by comparing the computed results to previous
numerical and analytical solutions.
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4.1. Problem 4.1

We introduce the first example fractional Riccati equation after substituting the Equa-
tions (19) and (20) for the proposed methods in Equation (1) as follows:

L

∑
j=1

aα,ρ
ij υ

(
tj
)
= 2

N

∑
j=1

δij υ
(
tj
)
−
(

N

∑
j=1

δij υ
(
tj
))2

+ 1 (21)

The governing Equation (21) is also used to deal with the initial condition (2). To
solve the nonlinear problem, the iterative method is applied [55,72,73]. As a first step,
the governing equation is solved as a linear system. Then we solve them iteratively as a
nonlinear system until we reach the requisite convergence, which is as follows:∣∣∣∣υm+1

υm

∣∣∣∣ < 1, where m = 0, 1, 2, . . . (22)

Also, to assess the convergence and accuracy of the developed methods, we use the
error computation method:

L∞ Error = max
1≤i≤N

|υnumerical − υexact| (23)

Now, the obtained results will be demonstrated as follows:
The effect of applying PDQM with uniform and non-uniform grid distributions on

the computation of the fractional Riccati equation with fractions (α = 1, ρ = 1) at different
grid points (N) and times (T) is shown in Table 1. Hence, it is found that non-uniform grid
results are higher and more consistent with earlier solutions than uniform ones with an
error ≤10−8, and execution time of about (0.024 s). Also, when the grid points increase with
time, the accuracy increases; for example, at time (t = 1), we make (N = 13), and at time (t =
2), we make (N = 26) Furthermore, the maximum number of grids we use is significantly
less than in previous studies (N = 3200).

Table 2 compares non-uniform PDQM and DSCDQM–RSK for the fractional Riccati
equation under various conditions of time (T = 1), fraction (α = 1, ρ = 1), different grid
points (N), regularized Shannon factor (σ = h × ∆), and bandwidth (2K + 1). To begin,
Table 2 ensures that the best value of the regularized Shannon factor is σ = 0.45 × ∆, with
results matching previous studies and PDQM shown in Table 1 at the fewest grid points
(N = 9), bandwidth (2K + 1 = 7) and performance time of about (0.018 s). DSCDQM–RSK is
the best method overall, based on low grid points and performance time when compared
to PDQM (N = 16) and previous studies (N = 640).

The efficiency, validity, and accuracy of the created methodologies are presently being
explored by comparing the calculated results to earlier numerical and analytical solutions
at various powers of fraction (α, ρ), as shown in Tables 3–6. Tables 3–6 show that increasing
the fraction power (α or ρ) decreases the value of υ(t), but increases with time for the
fractional Riccati equation. Furthermore, the results show that DSCDQM–RSK outperforms
non-uniform PDQM in terms of efficiency, validity, and accuracy.

In addition, the dynamic behaviors of the fractional Riccati equation with respect to
the parameters (α and ρ) and against the time variable t are depicted in Figures 1 and 2.
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Table 1. Computation of υ(t) via uniform and non-uniform PDQM for fractional Riccati equation
with fraction (α = 1, ρ = 1) at different grid points (N), and times (T).

PDQ Solutions Previous Solutions

T N Uniform CPU (s) Error Non-
Uniform CPU (s) Error N

Earlier
Numerical

[64]

Exact
[61]

1

4 1.59030488 0.016 0.0971 1.64023865 0.013 0.04721 10 1.68745117

1.68949839

6 1.68745374 0.018 0.0015 1.67122383 0.017 0.01774 20 1.68896723
8 1.68821427 0.018 0.0011 1.68941502 0.017 5.16 × 10−5 40 1.68936339
9 1.68921673 0.019 0.0002 1.68948616 0.018 2.18 × 10−5 80 1.68946438
11 1.68941775 0.020 7.2 × 10−5 1.68949815 0.018 8.29 × 10−6 160 1.68948986
12 1.68948043 0.021 1.6 × 10−5 1.68949820 0.020 1.95 × 10−6 320 1.68949625
13 1.68949755 0.021 3.1 × 10−7 1.68949839 0.020 1.2 × 10−8 640 1.68949786

2

8 2.34267643 0.029 0.001168 2.35647559 0.019 0.012631 20 2.35530727

2.35777165

12 2.35721628 0.031 0.00056 2.35777266 0.020 3.73 × 10−6 40 2.35721255
16 2.35757661 0.032 0.00014 2.35777175 0.021 6.14 × 10−5 80 2.35763805
18 2.35773329 0.033 3.27 × 10−5 2.35777169 0.021 5.68 × 10−6 160 2.35773897
22 2.35777129 0.034 8.08 × 10−6 2.35777165 0.022 7.72 × 10−6 320 2.35776357
24 2.35777151 0.035 2.01 × 10−6 2.35777165 0.023 1.87 × 10−6 640 2.35776964
26 2.35777167 0.036 5 × 10−7 2.35777165 0.024 2 × 10−8 1280 2.35777115

5

20 2.41421578 0.033 1.743 × 10−5 2.41420169 0.021 3.34 × 10−6 50 2.41419835

2.41420167

21 2.41420238 0.033 1.37 × 10−6 2.41420169 0.021 6.8 × 10−7 100 2.41420101
22 2.41420214 0.034 6.2 × 10−7 2.41420168 0.022 1.6 × 10−7 200 2.41420152
23 2.41420177 0.034 1.4 × 10−7 2.41420167 0.022 4 × 10−8 400 2.41420163
24 2.41420175 0.035 9 × 10−8 2.41420167 0.023 1 × 10−8 800 2.41420166
25 2.41420171 0.035 4 × 10−8 2.41420167 0.023 1 × 10−8 1600 2.41420167
26 2.41420169 0.036 2 × 10−8 2.41420167 0.024 1 × 10−8 3200 2.41420167

Table 2. Computation of υ(t) via non-uniform PDQM and DSCDQM–RSK for fractional Riccati
equation with time (T = 1) and fraction (α = 1, ρ = 1) at various grid points (N), regularized Shannon
factor (σ = h × ∆), and bandwidth (2K + 1).

DSCDQM–RSK
N 2K + 1

Non-Uniform
PDQM σ=0.2×∆ σ=0.4×∆ σ=0.45×∆ σ=0.5×∆ CPU (s)

9

3 1.68948616 1.69745751 1.689880214 1.68950741 1.64023989 0.008
5 1.68948616 1.69745647 1.689876547 1.68949956 1.64023942 0.01
7 1.68948616 1.69745559 1.689875120 1.68949839 1.64023865 0.012
9 1.68948616 1.69745559 1.689875120 1.68949839 1.64023865 0.014
11 1.68948616 1.69745559 1.689875120 1.68949839 1.64023865 0.016

11

3 1.68949815 1.69745666 1.689877415 1.68949951 1.64023937 0.009
5 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.01
7 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.011
9 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.012
11 1.68949815 1.69745559 1.689875120 1.68949839 1.64023865 0.014

13

3 1.68949839 1.69745578 1.689876014 1.6894990 1.64023900 0.01
5 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.012
7 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.014
9 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.016
11 1.68949839 1.69745559 1.689875120 1.68949839 1.64023865 0.018

Earlier numerical solutions
[64] 1.68949786 at (N = 640)

Exact [61] 1.68949839
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Table 3. Computation of υ(t) via non-uniform PDQM and DSCDQM–RSK for fractional Riccati
equation at various times (T), fractions (α), and ρ = 1.

Non-Uniform PDQM DSCDQM–RSK Previous Results [61–65]
T

α = 0.5 α = 0.75 α = 0.5 α = 0.75 α = 0.5 α = 0.75
0.1 0.59149371 0.24512554 0.59149373 0.24512556 0.59149373 0.24512556
0.2 0.93141486 0.47450194 0.93141488 0.47450196 0.93141488 0.47450196
0.3 1.171926469 0.709154008 1.171926471 0.709154010 1.171926471 0.709154010
0.4 1.344407759 0.937441050 1.344407761 0.937441052 1.344407761 0.937441052
0.5 1.471501155 1.147807349 1.471501157 1.147807351 1.471501157 1.147807351
0.6 1.568070430 1.332985034 1.568070432 1.332985036 1.568070432 1.332985036
0.7 1.643596282 1.490535187 1.643596284 1.490535189 1.643596284 1.490535189
0.8 1.704182955 1.621592245 1.704182957 1.621592247 1.704182957 1.621592247
0.9 1.753855962 1.729220378 1.753855964 1.729220380 1.753855964 1.729220380
1 1.817133594 1.795344168 1.817133596 1.795344170 1.817133596 1.795344170

Table 4. Computation of υ(t) via non-uniform PDQM and DSCDQM–RSK for fractional Riccati
equation with fraction (α = 1) at various times (T), and fractions (ρ).

Non-Uniform PDQM DSCDQM–RSK Previous Results [61–65]
T

ρ = 0.8 ρ = 1.2 ρ = 0.8 ρ = 1.2 ρ = 0.8 ρ = 1.2
0.1 0.14117992 0.09045268 0.14117994 0.09045271 0.14117994 0.09045271
0.2 0.31592641 0.195667845 0.31592645 0.19566787 0.31592645 0.19566787
0.3 0.52298485 0.315926409 0.52298488 0.315926411 0.52298488 0.315926411
0.4 0.75601439 0.450653813 0.75601442 0.450653816 0.75601442 0.450653816
0.5 1.00354951 0.59824597 1.00354953 0.59824599 1.00354953 0.59824599
0.6 1.25086733 0.75601439 1.25086736 0.75601442 1.25086736 0.75601442
0.7 1.48329584 0.92030072 1.48329586 0.92030075 1.48329586 0.92030075
0.8 1.68949839 1.08677371 1.68949842 1.08677374 1.68949842 1.08677374
0.9 1.86328744 1.25086733 1.86328746 1.25086736 1.86328746 1.25086736
1 2.00353694 1.40827080 2.00353696 1.40827081 2.00353696 1.40827081

Table 5. Computation of υ(t) via non-uniform PDQM for fractional Riccati equation at different grid
points (N), and fractions (α, ρ).

Non-Uniform Earlier Numerical Solutions [62]
T N α = 1,

ρ = 0.9
α = 0.95,
ρ = 0.75

α = 0.9,
ρ = 1.2 N α = 1,

ρ = 0.9
α = 0.95,
ρ = 0.75

α = 0.9,
ρ = 1.2

1

4 1.80602802 1.96263496 1.39368786 10 1.84281224 2.06729863 1.52944766
6 1.84319793 2.04896144 1.49050147 20 1.84491385 2.07202706 1.53119172
8 1.84556010 2.06510470 1.51019655 40 1.84546411 2.07322261 1.53167452
9 1.84561319 2.06904164 1.52085146 80 1.84560424 2.07352741 1.53180584
11 1.84565025 2.07362649 1.52696219 160 1.84563955 2.07360571 1.53184129
12 1.84565137 2.07363589 1.52945738 320 1.84564841 2.07362592 1.53185082
13 1.84565137 2.07363256 1.53185408 640 1.84565063 2.07363115 1.53185339
14 1.84565137 2.07363256 1.53185408 1280 1.84565119 2.07363250 1.53185407

2

8 2.28430436 2.32839830 2.20693947 20 2.36576348 2.34646084 2.26631061
12 2.32381757 2.33437164 2.21000463 40 2.36763874 2.34834846 2.26840179
16 2.34381756 2.34307946 2.22083045 80 2.36805246 2.34876916 2.26890814
18 2.36382620 2.34836151 2.23103727 160 2.36815011 2.34887135 2.26903810
22 2.36832617 2.34863032 2.24089052 320 2.36817385 2.34889710 2.26907235
24 2.36818255 2.34889017 2.26879047 640 2.36817971 2.34890369 2.26908148
26 2.36818153 2.34890584 2.26908459 1280 2.36818116 2.34890540 2.26908393
27 2.36818153 2.34890584 2.26908459 2560 2.36818153 2.34890584 2.26908459
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Table 6. Computation of υ(t) via DSCDQM–RSK for fractional Riccati equation at different values of
(α, ρ) and times.

α ρ T = 0.5 T = 1 T = 2 T = 2.5 T = 3

0.4

1 1.58967600 1.77525996 2.09537035 2.21247852 2.22642314
1.1 1.54739283 1.74403298 2.07553739 2.19214756 2.20554878
1.2 1.50756398 1.71405017 2.05317313 2.17021456 2.18875143
1.4 1.43438179 1.65736347 2.02666948 2.14654879 2.16214787
1.9 1.28182554 1.53134020 2.01520768 2.12958092 2.13478462

0.5

1 1.68300421 1.79935747 2.12065899 2.25983372 2.27664509
1.1 1.66554391 1.75798866 2.10285480 2.23984120 2.25471201
1.2 1.65154233 1.71762640 2.09852919 2.21874621 2.23789123
1.4 1.62320069 1.66991063 2.07719592 2.20997411 2.21987423
1.9 1.58526142 1.56342314 2.05661402 2.20278414 2.17645789

0.7

1 1.71613371 1.82286926 2.14596688 2.29139917 2.31617003
1.1 1.69532577 1.79031758 2.12529159 2.27075056 2.29157030
1.2 1.67462609 1.77811144 2.10299487 2.25941935 2.26895529
1.4 0.65934200 1.73806497 2.08048316 2.22364828 2.24318890
1.9 0.60930946 1.65504250 2.05990416 2.20861195 2.20862313

0.85

1 0.73587574 1.84052325 2.24870001 2.30150738 2.33501568
1.1 0.71892188 1.82175475 2.21842773 2.28982006 2.31048992
1.2 0.69728893 1.80614145 2.18322274 2.27519396 2.29534657
1.4 0.67897490 1.77168741 2.16870824 2.23587987 2.27096577
1.9 0.62629628 1.72273733 2.13184852 2.20356265 2.22777374

0.95

1 0.82414933 1.87127626 2.31830946 2.36707298 2.37441750
1.1 0.73300489 1.84609224 2.28379937 2.35373760 2.35930723
1.2 0.71834905 1.82980945 2.24083446 2.33559233 2.33776914
1.4 0.68447266 1.80982469 2.21190242 2.28289347 2.31913452
1.9 0.63618443 1.77131197 2.19457437 2.23111789 2.29258450

Figure 1. Cont.
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Figure 1. Numerical simulation of υ(t) using DSCDQM–RSK for fractional Riccati equation at
different times and fraction power (α, ρ) for (a) α = 1, and (b) α = 0.7.

Figure 2. Numerical simulation of υ(t) using DSCDQM–RSK for fractional Riccati equation at
different fraction power (α, ρ) for (a) t = 1, and (b) t = 2.
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4.2. Problem 4.2

We deal with the fractional Lorenz system after substituting Equations (4)–(6) with
Equations (19) and (20) of the proposed methods:

L

∑
j=1

aα,ρ
ij X

(
tj
)
= λ

[
N

∑
j=1

δij Y
(
tj
)
−

N

∑
j=1

δij X
(
tj
)]

(24)

L
∑

j=1
aα,ρ

ij Y
(
tj
)
= (ϕ− λ)

N
∑

j=1
δij X

(
tj
)
−

N
∑

j=1
δij X

(
tj
) N

∑
j=1

δij Z
(
tj
)
+ϕ

N
∑

j=1
δij Y

(
tj
) (25)

L

∑
j=1

aα,ρ
ij Z

(
tj
)
=

N

∑
j=1

δij X
(
tj
) N

∑
j=1

δij Y
(
tj
)
− β

N

∑
j=1

δij Z
(
tj
)

(26)

Dealing with the initial condition (7) is also done by substituting in the governing
Equations (24)–(26). After that, we use Equation (22) to solve this system.

We will now begin to demonstrate the obtained results to explain the stability, relia-
bility, convergence, and performance of FDQM using two types of shape functions with
generalized Caputo sense, as follows:

Table 7 explains the impact of grid points (N) on the obtained results X, Y, and Z
via PDQM with uniform and non-uniform grid distributions of the fractional Lorenz
system with fraction (α = 1, ρ = 1). It is remarkable that non-uniform grid results are
higher and more consistent with earlier solutions [62,63] and RK4 [64] at N = 11 than
uniform ones at N = 13 with error ≤10−8, and execution time of about (0.027 s). Table 8
demonstrates the effect of control values like grid points (N), regularized Shannon factor
(σ = h × ∆), and bandwidth (2K + 1) on the obtained results by DSCDQM–RSK at time
(T = 2), fraction (α = 1, ρ = 1). We found the best value of the regularized Shannon factor
is σ = 0.47 × ∆, with results matching previous studies and PDQM shown in Table 7 at the
fewest grid points (N = 9), bandwidth (2K + 1 = 3), and performance time of about (0.022 s).
Furthermore, from Tables 7 and 8, it is noted that the maximum number of grids we use is
significantly less than in previous studies (N = 1280).

Table 7. Computation of numerical solutions X, Y, Z via uniform and non-uniform PDQM for
fractional Chen system (Lorenz system) with time (T = 2) and fraction (α = 1, ρ = 1) at various grid
points (N).

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,ϕ = 1).

Uniform PDQM Non-uniform PDQM
N X Y Z CPU (s) X Y Z CPU (s)

4 0.837919933 0.623902547 0.302407988 0.02 0.837919846 0.623902388 0.302407749 0.02
5 0.771720200 0.527485798 0.248194100 0.021 0.771720184 0.527485752 0.248193998 0.021
6 0.761378603 0.49832669 0.2415685802 0.022 0.763378566 0.522326584 0.2475685753 0.022
7 0.760223666 0.497601296 0.2409074397 0.023 0.762223591 0.515601283 0.2469074378 0.023
9 0.762203989 0.500122597 0.242400811 0.025 0.762203974 0.500122578 0.2424007951 0.024

10 0.762216222 0.500169299 0.2424081878 0.026 0.762216161 0.500169278 0.2424081821 0.025
11 0.76221575 0.500167396 0.242407838 0.027 0.76221572 0.500167392 0.242407832 0.025
12 0.76221573 0.500167394 0.2424078434 0.028 0.76221572 0.500167392 0.2424078432 0.026
13 0.76221572 0.500167392 0.2424078432 0.029 0.76221572 0.500167392 0.2424078432 0.027

Earlier numerical solutions [62,63]
X Y Z

1280 0.76221649 0.50016919 0.24240833
RK4 [64]

0.76221572 0.50016739 0.24240783
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Table 8. Computation of numerical solutions X, Y, Z via DSCDQM–RSK for fractional Chen sys-
tem (Lorenz system) with time (T = 2) and fraction (α = 1, ρ = 1) at various grid points (N), reg-
ularized Shannon factor (σ = h × ∆), and bandwidth (2K + 1).

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and

(λ = 1,β = 2,ϕ = 1).

DSCDQM–RSK
σ = 0.4 × ∆ σ = 0.45 × ∆ σ = 0.47 × ∆N 2K + 1

X Y Z X Y z X Y Z
CPU (s)

9

3 0.7738 0.5133 0.2549 0.7625 0.5008 0.2430 0.76225 0.5004 0.2425 0.01
5 0.7735 0.5127 0.2540 0.7623 0.5006 0.2427 0.76223 0.5003 0.2424 0.012
7 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.014
9 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.016
11 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.018

11

3 0.7347 0.5127 0.2540 0.7623 0.5006 0.2427 0.76222 0.50023 0.2425 0.012
5 0.734 0.5124 0.2537 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.014
7 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.016
9 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.018
11 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.020

13

3 0.7733 0.5122 0.2537 0.76231 0.5006 0.2427 0.762215 0.50026 0.24247 0.014
5 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.016
7 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.018
9 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.020
11 0.7732 0.5122 0.2536 0.76229 0.5005 0.2426 0.76221 0.5002 0.2424 0.022

Earlier numerical solutions [62,63]
X Y Z

1280 0.76221649 0.50016919 0.24240833
RK4 [64]

0.76221572 0.50016739 0.24240783

Figures 3 and 4 present the influence of time and fraction α on the numerical results X,
Y, and Z via non-uniform PDQM and DSCDQM–RSK at

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and

(λ = 1,β = 2,ϕ = 1). Thus, it is found that the dynamic behaviors of X, Y, and Z differ
when the fraction α change. This means that when the value α decreases, the values of X, Y,
and Z increase.

Figure 3. Variance of (a) X, (b) Y, and (c) Z with time (t) via non-uniform PDQM and DSCDQM–RSK
for fractional Chen system with time (T = 1), fraction (α = 1, ρ = 1),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and

(λ = 1,β = 2,ϕ = 1).
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Figure 4. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 1, ρ = 1.2),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,ϕ = 1).

Also, Figures 3 and 4 show that the Lorenz system, a classic model for chaotic dy-
namics, can be extended to fractional-order systems. This extension introduces significant
differences in the observed chaotic behavior [74,75]:

Chaotic Regimes:

■ The integer-order Lorenz system exhibits a well-defined chaotic regime within a
specific parameter range.

■ Fractional-order Lorenz systems often exhibit chaotic behavior over a wider range of param-
eters and fractional orders. This can lead to more complex and diverse chaotic dynamics.

Attractor Structure:

■ The integer-order Lorenz system typically has a single strange attractor.
■ Fractional-order Lorenz systems can exhibit multiple strange attractors or even the coex-

istence of different attractors, depending on the fractional order and system parameters.

Fractal Dimension:

■ The fractal dimension of the strange attractor in the integer-order Lorenz system is
generally between 2 and 3.

■ The fractal dimension of the strange attractors in fractional-order Lorenz systems
can vary more widely, often exceeding 3. This indicates a more complex and
convoluted structure.
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Sensitivity to Initial Conditions:

■ The integer-order Lorenz system is highly sensitive to initial conditions, leading to
the butterfly effect.

■ Fractional-order Lorenz systems can exhibit even greater sensitivity to initial condi-
tions, making long-term predictions even more challenging.

Memory Effects:

■ The integer-order Lorenz system does not have memory effects.
■ The fractional-order Lorenz system incorporates memory effects, which can influence

the system’s dynamics and make it more resilient to perturbations.

So, fractional-order Lorenz systems can exhibit more complex and diverse chaotic
behaviors compared to their integer-order counterparts. The increased sensitivity to initial
conditions in fractional-order systems makes long-term predictions even more challenging.
Fractional-order Lorenz systems can be used to model real-world phenomena with memory
effects or nonlinearities that are not adequately captured by integer-order models.

Figures 4–7 show the fractional Lorenz system’s dynamic behaviors as the values of
fractions (α, ρ) at

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,ϕ = 1) changes. Also, in

these figures, we show projections of the fractional Lorenz system attractors calculated via
DSCDQM–RSK when T = 100 for some values of the fractions (α, ρ). It is observed that
when the fraction ρ increases, the chaotic behavior increases more than the fraction α changes.
Consequently, it is noted that the fractional Lorenz system may exhibit chaotic attractors similar
to those of its integer-order counterpart when (α = 0.9, ρ = 0.8) and (α = 0.8, ρ = 1.2). Also,
for smaller values of the fractions (α, ρ) the system loses its chaotic character.

Figure 5. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 0.8, ρ = 1.2),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,ϕ = 1).
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Figure 6. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 0.97, ρ = 1),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,ϕ = 1).

To analyze the computational complexity of the provided code for solving the Riccati
equation and the Lorenz system using the Fractional Differential Quadrature Method
(FDQM), we will focus on memory space and simulation time complexities in detail. The
configuration of the computer used to perform the simulation results is HP Probook 450
G8 Laptop—11th Intel Core i5-1135G7, 8 GB RAM, 512 GB PCIe NVMe SSD, 15.6” FHD
(1920 × 1080), and Intel Iris X Graphics.

1. Memory Space Complexity
Variables:

■ Grid Points: The function Chebyshev grid (N) generates N Chebyshev nodes, requir-
ing O(N) space.

The DSCDQM–RSK method demonstrated optimal performance with N = 9 grid
points, a bandwidth of 2k + 1 = 7, and a regularized Shannon factor of σ = 0.45 × ∆ for
the fractional Riccati equation. This configuration yielded a CPU time of 0.018 s. Similarly,
for the fractional Lorenz system, the best results were obtained with N = 9 grid points, a
bandwidth of 2k + 1 = 3, and a regularized Shannon factor of σ = 0.47 × ∆, achieving a
CPU time of 0.02 s.

In contrast, earlier numerical methods typically required significantly more grid points,
often reaching N = 640, 1280, or even 3200.

■ Weighting Coefficients: The function PDQM weights (N, t) creates a matrix A of size
N × N. Therefore, it requires O(N2) space.

■ Solution Vectors:
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- The solution υ, X, Y, Z vectorsfor the Riccati equation and Lorenz system are
initialized as zero vectors of size N × 1, each requiring O(N) space.

- Total for all solution vectors combined: 4 × O(N) = O(N).

Total Memory Space Complexity:

■ The dominant term is O(N2) from the weighting coefficients matrix. Thus, the total
memory space complexity is:

O(N2)

Figure 7. Chaotic attractor of fractional Lorenz system using DSCDQM–RSK with time (T = 100),
fraction (α = 0.9, ρ = 0.8),

(
x0 = 2.5, y0 = 1, z0 = 0.5

)
and (λ = 1,β = 2,ϕ = 1).

2. Simulation Time Complexity
For Solving the Riccati Equation:
Grid Point Generation:

■ The grid points are generated in O(N) time.

Weighting Coefficients Calculation:

■ The PDQM weights(N, t, 1) function computes the coefficients with a nested loop over
N, resulting in O(N2) time complexity:

■ Each entry in matrix A involves calculations that depend on N, leading to O(N2)
complexity for the entire matrix.

Time Integration:

■ The time integration loop runs for N-1 iterations, performing a constant time calcula-
tion for each iteration:
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O(N)

Total Time Complexity for Riccati Equation:

■ Combining these, we get:

O(N2) (weighting coefficients) + O(N) (grid points) + O(N) (integration) = O(N2)

For Solving the Lorenz System:
Grid Point Generation:

■ Again, this takes O(N) time.

Weighting Coefficients Calculation:

■ The calculations for Ax, Ay, and Az each take O(N2):

3 × O(N2) = O(N2)

Time Integration:

■ Similar to the Riccati equation, the integration loop runs for N-1 iterations:

O(N)

Total Time Complexity for Lorenz System:

■ Again combining these:

O(N2) (coefficients) + O(N) (grid points) + O(N) (integration) = O(N2)

3. Overall Complexity Summary

■ Memory Complexity: O(N2)
■ Time Complexity for Riccati Equation: O(N2)
■ Time Complexity for Lorenz System: O(N2)

4. Real Numbers Example
For practical evaluation, consider the following:

■ For N = 9:

Memory for weighting coefficients: 81 entries.
Memory for solution vectors: 36 entries.
Assuming each entry takes 8 bytes (for double precision), the memory usage would be:

■ Weighting coefficients: 81 × 8 = 648 bytes (approximately 0.64 KB).
■ Solution vectors: 36 × 8 = 288 bytes (approximately 0.28 KB).

Total memory usage for N = 9 would be approximately 1 KB.
Execution Time:

■ If the operations in the loops take, say, 0.001 s per iteration:

For N = 9, the time for solving the Riccati equation and the Lorenz system would
be dominated by the O(N2) term, leading to an estimated execution time of about 0.1 s
(for illustration).

This detailed analysis provides insights into the computational complexity of the code,
which is crucial for assessing performance in practical scenarios. The findings underscore
the importance of optimizing the weighting coefficients and the iterative solvers for larger
values of N.

The choice of time step in numerical methods significantly affects the accuracy of the
solutions for differential equations, including those solved using the Differential Quadra-
ture Method (DQM). Here’s how:

5. Stability and Convergence:
Our numerical methods are stable because small perturbations in the initial conditions

lead to small perturbations in the numerical solution.
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Consider the fractional differential equation (FDE) represented in the form:

Dα
c U(t) = f (t, U(t)), t ∈ [0, T] (27)

where Dα
c is the generalized Caputo fractional derivative.

Let U(t) be the exact solution and Un(t) be the numerical solution obtained through
the proposed methods. Introduce a perturbation ϵn such that:

Un(t) = U(t) + ϵn (28)

By analyzing how the perturbation evolves over time:

Dα
c (Un(t) + ϵn) = f (t, Un(t) + ϵn) (29)

This leads to the error equation:

Dα
c ϵn = f (t, Un(t) + ϵn)− f (t, U(t)) (30)

Assume f satisfies a Lipschitz condition:

| f (t, U1)− f (t, U2)| ≤ L|U1 − U2| (31)

where L is a constant.
By applying Gronwall’s inequality, show that:

|ϵn| ≤ C · ∆tp

where C is a constant and p is the order of the method, ensuring that the solution remains
bounded as n → ∞ .

Our numerical method converges because the numerical solution approaches the exact
solution as the grid refinement increases.

Let:
lim

N→∞
∥ Un(t)− U(t) ∥ = 0 (32)

By conducting an error analysis between the numerical solution and the exact

En = Un(t)− U(t) (33)

By using Taylor expansion around tn to express U(t):

U(tn + ∆t) = U(tn) + ∆tU′(tn) + O
(

∆t2
)

(34)

Relate this to the discretized version derived from the method:

Un(tn + ∆t) = Un(tn) + O(∆tp) (35)

The method is stable and the achieved convergence rates reached 10−8, indicating
a high level of precision in solving the nonlinear fractional initial value problems. The
truncation error in our numerical methods is very small due to the Gaussian regularizer
σ = 0.45 × ∆ which depends on a small computational domain:

6. Accuracy of the Solution:

■ Each step introduces local error, which accumulates over time. Smaller time steps help
minimize this accumulation, resulting in a more accurate final solution (error ≤10−8)

■ The global error, which is the total error over the entire integration period, also tends
to decrease with smaller time steps, leading to better overall accuracy.
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4.3. Stability Analysis

After applying our discretization schemes to Equations (1)–(6), we obtained an equiv-
alent set of ordinary differential equations in the time domain:

d[U]

dt
= R[U] + [K] (36)

where

1. The vector {U} represents the unknown variables at the internal grid points, where υ,
X, Y, and Z are the individual components;

• The initial conditions are stored in the vector [K];

2. R[U] is the right-hand side of Equations (1)∓(6); and

3. a(1)ij is the weighting coefficient matrix of the first derivative:

a(1)ij =


a(1)22 a(1)23

a(1)32 a(1)33

· · ·
a(1)2(n−1)

a(1)3(n−1)
...

. . .
...

a(1)
(n−1)2 a(1)

(n−1)3 · · · a(1)
(n−1)(n−1)


(N−2)×(N−2)

(37)

The stability of our technique was evaluated by examining system (35). We employed
eigenvalue analysis of the coefficient matrices (a) to determine stability.

For the fractional differential equation represented in the form:

Dα
c U(t) = f (t, U(t))

discretizing this using the FDQM leads to a system of equations expressed as:

[a][U] = R[U]

To analyze stability, we need to compute the eigenvalues λ of the matrix [a]. The
eigenvalue problem is given by:

[a][v] = λ[v]

where v is the eigenvector associated with the eigenvalue λ.
The characteristic polynomial is obtained from:

det(a − λI) = 0

where I is the identity matrix.
The stability of the numerical method hinges on the eigenvalues of [a]:

1. If all eigenvalues satisfy |λ|< 1 , the method is stable.
2. If any eigenvalue has |λ|≥ 1 , the method may be unstable.

Figure 8 displays the stability regions for a numerical method at various fractional
orders (α). Each subplot represents a different α value: 0.5, 0.7, 0.85, and 1. The plots show
the eigenvalues of the coefficient matrix (a) in the complex plane (Real vs. Imaginary). At
α = 0.5, the eigenvalues are all located on the real axis near −0.5. Since the magnitude of
these eigenvalues is less than 1, this indicates stability for this fractional order. At α = 0.7,
the eigenvalues form a V-shape, extending into both the positive and negative real axis.
A portion of the eigenvalues have magnitudes greater than 1 (outside the unit circle),
indicating instability in this region. The region of stability is limited to the portion of the
V-shape within the unit circle. At α = 0.85, the eigenvalues form an inverted V-shape.
Similar to (b), portions of the eigenvalues are outside the unit circle, indicating instability.
The region of stability is again limited to the portion within the unit circle. At α = 1, the
eigenvalues lie entirely on the negative real axis, forming a vertical line. All eigenvalues
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appear to be within the unit circle, suggesting stability for this fractional order (which
corresponds to the standard integer-order case). Furthermore, Figure 9 depicts the error
propagation in relation to time and fractional order.

Figure 8. Regions of stability at varying fractional orders.

Figure 9. Propagation of errors in relation to time and fractional order.
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5. Conclusions

In this present work, we have successfully investigated new numerical methods for
solving the fractional Riccati equation and fractional Lorenz system. The novel numerical
method is FDQM, which is based on two base functions: Lagrange interpolation polynomial
and discrete singular convolution-Regularized Shannon kernel with a new generalized
Caputo kind. These methods are used to transform the proposed problems into a nonlinear
algebraic system. Then, the iterative method is employed to deal with the problem of
nonlinearity. All numerical results were obtained using MATLAB. By comparing our
results with those of existing methods, we demonstrated the superior accuracy, efficiency,
and overall performance of our proposed techniques. The achieved convergence rates
reached 10−8, indicating a high level of precision in solving the nonlinear fractional initial
value problems. Error analysis showed that non-uniform grid distributions consistently
outperformed uniform distributions, with maximum errors diminishing significantly as
grid points increased. Our numerical results demonstrate that the DSC-RSK method
achieved significantly faster convergence rates compared to other techniques. The best
results of the DSC-RSK method are achieved when grid points are N = 9, bandwidth is
2k + 1 = 7, and the regularized Shannon factor is σ = 0.45 × ∆ at CPU time = 0.018 s
for the fractional Riccati equation. But for the fractional Lorenz system, the best results
are when grid points are N = 9, bandwidth is 2k + 1 = 3, and the regularized Shannon
factor is σ = 0.47 × ∆ at CPU time = 0.02 s. Also, the proposed techniques have been
successfully employed to explain the fractional systems’ dynamic behaviors. The numerical
results demonstrate a strong dependence of the solution on the fractional derivative. The
fractional parameters, α and ρ, offer significant advantages in studying the proposed
problems with greater accuracy compared to traditional approaches. These techniques hold
promise for solving more complex nonlinear equations and other differential applications
involving fractional derivatives. The versatility of the FDQM was highlighted through its
successful application to both the fractional Riccati equations and the fractional Lorenz
system, demonstrating its potential for broader applications in fields requiring the modeling
of complex dynamics. The findings suggest that further exploration of fractional orders
could uncover even richer dynamics, with potential applications extending to areas such as
control theory, physics, and finance.
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