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Abstract: Realizing the integration of intelligent fruit picking and grading for apple harvesting robots
is an inevitable requirement for the future development of smart agriculture and precision agriculture.
Therefore, an apple maximum diameter estimation model based on RGB-D camera fusion depth
information was proposed in the study. Firstly, the maximum diameter parameters of Red Fuji
apples were collected, and the results were statistically analyzed. Then, based on the Intel RealSense
D435 RGB-D depth camera and LabelImg software, the depth information of apples and the two-
dimensional size information of fruit images were obtained. Furthermore, the relationship between
fruit depth information, two-dimensional size information of fruit images, and the maximum diameter
of apples was explored. Based on Origin software, multiple regression analysis and nonlinear surface
fitting were used to analyze the correlation between fruit depth, diagonal length of fruit bounding
rectangle, and maximum diameter. A model for estimating the maximum diameter of apples was
constructed. Finally, the constructed maximum diameter estimation model was experimentally
validated and evaluated for imitation apples in the laboratory and fruits on the Red Fuji fruit trees in
modern apple orchards. The experimental results showed that the average maximum relative error
of the constructed model in the laboratory imitation apple validation set was ±4.1%, the correlation
coefficient (R2) of the estimated model was 0.98613, and the root mean square error (RMSE) was
3.21 mm. The average maximum diameter estimation relative error on the modern orchard Red Fuji
apple validation set was ±3.77%, the correlation coefficient (R2) of the estimation model was 0.84,
and the root mean square error (RMSE) was 3.95 mm. The proposed model can provide theoretical
basis and technical support for the selective apple-picking operation of intelligent robots based on
apple size grading.

Keywords: fractal geometry; harvesting robot; apple; nonlinear surface fitting; multivariate regression
analysis

1. Introduction

Nowadays, apple picking still mainly relies on manpower [1–5], which not only
requires high labor and time requirements but also poses significant safety risks when
picking apples from high places. With the rapid development of machine vision, robotics
technology, and artificial intelligence technology [6–15], apple-picking robots are gradually
becoming a new direction to replace traditional manual picking in order to reduce labor
costs [16–18]. Therefore, exploring and optimizing the key technologies of apple-picking
robots in depth to achieve efficient and automated picking operations is of great significance
for ensuring efficient apple harvesting and promoting the intelligent development of
agricultural production. Among them, intelligent perception of fruit information on apple
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trees [19–23] is one of the core technologies of harvesting robots. On the other hand, the
current apple-picking operation and the fruit-grading operation based on apple size after
harvesting are based on two disjointed processes. In order to improve the efficiency of apple
harvesting grading, the picking robot can intelligently detect the maximum diameter of
apples on the fruit tree online and then selectively and accurately pick the fruits based on the
diameter size, in order to achieve the integration of “intelligent apple picking and grading”.
This is an inevitable requirement for the future development trend of smart agriculture and
precision agriculture, with important strategic significance and practical value.

The financial benefits of robot intelligent selective graded harvesting for apple fruits
contains the following: (1) Improving picking and grading efficiency: The apple-picking
robot adopts intelligent operation, unmanned driving, autonomous pathfinding, and
autonomous path planning, which can operate continuously and greatly improve picking
and grading efficiency. On the other hand, robots can accurately identify, pick, and grade
apples based on their size characteristics, avoiding waste and errors in manual picking
and grading. (2) Reducing labor costs: Traditional apple-picking and grading methods
require a large amount of human resources, while robot picking and grading technology
can replace some manual labor and reduce the labor intensity of farmers. On the other
hand, robot harvesting and grading can reduce losses caused by human factors and ensure
the quality of fruits. In addition, robot picking avoids the damage that may be caused
to apples due to improper operation during manual picking and grading, improving the
quality and commodity rate of fruits. (3) The adoption of advanced robot picking and
grading technology can enhance the modernization level and market competitiveness of
orchards, bringing more business opportunities and development space for orchards. These
helps orchards achieve sustainable development, bring long-term economic returns, and
increase market share in apple sales.

Up until now, scholars have conducted research on apple size estimation [24–29], but
most of the research is focused on assembly line operations such as fruit quality detection,
grading, and packaging under structured and environmentally controlled conditions. The
growth environment of fruits on apple trees is unstructured, and the distance and angle
between the camera and the fruits on the tree vary. Therefore, the above algorithm cannot
directly estimate the size of fruits on apple trees.

On the other hand, Zeze Fan et al. [30] obtained the mapping relationship between the
width and height values of the apple detection box and the actual physical size of the fruit
based on size measurement, conversion models, and parameters of the Sony ICLE-6000
camera. Based on this mapping relationship, they used artificial intelligence algorithms
to obtain the fruit detection box and obtain the diameter prediction information of the
apple. However, the experimental verification of the apple diameter estimation model
is based on setting the angle between the camera and the apple target to 0◦ and keeping
the distance between the camera and the apple fixed at 3 m. In reality, the RGB-D depth
camera installed on the apple-picking robot obtains a wider field of view, and the apples
are not only distributed in the central area of the camera’s field of view. Therefore, the angle
between the fruit and the camera will not be a fixed value of 0◦, and due to the presence
of the apple crown, the depth distance between each apple and the camera will vary and
is not fixed. Therefore, it is not possible to directly apply this model to picking robots for
real-time estimation of apple diameter on fruit trees in orchard environments. Shenglian Lu
et al. [31] used two apple image capture modes and combined the YOLOv4 convolutional
neural network model [32] to detect the position of fruits in two-dimensional images. They
estimated the length and diameter of apples on fruit trees using artificial apple reference
points. However, due to the fact that this method requires the use of a reference object (an
artificial apple model with a size of 90 mm × 80 mm) placed in the camera’s field of view
to estimate the actual length and diameter of the fruit based on the size of the imitation
apple, it is not suitable for robots that need to perform dynamic picking operations in
apple orchards.
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The research content of this article is related to intelligent agricultural robots; there-
fore, it is relevant to the research on multi-agent and non-linear systems in this context.
Reference [33] proposed a performance-based neural network consensus control method
for time-varying non-linear MAS with strict feedback to ensure that the synchronization
error quickly converges to a tight error set when all system states are subject to full state
constraints. A self-adaptive PI event-triggered control method was proposed in [34] for a
class of multiple-input multiple-output (MIMO) nonlinear systems with uncertain input
delay. Through the proposed method, MIMO nonlinear systems can dynamically handle
input delays of different durations while still maintaining excellent tracking performance.
The estimation of the maximum diameter of fruits for apple-picking robots requires precise
measurement of the maximum diameter of fruits in an unstructured orchard environment,
that is, under constrained conditions (various natural environments in the orchard), with a
small margin of error.

Up until now, there have been no reports on the research of real-time estimation of
apple diameter size on fruit trees in actual orchard operation scenarios providing technical
support for robot “intelligent apple picking and grading fusion”. Therefore, this study
utilized the Intel RealSense D435 RGB-D depth camera and LabelImg software, based
on multiple regression analysis and nonlinear surface fitting methods, to explore the
relationship between fruit depth information, two-dimensional size information of fruit
images, and the maximum diameter of apples. Furthermore, the correlation between fruit
depth, diagonal length of fruit bounding rectangle, and maximum diameter was analyzed.
Finally, a model for estimating the maximum diameter of apples based on RGB-D camera
fused depth information was proposed. The proposed model can provide theoretical basis
and technical support for the selective apple-picking operation of intelligent robots based
on apple size grading.

2. Acquisition and Analysis of Maximum Diameter Data for Apples
2.1. Measurement Method for Maximum Diameter of Fruit

According to the differences in fruit tree planting layout, apple orchards are divided
into two categories: traditional and modern standardized (or standard). The traditional
apple orchard has significant characteristics, with staggered branches between fruit trees,
as well as narrow and closed space between rows, which restricts the smooth operation
of mechanical work in the orchard. For modern standardized apple orchards (as shown
in Figure 1), the dwarf rootstock dense planting cultivation mode dominates. This mode,
with its low crown, convenient management, low labor demand, superior ventilation
and light transmission performance, uniform fruit coloring, superior quality, and ease
of intelligent agricultural machinery operation, has become an effective way to achieve
orchard standardization, scale, and intelligent management. This model is widely used
in advanced countries for apple production worldwide and is also a core development
direction in the modernization process of the apple industry. Among them, compared with
other cultivation modes such as “V-shaped”, “Y-shaped”, and “wall-shaped”, the spindle-
shaped cultivation mode, as the mainstream type of dwarf rootstock dense planting mode,
is highly favored due to its multiple fruiting branches and strong fruit-bearing capacity, and
it has become the mainstream choice in modern standard orchard construction. Therefore,
the spindle-shaped apple trees in the standardized orchard at the Apple Experimental
Station of Northwest A&F University in Baishui County of Shaanxi Province were used as
the research object in the study.
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Figure 1. Spindle-shaped apple trees in a modern orchard.

The LF01 digital vernier caliper (measurement accuracy: 0.01 mm) produced by
Quzhou Gangtuo Tools Co., Ltd. (Quzhou, China), was used to measure and record the
true maximum diameter of the fruit on the spindle-shaped apple tree in the modern orchard
located at the Baishui Apple Test Station of Northwest A&F University. The measurement
process is shown in Figure 2. Among them, multiple measurements of the maximum
equatorial circle diameter were taken for each fruit, and the measured maximum cross-
sectional diameter data were recorded as the maximum cross-sectional diameter value of
the apple.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 4 of 26 
 

 

  

Figure 1. Spindle-shaped apple trees in a modern orchard. 

The LF01 digital vernier caliper (measurement accuracy: 0.01 mm) produced by 
Quzhou Gangtuo Tools Co., Ltd. (Quzhou, China), was used to measure and record the 
true maximum diameter of the fruit on the spindle-shaped apple tree in the modern or-
chard located at the Baishui Apple Test Station of Northwest A&F University. The meas-
urement process is shown in Figure 2. Among them, multiple measurements of the maxi-
mum equatorial circle diameter were taken for each fruit, and the measured maximum 
cross-sectional diameter data were recorded as the maximum cross-sectional diameter 
value of the apple. 

  
Figure 2. Measuring the maximum diameter of the apple. 

2.2. Measurement Results and Statistical Analysis of Maximum Diameter of Apples 
Based on the maximum diameter value of Red Fuji apples measured using a vernier 

caliper in the previous section, we drew a distribution chart of the data, as shown in Figure 
3. As shown in the figure below, the distribution range of the maximum diameter of apples 
was 50–100 mm, with the concentrated distribution range of the maximum diameter of 
fruits being 70–100 mm. 

Figure 2. Measuring the maximum diameter of the apple.

2.2. Measurement Results and Statistical Analysis of Maximum Diameter of Apples

Based on the maximum diameter value of Red Fuji apples measured using a vernier
caliper in the previous section, we drew a distribution chart of the data, as shown in
Figure 3. As shown in the figure below, the distribution range of the maximum diameter of
apples was 50–100 mm, with the concentrated distribution range of the maximum diameter
of fruits being 70–100 mm.
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Figure 3. Maximum diameter distribution of fruit on apple trees in a modern orchard.

3. Calculation of Apple Depth Information and Two-Dimensional Image Size
3.1. Apple Depth Information Acquisition Based on RGB-D Camera

The Intel Realsense D435 camera (Intel Corporation, Santa Clara, CA, USA) imaging
belongs to structured light-based 3D vision, and its depth measurement is based on the
principle of optical triangulation, similar to laser detection. The difference is that the
projection light (structured light) used in structured light 3D vision technology is an en-
coded light source, and the near-infrared signal emitter projects light with certain structural
characteristics onto the surface of the object to be tested. The near-infrared images are
received by the left and right near-infrared cameras, which can achieve real-time acqui-
sition of depth images of the entire visual range scene and thus obtain information such
as brightness, distance mapping, and 3D coordinates of the target object within the visual
range. The module composition of the D435 camera and the assembly of the camera on the
apple-picking robot are shown in Figure 4, and the schematic diagram of the structured
light 3D vision principle is shown in Figure 5.
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Figure 5. Schematic diagram of structured light 3D vision principle.

In the modern standard apple orchard of the Baishui Apple Experimental Station at
Northwest A&F University, an apple two-dimensional image and depth data acquisition
experimental platform was built. The main equipment includes a laptop (Lenovo Legion
Y7000P, Intel (R) Core (TM) i7-9750H CPU, 2.6 GHz, 16 GB internal storage), Intel Realsense
D435 depth camera, digital vernier caliper, etc. For different apple trees, fruit images and
depth data were collected at different distances from the apple trees. The experimental
scenario is shown in Figure 6.
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Figure 6. Acquisition of two-dimensional image and depth information of apples.

Before capturing the image and recording data, we measured the light intensity of
the environment at that time utilizing the digital luminometer (Model: TES-1332A), and
the light intensities of high light and low light environments were 1.119 × 105 lux and
1.85 × 104 lux, respectively.

The acquisition of an apple’s depth information is mainly based on the Intel Realsense
D435 depth camera. Due to the inconsistency in size between the near-infrared images
captured by the depth camera and the RGB color images, the first step is to match and align
the RGB images captured by D435 with the near-infrared images. This was implemented
using the Python (version 3.8) programming language, and the main steps are as follows:

(1) Configure the pipeline for streaming transmission to obtain the depth scale of the
depth sensor.
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(2) Create alignment objects and set the flow type for aligning depth frames, then perform
the alignment operation between depth frames and color frames.

(3) Obtain the internal parameters of the aligned frames and color frames, and after
verifying that the two frames are valid, obtain the aligned and matched color image
frames and depth image frames.

After matching and aligning the RGB images obtained by the depth camera with the
near-infrared images, RGB and depth pseudo-color images of the fruit were collected at
different positions from the apple tree. At the same time, the depth information of all pixels
in the image was automatically extracted and stored in an Excel (version 2016) spreadsheet.
The collected RGB color images of apples and their corresponding depth pseudo-color
images are shown in Figure 7a and Figure 7b, respectively (The symbol in the lower right
corner of Figure 7 is the symbol of the input method software when taking a screenshot of
the computer).
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The pseudocode that computes the depth information is shown as follows:
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//Initialize depth camera
initialize_depth_camera()
//Configure camera parameters such as resolution, frame rate, etc.
set_camera_configuration(
stream_type: DEPTH,
resolution_width: 640,
resolution_height: 480,
frame_rate: 30
)
//Activate camera capture
start_camera_capture()
//Define a function to obtain depth information of a certain location
function get_depth_at_position(x, y):
//Waiting for the camera to capture the next frame
frame = wait_for_next_frame()
//Check if the frame has been successfully obtained
if frame is null:
raise_error(“Failed to retrieve frame”)
//Extract depth data from frames
depth_data = extract_depth_data(frame)
//Check if the depth data is valid
if depth_data is invalid:
raise_error(“Invalid depth data”)
//Get the depth value of the specified location
depth_value = depth_data[y][x]
//Convert depth values from one unit to another as needed
depth_value_in_meters = depth_value/1000
return depth_value_in_meters
//Call a function to obtain depth information for a specific location
try:
x_position = 320
y_position = 240
depth_at_specific_position = get_depth_at_position(x_position, y_position)
except error as e:
print(“Error retrieving depth information: “ + e)

LabelImg (Version 1.8.1) is a visual image calibration tool software. In this study, the
tool was used to read the collected apple images, and the cursor was manually moved
to the centroid position of the target apple. LabelImg can automatically display the two-
dimensional coordinate values of the pixel point in real time on the interface, as shown in
Figure 8. The non-English term in Figure 8 are belonged to the storage path of the image in
the computer.
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After reading the center coordinates of the two-dimensional image of the target apple,
the depth values at the corresponding coordinate points were obtained from the Excel file
that stored the depth data of all pixel points in the image. The depth value distribution of
all experimental apples was statistically analyzed as shown in Figure 9. It can be seen from
the figure that the depth value distribution range of the obtained apples was 40–240 cm,
with the main depth value distribution in the range of 80–200 cm.
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3.2. Calculation of Two-Dimensional Size of Apples in Images

The LabelImg tool was utilized to read the collected 2D RGB image of the apple,
and the software’s built-in manual annotation function was used to draw the minimum
bounding rectangle of the target apple. The software can automatically display the length
and width dimensions of the rectangle (as shown in Figure 10). The non-English term in
Figure 10 are belonged to the storage path of the image in the computer.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 9 of 26 
 

 

Figure 8. Obtaining the two-dimensional centroid position of an apple based on LabelImg soft-
ware. 

After reading the center coordinates of the two-dimensional image of the target ap-
ple, the depth values at the corresponding coordinate points were obtained from the Excel 
file that stored the depth data of all pixel points in the image. The depth value distribution 
of all experimental apples was statistically analyzed as shown in Figure 9. It can be seen 
from the figure that the depth value distribution range of the obtained apples was 40–240 
cm, with the main depth value distribution in the range of 80–200 cm. 

 
Figure 9. Depth distribution of apples. 

3.2. Calculation of Two-Dimensional Size of Apples in Images 
The LabelImg tool was utilized to read the collected 2D RGB image of the apple, and 

the software’s built-in manual annotation function was used to draw the minimum 
bounding rectangle of the target apple. The software can automatically display the length 
and width dimensions of the rectangle (as shown in Figure 10). 

 
Figure 10. Obtaining the size of the circumscribed rectangle of an apple based on LabelImg software. Figure 10. Obtaining the size of the circumscribed rectangle of an apple based on LabelImg software.

Due to the close positive correlation between the diagonal length of the bounding
rectangle of an apple image and its length and width dimensions, the diagonal length of
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the bounding rectangle of an apple image (in pixels) was used to characterize the two-
dimensional size of the fruit image. The diagonal length distribution of the bounding
rectangle of apples collected in the orchard experiment is shown in Figure 11. It can be seen
from the figure that the distribution range of the length of the bounding rectangle of apples
was 40–160 pixels (px).
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4. Construction of the Maximum Diameter Estimation Model for Apples
4.1. Multivariate Regression Analysis of the Estimation Model

Based on the Intel Realsense D435 RGB-D depth camera, this study explored the
relationship between fruit depth information, two-dimensional size information, and maxi-
mum diameter on apple trees. Furthermore, a fruit maximum diameter estimation model
for selective apple picking by picking robots was proposed. Through multiple regression
analysis and nonlinear surface fitting methods, the correlation between fruit depth, two-
dimensional size, and maximum diameter was analyzed, and a multiple regression model
containing the above parameter variables was established.

Binary quadratic polynomials can be used to fit three-dimensional surface models,
and the normalized mathematical expression is as follows:

z = c20x2 + c10x + c02y2 + c01y + c11xy + c00 (1)

In the formula, x, y, and z represent data obtained through actual measurement, and
c20, c10, c02, c01, c11, and c00 are the undetermined coefficients of the three-dimensional
surface model expression. The expression for the sum of squared errors of this surface
model is as follows:

Q(c20, c10, c02, c01, c11, c00) =
n

∑
i=1

[
zi −

(
c20xi

2 + c10xi + c02yi
2 + c01yi + c11xiyi + c00

)]2

(2)

In the equation, (xi, yi, zi) represents the measured and sampled data, where i = 1, 2,
. . ., n.

The principle for solving the undetermined coefficient terms in the above binary
quadratic polynomial is to minimize the sum of squared errors of the three-dimensional
surface model. According to the knowledge of calculus, this problem is transformed into
solving the extremum of a six variable function Q(c20, c10, c02, c01, c11, c00), and solving the
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following equations (Equation (3)) simultaneously can obtain the values of the coefficients
of each undetermined term of the fitted three-dimensional surface model.

∂Q
∂c20

= 0 ∂Q
∂c02

= 0 ∂Q
∂c11

= 0
∂Q
∂c10

= 0 ∂Q
∂c01

= 0 ∂Q
∂c00

= 0
(3)

Based on the fitting theory of the three-dimensional surface model mentioned above,
non-linear surface fitting was used to analyze the correlation between the dependent
variable (maximum diameter of the apple) and the independent variables (fruit depth
information, two-dimensional size information). The dependent variables of the maxi-
mum diameter estimation model for apples were fitted to the general form of a quadratic
polynomial model, and the equation was expressed as follows:

z = ax2 + bx + cy2 + dy + exy + f (4)

In the formula, z is the estimated maximum diameter of the apple (dependent variable,
unit: mm), y is the depth information of the fruit (unit: cm), x is the minimum diagonal
length of the bounding rectangle of the apple (unit: pixel), f is the intercept, b and d are
linear coefficients, a and c are quadratic coefficients, and e is the interaction coefficient.

4.2. Nonlinear Surface Fitting

The three-dimensional spatial distribution map of the maximum diameter, diagonal
length of the bounding rectangle, and depth parameters of Red Fuji apples collected
from the standard orchard at the Baishui Apple Experimental Station of Northwest A&F
University for constructing the maximum diameter estimation model is shown in Figure 12.
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Origin is a scientific drawing and data analysis software developed by OriginLab
corporation that runs on the Microsoft Windows operating system. Origin supports the
drawing of various 2D/3D graphics, including powerful data analysis functions such as
statistics, signal processing, curve fitting, and peak analysis. This study conducted multiple
regression nonlinear surface fitting analysis on the measured maximum diameter, fruit
depth information, and minimum external rectangle diagonal length parameter data of
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apples using Origin (version 2021) software. The nonlinear surface fitting function setting
interface in Origin software is shown in Figure 13. The non-English term and symbol * in
the software interface in Figure 13 are prompts for parameter settings, function selection,
and other operation buttons for the non-linear surface fitting function.
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The least squares method is a widely used nonlinear surface fitting algorithm in prac-
tical applications that determines the optimal fitting surface by minimizing the sum of
squared distances between data points and the fitting surface. In this study, the fitting of the
estimation model was performed using the Levenberg–Marquardt algorithm (LMA) and
nonlinear least squares method for nonlinear 3D surface fitting. The multiple regression
based on the Origin2021 execution estimation model resulted in a final fitting state of
‘successful’. The coefficient of determination (R2) reflects the proportion of the total varia-
tion of the dependent variable that can be explained by the independent variable through
the regression relationship. The higher the value, the better the model. The key fitting
parameter results of the constructed maximum transverse diameter estimation model for
apples are shown in Table 1. It can be seen that R2 was 0.80889, indicating that the model
had good fitting correlation, and the correlation between variables was high. The model
fitting result was good.

Table 1. Fitting results of the estimate model.

Estimating Model Fitting
Parameters/Indicators Parameter Values

Equation z = ax2 + bx + cy2 + dy + exy + f
Reduced Chi-Sqr 13.49046

R2 (COD) 0.80889
Adjusted R2 0.80421

Freedom 204
Fitting state Success (100)

The evaluation analysis of the coefficient terms of the multiple regression equation for
the maximum diameter estimation model of fruits obtained by nonlinear surface fitting is
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shown in Table 2. As shown in the table below, the correlation between the coefficients of
the estimated model was above 95%, indicating a good fitting effect of the model.

Table 2. Evaluation and analysis of coefficient terms of the multiple regression equation.

Estimate
Model

Coefficients

Parameter
Values

Standard
Deviation t Value Probability >

|t| Correlation

a −0.00372 0.00184 −2.02229 0.04445 0.99975
b 1.22207 0.67377 1.8138 0.07118 0.99998
c −0.00112 9.95579 × 10−4 −1.12579 0.26158 0.99986
d 0.62816 0.49219 1.27627 0.20331 0.99999
e 0.00241 0.00273 0.88122 0.37924 0.99993
f −82.58015 61.00251 −1.35372 0.17732 0.99998

The results of the multiple regression analysis of variance for the estimation model are
shown in Table 3 below:

Table 3. Variance analysis of multiple regression of the estimate model.

Analysis
Indicators DF Sum of

Squares Mean Square F Value Probability > F

Regression 5 11,648.65712 2329.73142 172.69474 2.82079 × 10−71

Residual 204 2752.05373 13.49046 - -
Uncorrected

overall 210 1,448,389.83 - - -

Corrected
overall 209 14,400.71085 - - -

The expression of the maximum diameter estimation model for apples based on
multiple regression and nonlinear surface fitting is as follows:

z = −0.00372x2 + 1.22207x − 0.00112y2 + 0.62816x + 0.00241xy − 82.58015 (5)

Among them, z is the estimated maximum diameter of the apple, y is the depth of the
fruit, and x is the minimum diagonal length of the bounding rectangle of the apple.

Based on the actual maximum diameter, depth, and diagonal length of the bounding
rectangle of modern orchard apples, the nonlinear surface fitting results of the apple
maximum diameter estimation model is shown in the 3D figure below (Figure 14). Among
them, the red small spheres represent each apple data point, and it can be clearly seen
that the fitting surface covered the red small sphere data points well, indicating a good
fitting effect.

On the other hand, the Intel Realsense D435 depth camera was utilized to collect
apple image data in the study. The D435 camera is equipped with the OV2740 RGB sensor,
which has a pixel size (the actual size represented by a single pixel in the length and width
directions) of 1.4 µm × 1.4 µm. Due to the small differences in the size of individual pixels
among different depth cameras, the maximum diameter estimation model for fruits needs
to be applied to other depth cameras by multiplying the diagonal length of the minimum
bounding rectangle of the obtained apple by a scaling factor k and then substituting it into
the expression of the estimation model. Based on the pixel size of the D435 camera, the
mathematical expression for the scaling factor k is shown in Equation (6), where k0 is the
pixel size of the camera used, measured in micrometers (µm).

k =
k0

1.4
(6)
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Correspondingly, the expression of the maximum diameter estimation model for
apples is shown in Equation (7) below:

z = −0.00372(kx)2 + 1.22207kx − 0.00112y2 + 0.62816kx + 0.00241kxy − 82.58015 (7)

5. Estimation Experiment and Result Analysis of Maximum Diameter of Apples
5.1. Estimation and Verification of the Maximum Diameter of Imitation Apples

Obtaining the maximum diameter parameter of imitation apples: Measurement of
the maximum diameter parameter of imitation apples was conducted in the laboratory at
the fully mechanized apple research base of the Ministry of Agriculture and Rural Affairs.
The LF01 digital vernier caliper (measurement accuracy: 0.01 mm) produced by Quzhou
Gangtuo Tools Co., Ltd., was utilized to measure the maximum equatorial circle diameter
of each imitation fruit multiple times. We recorded the maximum cross-sectional diameter
data obtained as the maximum cross-sectional diameter value of the imitation apple. The
measurement operation is shown in Figure 15.
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The measurement results and data distribution statistics of the maximum diameter of
imitation apples are shown in Figure 16. It can be seen from the figure that the distribution
range of the maximum diameter of imitation apples was 30–105 mm.
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Figure 16. The maximum diameter distribution of imitation apples.

Imitation apples of different sizes in random positions were hung on the apple fruit
hanging device in order to simulate the growth posture of real apples on fruit trees more
realistically. We placed the fruit hanging device at different distances and positions within
the field of view of the RealSense D435 camera to collect RGB and depth images of apples
in order to obtain information on apples of different sizes at different distances from the
camera, making the collected data more comprehensive and better verifying the maximum
diameter estimation model obtained. The scenario diagram of the imitation apple validation
test for the maximum diameter estimation model of apples conducted in the laboratory is
shown in Figure 17.
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Figure 17. Validation test situations for maximum diameter estimation of imitation apples in
the laboratory.

Imitation apples of different sizes in the validation set were placed at different depths,
positions, and directions facing the camera plane. Based on the D435 camera to capture
RGB images of apples and combined with the image data captured by the near-infrared
camera, the corresponding depth information of apples was obtained and stored. An
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example of using the D435 camera to capture RGB images of apples and pseudo-color
images containing depth information is shown in Figure 18.
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Figure 18. Obtaining the RGB image and corresponding pseudo-color image containing depth in-
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dation set was 50–300 cm. 

 

Figure 18. Obtaining the RGB image (a) and corresponding pseudo-color image (b) containing depth
information of apples based on the D435 camera.

The imitation apple depth information collected through the above operation was
statistically analyzed, and the distribution of depth values is shown in Figure 19. From
the figure, it can be seen that the depth distribution range of the imitation apples in the
validation set was 50–300 cm.
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Based on LabelImg software, we manually selected and obtained the length and width
information of the bounding rectangle of each corresponding apple in the two-dimensional
image (as shown in Figure 20), and then we calculated the diagonal length of the rectangle
based on the Pythagorean theorem. The non-English term in Figure 20 are belonged to the
storage path of the image in the computer.
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The diagonal length distribution of the external rectangle in the imitation apple image
is shown in Figure 21. From the figure, it can be seen that the diagonal length distribution
range of the external rectangular box was 0–200 pixels.
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Verification results and analysis of the estimation model for imitation apples: Based
on the constructed apple maximum diameter estimation model that integrates fruit depth
information, the accuracy of the model was evaluated using experimental verification
methods. The maximum diameter estimation results of 60 validation sets of imitation
apples were compared with their actual measured values, as shown in Figure 22. It can be
seen that there was a high degree of agreement between the two, which proves that the
obtained maximum diameter estimation model is relatively accurate.
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Root mean squared error (RMSE) is an evaluation metric used to measure the deviation
between predicted and actual data values. The smaller the RMSE value, the more accurate
the predicted results are. To measure the difference between the predicted value and the
actual measurement value of the maximum diameter of the validation set apple using the
fruit maximum diameter estimation model, the maximum diameter estimation relative
error (REEMax_Diameter), average estimation relative error (MREEMax_Diameter), and
root mean square error (RMSE) indicators are defined, which include variables such as
the maximum diameter estimation value (EMax_Diameter), the maximum diameter actual
value (TMax_Diameter), and the number of apples (Numapple). The calculation formulas are
defined as follows:

REEMax_Diameter =
EMax_Diameter− TMax_Diameter

TMax_Diameter
× 100% (8)

MREEMax_Diameter = ±∑|EMax_Diameter− TMax_Diameter|
∑ TMax_Diameter

× 100% (9)

RMSE =

√
∑(EMax_Diameter− TMax_Diameter)

2

Numapple
(10)

The relative error distribution of the maximum diameter estimation for all validation
sets of imitation apples is shown in Figure 23, with an average relative error of ±4.1% for
the maximum diameter estimation.

The linear correlation fitting results between the maximum diameter estimation model
of the imitation apple validation set and the actual measured values is shown in Figure 24,
where R2 was 0.98613 and root mean square error (RMSE) was 3.21 mm.
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5.2. Estimation and Verification of the Maximum Diameter of Fruits on Modern Apple
Orchard Trees

Image acquisition was conducted on fruit trees located in the modern apple orchard
at the Baishui Apple Experimental Station of Northwest A&F University. A total of
110 randomly selected fruits of Red Fuji apple trees under spindle-shaped cultivation mode
were selected as the orchard apple validation set for the maximum diameter estimation
model of apples.

The LF01 digital vernier caliper (measurement accuracy: 0.01 mm) was utilized to
accurately measure and record the true maximum transverse diameter parameter value of
the fruit on the apple tree. Based on the D435 depth camera installed on the apple-picking
robot, two-dimensional RGB images of fruits were obtained at different distances from
apple trees for different apple trees. Combined with the data collected by the near-infrared
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camera, the corresponding depth information of the apples was obtained and stored. The
experimental scene is shown in Figure 25.
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Figure 25. Verification situation of the test for estimating the maximum diameter of fruit on
apple trees.

The actual measurement results of the maximum diameter of the validation set fruits
on apple trees is shown in Figure 26. According to the analysis of the figure, the true
maximum diameter distribution range of apples was 50–110 mm, with a concentrated
distribution range of 70–110 mm.
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Figure 26. The maximum diameter distribution of fruit of the validation set on apple trees.

Based on LabelImg software and the collected RGB images, the length and width
information of the bounding rectangle box of each corresponding validation set fruit
two-dimensional image on apple trees was obtained. Then, based on the Pythagorean
theorem, the diagonal length of the apple bounding rectangle box was calculated. The
length calculation result is shown in Figure 27. As shown in the figure, the diagonal length
of the fruit was mainly distributed between 40 and 140 pixels.
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After obtaining the center position coordinates of the two-dimensional images of the
validation set of apples on the fruit trees, the depth values corresponding to the centroid
position of the fruit were extracted from the image data containing depth information
collected by the D435 camera. The distribution statistics of the depth values of the validation
set of apples in the orchard are shown in Figure 28. It can be seen from the following figure
that the distribution range of the obtained apple depth values was 80–240 cm.
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Based on the constructed model for estimating the maximum diameter of apples, its
accuracy was evaluated through experimental verification. The comparison between the
estimated maximum diameter of 110 validation set fruits on Red Fuji apple trees using the
constructed model and their actual measurement values is shown in Figure 29.
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Figure 29. Validation results of the maximum diameter estimation model of apples.

Further analysis and evaluation were conducted on the validation results of the
maximum diameter estimation model for fruit estimation on apple trees. The relative error
of the maximum diameter estimation for all obtained validation set fruits on fruit trees
was calculated, and its distribution statistics are shown in Figure 30. It can be seen that
the relative estimation error of the model for the vast majority of apples was within ±10%,
with an average maximum diameter estimation relative error of ±3.77%.
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Figure 30. Error distribution of the estimated value of the maximum diameter of validation set apples.

The linear correlation between the estimated value and the true value of the maximum
transverse diameter estimation model for the validation set fruits on apple trees is shown
in Figure 31. Among them, R2 was 0.84, root mean square error (RMSE) was 3.95 mm,
indicating a good fitting degree, and overall indicating that the constructed model for
estimating the maximum transverse diameter of apples based on RGB-D camera fusion
depth information is relatively accurate, satisfying the requirements of selective grading
and picking of fruits on apple trees by harvesting robots.
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Figure 31. The linear correlation fitting results between the estimated value and true value of the
maximum diameter of validation set apples in the modern orchard.

The process of estimating the maximum diameter of fruits on apple trees mainly
includes the following steps: Obtaining apple images based on a depth camera, detecting
the length and width of the bounding rectangle of the apple, calculating the diagonal
length of the rectangle, obtaining the depth value of the center position of the rectangle
based on the depth camera, inputting the diagonal length and depth value into the fruit
maximum diameter calculation model, and obtaining the maximum diameter of the fruit.
The flowchart, which shows the overall methodological approach, is shown as follows in
Figure 32:
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Based on the proposed maximum lateral diameter estimation model for apples, it is
embedded into the YOLOv5 apple target recognition and localization algorithm to achieve
real-time estimation of the maximum lateral diameter while detecting and locating apple
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targets. The real-time estimation effect of the picking robot on the maximum transverse
diameter of the apple target is shown in the following Figure 33 (the maximum transverse
diameter estimation value of the corresponding fruit is displayed above the detection box).
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6. Conclusions

In response to the inability of existing algorithms for estimating the external dimen-
sions of apples to provide theoretical and algorithmic support for robots to selectively pick
and grade apples based on their size, a method for estimating the diameter of apples on
fruit trees for the actual working scenario of picking robots in orchards was proposed in
this study, in order to support in the integration of “intelligent picking and grading” of
apple targets on fruit trees.

The maximum transverse diameter parameter of Red Fuji apples was collected from
the fruits of modern apple orchards, and the results were statistically analyzed. The depth
information of apples on fruit trees and the diagonal length parameter of the bounding
rectangle of the fruit were obtained based on the D435 depth camera and LabelImg soft-
ware. Based on Origin software, multiple regression analysis and nonlinear surface fitting
methods were used to explore the relationship between fruit depth, diagonal length of
the bounding rectangle, and maximum transverse diameter. A model for estimating the
maximum transverse diameter of apples based on multiple regression and nonlinear sur-
face fitting was constructed. Finally, maximum diameter estimation experiments were
conducted to verify and evaluate the constructed model for imitation apples and fruits on
the Red Fuji fruit tree in modern apple orchards at the Apple Full Mechanization Research
Base and the Baishui Apple Test Station of Northwest A&F University. The experimental
results show that the average maximum relative error of the constructed model in the
laboratory imitation apple validation set was ±4.1%, the correlation coefficient (R2) of the
estimated model was 0.98613, and the root mean square error (RMSE) was 3.21 mm. The
average maximum diameter estimation relative error on the modern orchard Red Fuji fruit
validation set in the apple testing station was ±3.77%, the correlation coefficient (R2) of
the estimation model was 0.84, and the root mean square error (RMSE) was 3.95 mm. The
proposed model can provide a theoretical algorithm basis and technical support for the
selective apple-picking work of intelligent robots based on apple size grading.

7. Discussion and Future Work

According to the actual test results of the proposed fruit maximum diameter estimation
model in apple orchards, it can be seen that the accuracy of the model can basically meet
the requirements of fruit selective grading and picking for apple-picking robots based on
the maximum diameter of the fruit. However, the estimation error of fruit diameter in
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the experimental results shows that there is still significant room for improvement in the
accuracy of the model. Therefore, further work needs to collect more apple data of different
fruit diameter sizes, expand the dataset used for estimating model modeling, and obtain a
more accurate estimation model. On the other hand, the apple variety targeted in this study
is the widely planted Red Fuji apple, so the effectiveness of the proposed fruit diameter
estimation model in estimating the maximum diameter of other apple varieties is unknown.
The excellent universality of the estimation model is necessary for the future development
of smart agriculture. Therefore, in later research work, it is necessary to include data from
multiple commonly planted apple varieties in the original dataset for modeling a universal
estimation model of the maximum diameter of various apple fruits.

In addition, the night picking operation of apple-picking robots is also a development
direction for smart agriculture and precision agriculture. Therefore, in later research, it
is necessary to collect depth image data of apples at night and then conduct estimation
experiments on the maximum diameter of apple fruits at night to verify and optimize
the maximum diameter estimation model of apples, ultimately achieving the day/night
selective picking operation of apple-picking robots.

Author Contributions: All authors contributed to this manuscript. B.Y. contributed to the develop-
ment of the algorithm, obtaining data, programming, and writing. B.Y. also performed the experi-
ments, analyzed the results, and contributed to funding acquisition. X.L. contributed to the original
draft preparation. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of
China (NSFC) (Grant No. 62406244), the National Natural Science Foundation of China (NSFC)
(Grant No. 62473311), and the Doctoral Research Project of Xi’an University of Technology (Grant
No. 103-451123011).

Data Availability Statement: The original contributions presented in the study are included in the
article, and further inquiries can be directed to the corresponding author.

Acknowledgments: We sincerely thank the editors and reviewers for their detailed comments and
efforts toward improving our study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yan, B.; Fan, P.; Wang, M.; Shi, S.; Lei, X.; Yang, F. Real-time apple picking pattern recognition for picking robot based on improved

YOLOv5m. Trans. CSAM 2022, 53, 28–38+59. [CrossRef]
2. Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved

YOLOv5. Remote Sens. 2021, 13, 1619. [CrossRef]
3. Gao, F.; Fu, L.; Zhang, X.; Majeed, Y.; Li, R.; Karkee, M.; Zhang, Q. Multi-class fruit-on-plant detection for apple in SNAP system

using Faster R-CNN. Comput. Electron. Agric. 2020, 176, 105634. [CrossRef]
4. Kang, H.; Zhou, H.; Chen, C. Visual Perception and Modeling for Autonomous Apple Harvesting. IEEE Access 2020, 8, 62151–

62163. [CrossRef]
5. Yang, F.; Lei, X.; Liu, Z.; Fan, P.; Yan, B. Fast Recognition Method for Multiple Apple Targets in Dense Scenes Based on CenterNet.

Trans. CSAM 2022, 53, 265–273. [CrossRef]
6. Ma, H.; Li, Y.; Zhang, X.; Li, Y.; Li, Z.; Zhang, R.; Zhao, Q.; Hao, R. Target Detection for Coloring and Ripening Potted Dwarf

Apple Fruits Based on Improved YOLOv7-RSES. Appl. Sci. 2024, 14, 4523. [CrossRef]
7. Liu, J.; Zhao, G.; Liu, S.; Liu, Y.; Yang, H.; Sun, J.; Yan, Y.; Fan, G.; Wang, J.; Zhang, H. New Progress in Intelligent Picking: Online

Detection of Apple Maturity and Fruit Diameter Based on Machine Vision. Agronomy 2024, 14, 721. [CrossRef]
8. Sekharamantry, P.K.; Melgani, F.; Malacarne, J.; Ricci, R.; de Almeida Silva, R.; Marcato Junior, J. A Seamless Deep Learning

Approach for Apple Detection, Depth Estimation, and Tracking Using YOLO Models Enhanced by Multi-Head Attention
Mechanism. Computers 2024, 13, 83. [CrossRef]

9. Gao, F.; Wu, Z.; Suo, R.; Zhou, Z.; Li, R.; Fu, L.; Zhang, Z. Apple detection and counting using real-time video based on deep
learning and object tracking. Trans. CSAE 2021, 37, 217–224. [CrossRef]

10. Zhang, Z.; Jia, W.; Shao, W.; Hou, S.; Ze, J.; Zheng, Y. Green Apple Detection Based on Optimized FCOS in Orchards. Spectrosc.
Spectr. Anal. 2022, 42, 647–653. [CrossRef]

11. Sun, J.; Qian, L.; Zhu, W.; Zhou, X.; Dai, C.; Wu, X. Apple detection in complex orchard environment based on improved
RetinaNet. Trans. CSAE 2022, 38, 314–322. [CrossRef]

https://doi.org/10.6041/j.issn.1000-1298.2022.09.003
https://doi.org/10.3390/rs13091619
https://doi.org/10.1016/j.compag.2020.105634
https://doi.org/10.1109/ACCESS.2020.2984556
https://doi.org/10.6041/j.issn.1000-1298.2022.02.028
https://doi.org/10.3390/app14114523
https://doi.org/10.3390/agronomy14040721
https://doi.org/10.3390/computers13030083
https://doi.org/10.11975/j.issn.1002-6819.2021.21.025
https://doi.org/10.3964/j.issn.1000-0593(2022)02-0647-07
https://doi.org/10.11975/j.issn.1002-6819.2022.15.034


Fractal Fract. 2024, 8, 649 26 of 26

12. Wang, Z.; Wang, J.; Wang, X.; Shi, J.; Bai, X.; Zhao, Y. Lightweight Real-time Apple Detection Method Based on Improved YOLO
v4. Trans. CSAM 2022, 53, 294–302.

13. Hu, G.; Zhou, J.; Chen, C.; Li, C.; Sun, L.; Chen, Y.; Zhang, S.; Chen, J. Fusion of the lightweight network and visual attention
mechanism to detect apples in orchard environment. Trans. CSAE 2022, 38, 131–142. [CrossRef]

14. Ye, R.; Gao, Q.; Qian, Y.; Sun, J.; Li, T. Improved YOLOv8 and SAHI Model for the Collaborative Detection of Small Targets at the
Micro Scale: A Case Study of Pest Detection in Tea. Agronomy 2024, 14, 1034. [CrossRef]

15. Yang, S.; Yao, J.; Teng, G. Corn Leaf Spot Disease Recognition Based on Improved YOLOv8. Agriculture 2024, 14, 666. [CrossRef]
16. Yan, B.; Li, X.; Yan, W. Deep Learning-Based Biomimetic Identification Method for Mask Wearing Standardization. Biomimetics

2024, 9, 563. [CrossRef]
17. Yan, B.; Quan, J.; Yan, W. Three-Dimensional Obstacle Avoidance Harvesting Path Planning Method for Apple-Harvesting Robot

Based on Improved Ant Colony Algorithm. Agriculture 2024, 14, 1336. [CrossRef]
18. Yan, B.; Liu, Y.; Yan, W. A Novel Fusion Perception Algorithm of Tree Branch/Trunk and Apple for Harvesting Robot Based on

Improved YOLOv8s. Agronomy 2024, 14, 1895. [CrossRef]
19. Kang, H.; Chen, C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Comput. Electron. Agric.

2020, 171, 105302. [CrossRef]
20. Fu, L.; Majeed, Y.; Zhang, X.; Karkee, M.; Zhang, Q. Faster R-CNN-based apple detection in dense-foliage fruiting-wall trees

using RGB and depth features for robotic harvesting. Biosyst. Eng. 2020, 197, 245–256. [CrossRef]
21. Long, Y.; Li, N.; Gao, Y.; He, M.; Song, H. Apple fruit detection under natural condition using improved FCOS network. Trans.

CSAE 2021, 37, 307–313. [CrossRef]
22. Song, H.; Jiang, M.; Wang, Y.; Song, L. Efficient detection method for young apples based on the fusion of convolutional neural

network and visual attention mechanism. Trans. CSAE 2021, 37, 297–303. [CrossRef]
23. Song, H.; Ma, B.; Shang, Y.; Wen, Y.; Zhang, S. Detection of Young Apple Fruits Based on YOLO v7-ECA Model. Trans. CSAM

2023, 54, 233–242. [CrossRef]
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