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1. Introduction

The vast array of applications in pure and applied mathematics, including in physics,
fluid mechanics, electrodynamics, nonlinear biological systems, and other scientific and
engineering domains, has drawn the interest of numerous researchers in fractional differen-
tial (FD) and integral equations (IEs) in recent years. Many different numerical methods
have been proposed for solving FD and IEs in recent years. In [1], Hamdan et al. used Haar
Wavelet for solving Volterra FIE. In [2], Pu and Fasondini presented Jacobi polynomials to
obtain the solution of NFrIE. Bekkouche et al. in [3] introduced the solution to the fractional
boundary value problem by using the trapezoidal rule. In [4], Mahdy et al. applied least
squares and shifted Legendre methods for solving NFrIE. Alsulaiman et al. [5] used the
Bernoulli matrix approach to solve NrIE. In [6], Alharbi et al. used the Haar Wavelet tech-
nique to solve FDEs. Mohamed et al., in [7], presented Chebyshev polynomials of the sixth
kind for solving fractional mixed nonlinear partial integro-differential problems. Lagrange
interpolation was utilized by Zabidiet al. in [8] to solve FDEs. In [9], Yi et al. developed a
time-stepping algorithm for solving FDEs. Also, NFrDEs and their applications have been
considered in many articles; for example, in [10], Jassim and Hussein presented the Hussein
method for solving NFrDEs. In [11], Mohamed et al., the Elzaki transform method and the
Homotopy perturbation method were used for solving NFrDEs. Rashid et al. [12], studied
the solution of NFrDEs via fixed point theory. Lydia et al. [13] used the Kharrat–Toma
iterative method to obtain the solution of NFrDEs. In [14], Yu presented Jumarie-modified
Riemann–Liouville fractional calculus for solving NFrDEs.

Fractal Fract. 2024, 8, 663. https://doi.org/10.3390/fractalfract8110663 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8110663
https://doi.org/10.3390/fractalfract8110663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-2672-6526
https://orcid.org/0000-0003-2218-5408
https://orcid.org/0000-0002-3312-6510
https://orcid.org/0000-0002-4625-8790
https://doi.org/10.3390/fractalfract8110663
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8110663?type=check_update&version=1


Fractal Fract. 2024, 8, 663 2 of 21

In the present paper, GPM is applied to solve NFrIE, where GPM converts the problem
to a system of algebraic equations that can be solved using numerical techniques. Finally,
to demonstrate the applicability and validity of the method, we examine some numerical
examples. The GPM is not based on orthogonal functions but belongs to a larger family class
of polynomials: the Appell polynomial family. The advantage of GPM is its simplicity, and
this method often leads to linear systems, which can be solved using numerical techniques,
thus reducing computational costs and improving efficiency. However, the choice of
collocation points plays an important role in obtaining accurate results. There are many
applications of GPM; for example, in [15], GPM was applied for solving fractional partial
integro-differential equations. In [16], GPM was used for solving fractional weakly singular
IE. In [17], GPM was introduced to obtain the solution of FIDE. GPM was applied to find the
solution of nonlinear Volterra integral equations with weakly singular kernels in [18]. Using
the GPM matrix approach, Volterra IEs were solved in [19]. Heydari and Zhagharian [20]
used GPM to obtain the solution of fractional Fornberg–Whitham equations. Loh et al. [21]
presented the solution of Fredholm–Volterra fractional integro-differential equations via
GPM. In [22], Seghiri et al. used GPM to obtain the solution of high-order Fredholm
integro-differential equations. In [23], Mustapha used GPM for solving integro-differential
equations. In [24], Isah and Phang applied GPM to obtain the solution of NFrDEs.

In this paper’s remaining sections are the following. In Section 2, we present some
preliminaries and basic information about Riemann –Liouville fractional integrals and
Caputo fractional derivatives. In Section 3, applications and special cases of NFrDE are
discussed. The existence and uniqueness of the solutions are discussed in Section 4. In
Section 5, we studied the stability of error. In Section 6, the Genocchi polynomial method is
applied for solving NFrDEs of the second kind. To explain the method in all instances of
the error estimated using Maple 18, Section 7 offers a few numerical examples. Finally, a
Discussion of the results is presented in Section 8.

In the Hilbert space L2(0, a], consider the second type of NFrDE:

dα

dtα
[Tφ(t)− µφ(t)]− M(t)γ(t, φ(t)) = f (t), (Tφ(0) = µφ(0)), (0 < α < 1, t ∈ (0, a]). (1)

Here, T : H → H is a linear self-adjoint operator in the Hilbert space, φ : R+ → H is
an unknown function, γ(t, φ(t)) is a known function; µ is a constant, may be complex, and
has many physical meanings, and M, f : R+ → H are given functions.

In this article, the convergence and the uniqueness of the solution of Equation (1) will
be proved under certain relations. One can deduce several special situations and reach
novel outcomes. Error estimate computation is carried out while also taking error stability
into account.

The reader is referred to [25] and [26] for the existence of theorems about the FrDE. For
reader reference, we direct them to [27] and [28] for descriptions of FI and its derivatives
with fundamental characteristics.

2. Preliminaries and Basic Information

The following definitions and characteristics are provided for the reader’s convenience.

Definition 1. The Riemann–Liouville (RL) of order α > 0 of a function h : (0, ∞) → R is
presented by

Iα
0+h(t) =

1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds. (2)

under the condition that the R.H.S. is point-wise established on (0, ∞).

Definition 2. The Caputo fractional derivatives of order α > 0 of a function g : (0, ∞) → R provide

Dα
0+ g(t) =

1
Γ(n − α)

∫ t

0

g(n)(s)

(t − s)α−n+1 ds. (3)



Fractal Fract. 2024, 8, 663 3 of 21

For the NFrDE (1) after integrating and using RL (2), we have

Tφ(t)− µφ(t)− 1
Γ(α)

∫ t

0
(t − s)α−1M(s)γ(s, φ(s))ds = F(t), t ∈ (0, a], (4)

F(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds.

Formula (4) represents an NFrIE of the second kind.

Definition 3. We say that f ∈ Nα(R+, N), α > 0 if f : R+ −→ H is continuous on the half line
t ≥ 0, f (0) = 0 and

∥ f ∥α = sup
t>0

(t−α∥ f ∥H),

∥ f ∥L2(0,a) =

{∫ a

0
f 2(t)dt

} 1
2
.

Lemma 1 (Without proof [29]). In L2([0, a]) space, the self-adjoint compact operator Kϕ may be
expressed as follows; Kϕn = ρnϕn, n > 0, where the eigenvalues and eigenfunctions are denoted
by ρn and ϕn, respectively.

3. Applications and Special Cases

Many applications and special cases can be derived from Equation (1) and its corre-
sponding Equation (4).

First application: The following IE is taken into consideration as a significant applica-
tion in the Hilbert space L2(0, a].

∫ t

0
G(α, t, s)γ(s, φ(s))ds +

∫ a

0
k(t, z)φ(z)dz − µφ(t) = f (t), (5)

with
G(α, t, s) =

1
Γ(α)

(t − s)α−1M(s), 0 < z ≤ a, t ∈ (0, a].

The equation in Formula (5) is referred to as an IE of the second kind when µ =
constant ̸= 0, but it is termed the nonlinear Fredholm Volterra IE of the first kind when
µ = 0.

In the contact problem and creep theory, the IE (5) emerges in the nonlinear situation
γ(t, φ(t)) or the linear status where γ(t, φ(t)) = φ(t). Some elastic material bases are
related to the kernels G(t, s), k(t, z) of Fredholm integral terms and Volterra integral terms,
respectively. The deformation body’s elastic characteristics are described by the value µ.
The function f (t) describes this body. Further details about the physical interpretation of
Equation (5) and its applications, involving various techniques for solutions, are available
in [29].

Second application: The Boltzmann fractional equation

G(t)φ(t) +
∂α

∂tα

(∫ 1

0
k(t, z)φ(z)dz − µφ(t)

)
= 0, (6)

is derived at γ(t, φ(t)) = φ(t), f (t) = 0.
Many applications can be derived from Equation (6) in astrophysics, quantum me-

chanics, and laser theory.
If the operator T is differentiable, for example, then

[
d
dt

− µ

]
φ(t)− Iα

0+ M(t)γ(t, φ(t)) = f (t), (7)
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it represents an integro-differential equation of the first order and second kind.
Many special topics can be derived from the principal equation if the operator T

is differentiable.

4. Existence and Uniqueness Solution

We shall demonstrate in this section that, under specific circumstances, there exists a
unique solution to Equation (1).

The following presumptions are what we established for this goal:

(i) M(s) has a continuous function on R+ and fulfills

A(t) = sup
0≤s≤t

∥M(s)∥ < ∞, t ∈ (0, a].

(ii) Characterize σ(T) to represent the spectrum of the self-adjoint compact operator T
and ∥.∥t = sup0≤s≤t ∥.∥.

(iii) Suppose that the interval (0, a] contains a bounded function f (t).
(iv) The established function γ(t, φ(t)) fulfills
(iv-a)∥γ(t, φ(t))∥t ≤ F1∥φ(t)∥t;.
(iv-b)∥γ(t, φ1(t))− γ(t, φ2(t))∥t ≤ F2∥φ1(t)− φ2(t)∥t, where F1 and F2 are constants with

F > F1 and F > F2.

We investigated the existence of a unique solution for NFrIE (1), so we considered

Ψ(t) = (T − µI)φ(t), (8)

where I is a unit matrix.
Here, the resolvent, Rµ = (T − µI)−1, of T exists. Furthermore, the resolvent has

bounds for any µ ∈ T(t), and the norm is defined by

N(t) = sup
µ∈T(t)

∥Rµ∥. (9)

Theorem 1. The NFrIE (1) has a convergence and unique solution according to the status

FN(t)A(t)tα < Γ(α + 1), F > F2. (10)

Furthermore, the norm of the solution to (1) is provided as

∥φ(t)∥H ≤ Γ(α + 1)A(t)∥ f ∥t
[Γ(α + 1)− FN(t)A(t)tα]

.

Proof. First, to prove the convergence of Equation (1), assume that

dα

dtα
[T − µI]φ(t) = f (t) + M(t)γ(t, φ(t)),

and assume that

[T − µI]φ(t) =
1

Γ(α)

∫ t

0
(t − s)α−1M(s)γ(s, φ(s))ds +

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds.

Let
(T − µI)φ(t) = ζ(t). (11)

Hence, we can rewrite Equation (1) in the form
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ζ(t)− 1
Γ(α)

∫ t

0
(t − s)α−1M(s)γ

(
s, Rµζ(s)

)
ds = F(t), F(t) =

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds. (12)

Write Equation (12) in the integral operator form

ζn(t) =
1

Γ(α)

∫ t

0
(t − s)α−1M(s)γ

(
s, Rµζn−1(s)

)
ds + F(t), (13)

ζn−1(t) =
1

Γ(α)

∫ t

0
(t − s)α−1M(s)γ

(
s, Rµζn−2(s)

)
ds + F(t). (14)

Then,

ζn(t)− ζn−1(t) =
1

Γ(α)

∫ t

0
(t − s)α−1M(s)

{
γ
(
s, Rµζn−1(s)

)
− γ

(
s, Rµζn−2(s)

)}
ds.

Let

ψn = ζn(t)− ζn−1(t) =⇒ ζn(t) =
n

∑
i=0

ψi, ψ0 = ζ0(t) = F(t). (15)

Hence, we obtain

∥ψn∥ = ∥ 1
Γ(α)

∫ t

0
(t − s)α−1M(s)

{
γ
(
s, Rµζn−1(s)

)
− γ

(
s, Rµζn−2(s)

)}
ds∥ ≤ F2N(t)A(t)tα

αΓ(α)
∥ψn−1∥,

where N(t) is given by Equation (9).
Hence, we obtain

∥ψn∥ ≤ F2N(t)A(t)tα

αΓ(α)
∥ψn−1∥.

Applying the Picard technique, followed by the conditions (i)–(v-a), Formula (15) produces

∥ψn∥H ≤ (ρ)n∥F(t)∥, ρ =

(
F2N(t)A(t)tα

Γ(α + 1)

)
. (16)

This constraint causes the series {ψn} to converge under condition (9), allowing us
to write

∥ζ(t)∥H =
∞

∑
n=0

∥ψn(t)∥H ≤
∞

∑
n=0

∥F∥(ρ)n = ∥F∥(1 − ρ)−1, ρ < 1. (17)

The above inequality (17) is convergent under the condition (10). In addition, this
sequence represents the general solution as n → ∞. Hence, the convergence of the solution
is proved. □

Second, to prove the uniqueness of the solution, we can write Equation (12) in the
integral operator form

ζ(t) = Kζ(t) = Lζ(t) + F(t), (18)

where

Lζ(t) =
1

Γ(α)

∫ t

0
(t − s)α−1M(s)γ

(
s, Rµζ(s)

)
ds. (19)

Then, we must prove the following two lemmas.

Lemma 2. The integral operator Kζ(t), under the conditions (i)–(iv-a) maps the space H into itself.
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Proof. From (19), we can write

∥Lζ(t)∥ =
1

Γ(α)
∥
∫ t

0
(t − s)α−1M(s)γ

(
s, Rµζ(s)

)
ds∥.

After using the Cauchy–Schwartz inequality and conditions (i)–(iv-a), we obtain

∥Lζ(t)∥ ≤ ρ∥ζ(t)∥, ρ =

(
F2N(t)A(t)tα

Γ(α + 1)

)
. (20)

From inequality (20), we deduce that the integral operator Lζ(t) is bounded.
After writing (18) in the norm form, and using inequality (20), we obtain

∥Kζ(t)∥ ≤ ∥ρζ(t)∥+ ∥F(t)∥. (21)

Inequality (21) shows that the operator K maps the ball Sσ into itself where the radius
of the sphere σ = ∥F(t)∥

1−ρ > 0. Hence, we have

ρ =

(
F2N(t)A(t)tα

Γ(α + 1)

)
< 1.

□

Lemma 3. The integral operator Kζ(t) under the conditions (i)–(ivb) is continuous.

Proof. Assuming ζ1(t) and ζ2(t) have two distinct solutions for Equation (12) in the Hilbert
space, the continuity of the solution may be investigated. Thus, we can obtain

∥K(ζ1 − ζ2)(t)∥ =
1

Γ(α)
∥
∫ t

0
(t − s)α−1M(s)

{
γ
(
s, Rµζ1(s)

)
− γ

(
s, Rµζ2(s)

)}
ds∥.

After applying the Cauchy–Schwartz inequality and using conditions (i)–(iv-b), we have

∥K(ζ1 − ζ2)(t)∥ ≤ ρ∥(ζ1 − ζ2)(t)∥.

Hence, the integral operator K is continuous and, by extension, the integral operator
L is also continuous. Moreover, since ρ < 1, then the integral operator K is a contraction
mapping. □

5. The Stability of Error

To discuss the stability of error, assume we have a numerical solution in the form

ζn(t)−
1

Γ(α)

∫ t

0
(t − s)α−1M(s)γ

(
s, Rµζn(s)

)
ds = Fn(t). (22)

Then, we have

Rn(t)−
1

Γ(α)

∫ t

0
(t − s)α−1M(s)

[
γ
(
s, Rµζ(s)

)
− γ

(
s, Rµζn(s)

)]
ds = Hn(t), (23)

where
Rn(t) = ζ(t)− ζn(t), Hn(t) = F(t)− Fn(t).

The above formula can be adapted, after applying the conditions (i–iii) and (iv-b) to
take the form

∥Rn(t)∥ ≤
(

F2N(t)A(t)tα

Γ(α + 1)

)
∥Rn(t)∥ + ∥Hn(t)∥. (24)
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The above inequality can be adapted in the form

∥Rn(t)∥ ≤ ∥Hn(t)∥(
1 − F2 N(t)A(t)tα

Γ(α+1)

) = σ. (25)

Inequality (25) shows that the operator R maps the ball Sσ in the Hilbert space into
itself. The radius of the sphere is

σ =
∥Hn(t)∥(

1 − F2 N(t)A(t)tα

Γ(α+1)

) .

Since σ > 0, ∥Hn(t)∥ > 0, then F2 N(t)A(t)tα

Γ(α+1) < 1.
Hence, the error Rn(t) is bounded and stable according to the status F2M(t)A(t)tα <

Γ(α + 1).
Furthermore, for the continuity of the error, it is not difficult to prove that for the two

functions of error Rn1 , Rn2 , we have

∥Rn1(t)− Rn2(t)∥ ≤
(

F2N(t)A(t)tα

Γ(α + 1)

)
∥Rn1(t)− Rn2(t)∥.

The above inequality describes the continuity of the error. Moreover, the operator of
error is a contraction according to the status F2N(t)A(t)tα < Γ(α + 1), so the error has a
unique representation.

6. Genocchi Polynomial Method
6.1. Properties of Genocchi Polynomials

The Genocchi numbers Gn and Genocchi polynomials (GPs) Gn(t) are often described
using the formulas for exponential generating S(ξ) and S(ξ, t), respectively, as follows:

S(ξ) =
2ξ

eξ + 1
=

∞

∑
q=0

Gq
ξq

q!
, (| ξ |< π),

S(ξ, t) =
2ξeξt

eξ + 1
=

∞

∑
q=0

Gq(t)
ξq

q!
, (| ξ |< π),

where Gq(t) is GPs of order q. Also, GPs can be determined as follows:

Gq(t) =
q

∑
k=0

(
q
k

)
Gq−ktk = 2Bq(t)− 2q+1Bq(t), (26)

and the following relationship yields the Genocchi number Gq−k:

Gq = 2(1 − 2q)Bq,

where Bq is the famous Bernoulli number and Bq(t) is Bernoulli polynomials.
The generating function for the Bernoulli numbers is

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn = B0 + xB1 +

x2

2!
B2 + . . . +

xn

n!
Bn + . . . .

Bernoulli numbers are defined as follows:

B−
n =

n

∑
k=0

1
1 + k

k

∑
j=0

(−1)j
(

k
j

)
jn,

(
k
j

)
=

k!
j!(k − j)!

,
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B+
n =

n

∑
k=0

1
1 + k

k

∑
j=0

(−1)j
(

k
j

)
(j + 1)n,

Bm = 1 −
m−1

∑
k=0

(
m
k

)
Bk

m − k + 1
, B0 = 1.

The Bernoulli polynomials are defined by the generating function

G(x, t) =
xext

ex − 1
=

∞

∑
n=0

xn

n!
Bn(t).

The first few Bernoulli polynomials are defined as

B0(t) = 1, B1(t) = t − 1
2

, B2(t) = t2 − t +
1
6

, B3(t) = t3 − 3
2

t2 +
1
2

t,

B4(t) = t4 − 2t3 + t2 − 1
30

, B5(t) = t5 − 5
2

t4 +
5
3

t3 − 1
6

t.

The initial group of GPs are listed as follows:

G0(ξ) = 0, G1(ξ) = 1, G2(ξ) = 2ξ − 1, G3(ξ) = 3ξ2 − 3ξ, G4(ξ) = 4ξ3 − 6ξ2 + 1, G5(ξ) = 5ξ4 − 10ξ3 + 5ξ.

Moreover, ∫ 1

0
Gp(t)Gq(t)dt =

2(−1)p p!q!
(p + q)!

Gp+q, p, q ≥ 1,

dGp(t)
dt

= pGp−1, p ≥ 1,

Gp(1) + Gp(0) = 0, p > 1,

Gp(t) =
∫ t

0
pGp−1(t)dt + Gp, p ≥ 1.

Liu and Wang [30] studied certain identities of Bernoulli, Euler, and Genocchi poly-
nomials using power sums and alternative power sums. For more details on the relations
between Genocchi polynomials and Bernoulli polynomials, please see [30].

6.2. Function Approximation

The unknown function φ(t) of Equation (5) can be expanded in terms of GPs as follows,

φ(t) ≃ φN(t) =
N

∑
n=1

εnGn(t), (27)

where εn are unknown coefficients and Gn(t) is GPs, which are defined by (26).
Substituting from (27) into (5) and using the collocation points

tℓ =
2ℓ− 1

2N
, ℓ = 1, 2, . . . , N, (28)

we obtain the next nonlinear system of algebraic equations

∫ tℓ

0
G(α, tℓ, s)γ

(
s,

N

∑
n=1

εnGn(s)

)
ds +

∫ a

0
k(tℓ, z)

N

∑
n=1

εnGn(z)dz − µ
N

∑
n=1

εnGn(tℓ) = f (tℓ). (29)

By evaluating the unknown coefficients εn and applying the Newton iteration ap-
proach [31,32], we may resolve the nonlinear system (29).

Similarly, it is easy to obtain the approximate solution of Equations (6) and (7) in the
same manner.
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7. Numerical Examples

Two numerical examples with various values of α are provided in this section as an
application of the findings above. All of the numerical computations were completed using
the Maple 18 program.

Example 1. Consider the NFrIE of the second kind:
1

Γ(α)

∫ t

0
(t − s)α−1s5 φ2(s)ds +

∫ 1

0
t2z2 φ(z)dz − φ(t) = f (t), Tφ(0)− φ(0) = 0, (30)

where the known function f (t) is described by putting φ(t) = t4 as an exact solution.
After using the value of the unknown function as an exact solution, we have f(t) in the form

Γ(10)
Γ(10 + α)

t9+α − 4
5

t2 = f (t).

It is clear that the function f (t) is bounded and continuous and f (0) = 0.
In Example 1, we consider

dα

dtα

{∫ 1

0
t2z2 φ(z)dz − φ(t)

}
= g(t)−

(
t5 φ2(t)

)
,

which is a special case from the general formula

dα

dtα
(Tφ(t)− φ(t)) = g(t)− M(t)γ(φ(t)), (Tφ(0)− φ(0) = 0),

where Tφ(t)− is an integral operator.

Now, applying GPM to Equation (30) and using the collocation point (28) for N = 5,
the approximate solution of Equation (30) can be collected in the next forms by varying the
value of α:

φ(t) ≃ φ5(t) = 1.50 × 10−8 − 2.47 × 10−7t + 0.1226 × 10−5t2 − 0.2280 × 10−7t3 + 1.000001458t4, α = 0.00001,

φ(t) ≃ φ5(t) = 3 × 10−10 − 4 × 10−9t + 1.4 × 10−8t2 − 1.7 × 10−8t3 + 1.000000007t4, α =
1
5

,

φ(t) ≃ φ5(t) = 3 × 10−10 − 4 × 10−9t + 1.8 × 10−8t2 − 2.6 × 10−8t3 + 1.000000012t4, α =
1
4

,

φ(t) ≃ φ5(t) = 2 × 10−10 − 3 × 10−9t + 8 × 10−9t2 − 6 × 10−9t3 + 1.000000002t4, α =
1
3

,

φ(t) ≃ φ5(t) = 1.0 × 10−9 − 7 × 10−9t + 2.5 × 10−8t2 − 3.8 × 10−8t3 + 1.000000020t4, α =
1
2

,

φ(t) ≃ φ5(t) = 1 × 10−10 − 3 × 10−9t2 + 1.4 × 10−8t3 + 0.9999999870t4, α = 0.95.

Also, absolute errors are shown in Table 1 and Figures 1–8. A comparison between the
exact solution and approximate solution of Example 1, α = 1 is shown in Figure 9.

Example 2. Consider the integro-differential equation of the first order:

dφ

dt
− φ(t)− 1

Γ(α)

∫ t

0
(t − s)α−1s5 φ3(s)ds = f (t), Dφ(0)− φ(0) = 0, (31)

where the known function f (t) is described by putting φ(t) = t2 as an exact solution.
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Table 1. Absolute errors (E) of Example 1.

t E, α = 0.00001 E, α = 1
5 E, α = 1

4 E, α = 1
3 E, α = 1

2 E, α = 0.95

0 1.50 × 10−8 3 × 10−10 3 × 10−10 2 × 10−10 1 × 10−9 1 × 10−10

0.1 4.258 × 10−10 2.37 × 10−11 5.52 × 10−11 2.58 × 10−11 5.14 × 10−10 8.27 × 10−11

0.2 1.2672 × 10−9 6.48 × 10−11 3.12 × 10−11 1.248 × 10−10 3.28 × 10−10 7.12 × 10−11

0.3 1.4898 × 10−9 4.23 × 10−11 1.152 × 10−10 1.258 × 10−10 2.86 × 10−10 1.027 × 10−10

0.4 3.7648 × 10−9 3.12 × 10−11 2.232 × 10−10 5.28 × 10−11 2.8 × 10−10 1.832 × 10−10

0.5 4.1250 ×10−9 1.125 × 10−10 3.0 × 10−10 7.50 × 10−11 2.5 × 10−10 2.875 × 10−10

0.6 4.6368 × 10−9 1.752 × 10−10 3.192 × 10−10 2.432 × 10−10 1.84 × 10−10 3.592 × 10−10

0.7 1.08658 × 10−8 2.097 × 10−10 2.832 × 10−10 4.422 × 10−10 1.18 × 10−10 3.107 × 10−10

0.8 3.18768 × 10−8 2.232 × 10−10 2.232 × 10−10 6.672 × 10−10 1.36 × 10−10 2.32 × 10−11

0.9 8.02338 × 10−8 2.397 × 10−10 1.992 × 10−10 9.182 × 10−10 3.7 × 10−10 6.533 × 10−10

1 1.720 × 10−7 3 × 10−10 3 × 10−10 1.2 × 10−9 1 × 10−9 1.9 × 10−9

In Example 2, we consider

dα

dtα

{
dφ(t)

dt
− φ(t)

}
= g(t)−

(
t5 φ3(t)

)
,

dα

dtα {Dφ(t)− φ(t)} = g(t)− M(t)γ(φ(t)), (Dφ(0)− φ(0) = 0),

where Dφ(t)− is a differentiable operator.

Figure 1. Absolute error of Example 1, α = 0.00001.
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Figure 2. Absolute error of Example 1, α = 1
5 .

Figure 3. Absolute error of Example 1, α = 1
4 .
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Figure 4. Absolute error of Example 1, α = 1
3 .

Figure 5. Absolute error of Example 1, α = 1
2 .
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Figure 6. Absolute error of Example 1, α = 0.95.

Figure 7. Comparison between the absolute errors of Example 1.
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Figure 8. Absolute error of Example 1, α = 1.

Fractal Fract. 2024, 1, 0 14 of 21

Figure 8. Absolute error of Example 1, α = 1.

Figure 9. Comparison between exact solution and approximate solution of Example 1, α = 1.

Example 2. Consider the integro-differential equation of the first order:

dφ

dt
− φ(t)− 1

Γ(α)

∫ t

0
(t − s)α−1s5 φ3(s)ds = f (t), Dφ(0)− φ(0) = 0, (31)

where the known function f (t) is described by putting φ(t) = t2 as an exact solution.

Figure 9. Comparison between exact solution and approximate solution of Example 1, α = 1.

Similar to in Example 1, applying GPM to Equation (31) and using the collocation
point (28) for N = 5, the approximate solution of Equation (31) can be collected in several
different formats by varying the value of α:

φ(t) ≃ φ5(t) = 5.78926571 × 10−11 + 1.000000000 × t2 − 6.58944122 × 10−10t3 + 8.452573750 × 10−10t4, α = 0.00001,

φ(t) ≃ φ5(t) = 1.347313885 × 10−10 + 1 × 10−9t + 1.000000000 × t2 − 9.198107540 × 10−10t3

+7.293681540 × 10−10t4, α =
1
5

,
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φ(t) ≃ φ5(t) = 2.386554161 × 10−11 + 0.9999999998 × t2 + 2.143753015 × 10−10t3 − 5.945656755 × 10−11t4, α =
1
4

,

φ(t) ≃ φ5(t) = −1.486305278 × 10−11 + 1.000000000 × t2 + 1.708136551 × 10−10t3 − 1.151329331 × 10−10t4, α =
1
3

,

φ(t) ≃ φ5(t) = −5.026134044 × 10−11 − 2 × 10−10t + 0.9999999999 × t2 + 2.168003276 × 10−10t3

−2.089228447 × 10−10t4, α =
1
2

,

φ(t) ≃ φ5(t) = −5.747226027 × 10−10 − 4 × 10−10t + 0.9999999991t2 + 1.193531824 × 10−9t3

−7.462111175 × 10−10t4, α = 0.95.

Absolute errors are shown in Table 2 and Figures 10–16.

Table 2. Absolute errors of Example 2.

t E, α = 0.00001 E, α = 1
5 E, α = 1

4 E, α = 1
3 E, α = 1

2 E, α = 0.95

0 5.78 × 10−11 1.34 × 10−10 2.38 × 10−11 1.48 × 10−11 5.02 × 10−11 5.74 × 10−10

0.1 5.73 × 10−11 2.33 × 10−10 2.20 × 10−11 1.47 × 10−11 7.10 × 10−11 6.22 × 10−10

0.2 5.39 × 10−11 3.28 × 10−10 1.74 × 10−11 1.36 × 10−11 9.28 × 10−11 6.82 × 10−10

0.3 4.69 × 10−11 4.15 × 10−10 1.11 × 10−11 1.11 × 10−11 1.15 × 10−10 7.49 × 10−10

0.4 3.73 × 10−11 4.94 × 10−10 4.06 × 10−12 6.87 × 10−12 1.37 × 10−10 8.21 × 10−10

0.5 2.83 × 10−11 5.65 × 10−10 3.05 × 10−12 7.07 × 10−13 1.61 × 10−10 8.97 × 10−10

0.6 2.51 × 10−11 6.30 × 10−10 9.53 × 10−12 7.11 × 10−12 1.86 × 10−10 9.77 × 10−10

0.7 3.48 × 10−11 6.94 × 10−10 1.48 × 10−11 1.60 × 10−11 2.15 × 10−10 1.06 × 10−9

0.8 6.67 × 10−11 7.62 × 10−10 1.87 × 10−11 2.54 × 10−11 2.48 × 10−10 1.16 × 10−9

0.9 1.32 × 10−10 8.42 × 10−10 2.08 × 10−11 3.41 × 10−11 2.90 × 10−10 1.28 × 10−9

1 2.44 × 10−10 9.44 × 10−10 2.12 × 10−11 4.08 × 10−11 3.42 × 10−10 1.42 × 10−9

Figure 10. Absolute error of Example 2, α = 0.00001.
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Figure 11. Absolute error of Example 2, α = 1
5 .

Figure 12. Absolute error of Example 2, α = 1
4 .
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Figure 13. Absolute error of Example 2, α = 1
3 .

Figure 14. Absolute error of Example 2, α = 1
2 .
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Figure 15. Absolute error of Example 2, α = 0.95.

Figure 16. Comparison between the absolute errors of Example 2.

8. Discussion of the Results

Two numerical examples are presented: Example 1, applied to the first application
Equation (5), and Example 2, applied to the integro-differential equation of the first order
(7) when the operator T is differentiable. We note that

1. In Example 1, the largest error value at α = 0.00001, t = 1 is 1.720 × 10−7 but at all
different values of α at t = 1 the error values equal constant ×10−9 and constant at
×10−10; this is clear in Table 3.
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Table 3. The largest error value of example 1.

t E, α = 0.00001 E, α = 1
5 E, α = 1

4 E, α = 1
3 E, α = 1

2 E, α = 0.95

1 1.720 × 10−7 3 × 10−10 3 × 10−10 1.2 × 10−9 1 × 10−9 1.9 × 10−9

The lowest value for error at α = 0.00001, t = 0.1 is 4.258 × 10−10 but at all different
values of α at t = 0.1 the error values equal constant ×10−11, except at α = 1

2 where the
error equals 5.14 × 10−10; this is clear in Table 4.

Table 4. The lowest error value of example 1.

t E, α = 0.00001 E, α = 1
5 E, α = 1

4 E, α = 1
3 E, α = 1

2 E, α = 0.95

0.1 4.258 × 10−10 2.37 × 10−11 5.52 × 10−11 2.58 × 10−11 5.14 × 10−10 8.27 × 10−11

In Figure 1, at α = 0.00001 the absolute errors equal constant ×10−7 and constant
×10−8, while in Figure 2 at α = 0.2 the absolute errors equal constant ×10−10, and also
in Figure 3 at α = 0.25 the absolute errors equal constant ×10−10 and constant ×10−11,
while in Figures 4–6 at α = 1

3 , 1
2 , 0.95 the absolute errors equal constant ×10−9 and constant

×10−10. A comparison between the absolute errors for different values of α of Example 1
are presented in Figure 7. Figure 8 represents the absolute errors, α = 1, and the comparison
between the exact solution and approximate solution is represented in Figure 9 at α = 1.

2. In example 2, the lowest value for error at α = 1
3 , t = 0.5 is 7.07 × 10−13.

Table 5. The lowest error value of Example 2.

t E, α = 0.00001 E, α = 1
5 E, α = 1

4 E, α = 1
3 E, α = 1

2 E, α = 0.95

0.5 2.83 × 10−11 5.65 × 10−10 3.05 × 10−12 7.07 × 10−13 1.61 × 10−10 8.97 × 10−10

Table 6. The largest error value of Example 2.

t E, α = 0.00001 E, α = 1
5 E, α = 1

4 E, α = 1
3 E, α = 1

2 E, α = 0.95

1 2.44 × 10−10 9.44 × 10−10 2.12 × 10−11 4.08 × 10−11 3.42 × 10−10 1.42 × 10−9

In Figure 10, at α = 0.00001 the absolute errors equal constant ×10−10 and constant
×10−11, while in Figure 11 at α = 0.2 the absolute errors equal constant ×10−10, while in
Figure 12 at α = 0.25 the absolute errors equal constant ×10−11 and constant ×10−12. In
Figure 13 at α = 1

3 the absolute errors equal constant ×10−11, in Figure 14 at α = 1
2 the

absolute errors equal constant ×10−10, while in Figure 15 at α = 0.95 the absolute errors
equal constant ×10−9 and constant ×10−10. A comparison between the absolute errors
of different values of α in Example 2 are presented in Figure 16. In Example 2, we have
demonstrated less error value in Table 5, also, we have demonstrated the largest error value
in Table 6.

9. Conclusions

In the present paper, the Genocchi polynomial method was applied to solve NFrIEs
of the second kind. The Genocchi polynomial method converted the problem to a system
of algebraic equations. Finally, two numerical examples were discussed to demonstrate
the applicability and validity of the method. We have shown the existence of a unique
solution to the second sort of NFrIE in Hilbert space. Furthermore, we have explained and
discussed proof of the stability of the error.
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Future Works

We will study and extend the work using some different numerical methods and also
some semi-analytical methods.
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