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Abstract: We show how a rescaling of fractional operators with bounded kernels may help circumvent
their documented deficiencies, for example, the inconsistency at zero or the lack of inverse integral
operator. On the other hand, we build a novel class of linear operators with memory effects to
extend the L-fractional and the ordinary derivatives, using probability tools. A Mittag–Leffler-type
function is introduced to solve linear problems, and nonlinear equations are addressed with power
series, illustrating the methods for the SIR epidemic model. The inverse operator is constructed,
and a fundamental theorem of calculus and an existence-and-uniqueness result for differintegral
equations are proven. A conjecture on deconvolution is raised, which would permit completing the
proposed theory.
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1. Introduction

Fractional calculus is concerned with the investigation of linear operators that extend
the ordinary derivative by including some sort of memory effect, for example, a continuous
delay through integration. These operators are called fractional derivatives because they
normally depend on a real positive parameter, the fractional order or index, that gives
standard derivatives at integer positive values. If the fractional order is not explicitly
written, then one has a memory operator. Given these types of operators, new differen-
tial or differintegral equations can be defined that include past history in the system to
exhibit non-local properties. Their study, compared to ordinary differential equations,
requires the development of new results on existence and uniqueness, explicit solutions
(power series, Laplace transforms), and numerical methods. The reader is referred to the
monographs [1–6], the review papers [7–10], and the research articles [11–15].

The most famous fractional derivatives are Riemann–Liouville and Caputo. Although
the latter was proposed decades ago in viscoelasticity theory [16], they are of use in the
current research, both pure and applied [17–19]. In the definition of the operators, the past
delay is incorporated by integrating with respect to a singular kernel (i.e., a function with
infinite value at the endpoint of the interval). Related to the type of kernel, efforts are also
being devoted to non-singular integrators, for example, bounded or continuous [20,21].
However, this kind of fractional operator has certain disadvantages, as proven in some
works [22].

In this paper, we consider and modify these operators proposed in the literature. We
use the generic notation Dx(t) here for the operator D and its evaluation at functions x,
where t is the independent variable (the time). After discussing some disadvantages of
classical forms of D, we investigate whether dividing by Dt improves the properties of
the operator:

D̃x(t) :=
Dx(t)

Dt
. (1)
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We also address the features of the associated fractional differential equation,

D̃x(t) = f (t, x(t)). (2)

In general, with (1) and (2), we see that the values of x′(0) and D̃x(0) are more
consistent, and that the vector field f has units time−1. For example, if D contains a non-
singular kernel, we see that the units of Dx(t) are time0, which entails serious drawbacks,
but the division by Dt gives rise to a consistent rate time−1. When D has a singular kernel,
for instance, of the Caputo type, we see that the division by Dt changes the units time−α

to time−1, rendering alternative properties and operators. Even though the normalization
with Dt may seem simple, it requires the building of a new theory on fractional calculus,
especially with regard to the search of explicit and closed-form solutions. In addition,
it provides insight on how to design a general probabilistic definition of operator with
memory that extends the ordinary derivative.

We focus, on the one hand, on the Caputo operator D = CDα, for fractional order
α ∈ (0, 1), due to its accepted used in the literature and its good properties when working
with initial states, power series, and Laplace transforms in differential equations. It satisfies
CD0+x(t) = x(t)− x(0) and, for fractional differential equations, |x′(0)| = ∞ and units
time−α. The infinite rate of change in the dynamics at t = 0 and the fractional units
may be a problem when dealing with Caputo models, hence, the need for rescaling. The
normalization gives rise to the L-fractional derivative, LDα, suggested a few years ago in
the context of geometry and mechanics [23,24] and recently studied from the mathematical-
analysis point of view [25,26]. We aim at generalizing the L-fractional operator from its
probabilistic interpretation as the expectation of a certain beta-distributed delay. Albeit
not the subject of our contribution, the Riemann–Liouville derivative can also be rescaled
by employing the Λ-fractional operator [27]. On the other hand, in addition to Caputo
operators, we also devote work to operators with bounded kernels, also named non-
singular. The normalization of operators with bounded kernels may circumvent some of
the (right) critiques to their use, such as the inconsistency at zero or the lack of inverse
integral operator [22]. We examine the usual exponential and Mittag–Leffler kernels.

The organization of this paper is the following. In Section 2, we revisit the mathemati-
cal treatment on L-fractional calculus, from [25]. In Section 3, we develop a novel theory
on fractional operators with bounded kernels. We study how the rescaling improves their
properties for an appropriate pure and applied use. In Section 4, we build a theory on new
operators with memory effects, defined with probability objects. These operators extend
the L-fractional and the ordinary derivatives, and they are fractional in some examples. An
alternative Mittag–Leffler function is introduced. Finally, Section 5 gives limitations of the
paper with open problems for the future.

Concerning notation, we denote by Lp the Lebesgue spaces and by C p the set of
functions with continuous derivatives up to order p. The set of continuous functions is C.
All integrals are considered in the Lebesgue sense. The norms of functions and operators
use ∥ · ∥∗, where ∗ indicates the space. The absolute value of real numbers (R), the modulus
of complex numbers (C), and the norms of real and complex vectors and matrices are simply
expressed with |·|. Given a probability space, the expectation is written as E[·]. When the
expectation is performed with respect to a certain random variable U, we use EU [·]. The
essential-supremum norm, in different spaces, is ∥ · ∥∞. The composition is denoted with
◦. The symbol ∼ captures both the asymptotic behavior of functions and distribution of
random variables.

2. The L-Fractional Derivative

This section reviews concepts from [25], which builds a theory on L-fractional opera-
tors and linear fractional differential equations. There are several open problems there that
might of interest for readers. For nonlinear equations, one may consult [26].
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2.1. Caputo Definition

The Caputo fractional derivative is

CDαx(t) = RL J1−αx′(t) =
1

Γ(1 − α)

∫ t

0

x′(τ)
(t − τ)α dτ, (3)

where
RL J1−αx(t) =

1
Γ(1 − α)

∫ t

0
(t − τ)−αx(τ)dτ (4)

is the Riemann–Liouville integral, α ∈ (0, 1) is the fractional order, and

Γ(z) =
∫ ∞

0
τz−1e−τdτ

is the gamma function (which extends the factorial). The operator (4) is defined for Lebesgue
integrable functions x : [0, T] → C , i.e., x ∈ L1[0, T]; the new function RL J1−αx exists
almost everywhere and belongs to L1[0, T], by the properties of the convolution. The
Caputo derivative (3) takes absolutely continuous functions x : [0, T] → C . Recall that
x is said to be absolutely continuous if it is continuous, its derivative x′ exists almost
everywhere and belongs to L1[0, T], and Barrow’s rule is satisfied in a Lebesgue sense,
x(t)− x(0) =

∫ t
0 x′(s)ds.

2.2. L-Fractional Definition

The L-fractional derivative is defined as the normalization of the Caputo operator,

LDαx(t) =
CDαx(t)

CDαt
=

Γ(2 − α)

t1−α
CDαx(t). (5)

For absolutely continuous functions x : [0, T] → C , the function LDαx exists almost
everywhere and is in L1[0, T]. For α ∈ [0, 1], it interpolates between

x(t)− x(0)
t

=
1
t

∫ t

0
x′(s)ds,

which is the mean value of the velocity on [0, T], and the ordinary derivative x′(t) if
x ∈ C1[0, T].

When x ∈ C2[0, T], the operator can be rewritten as

LDαx(t) = x′(0) +
1

t1−α

∫ t

0
(t − τ)1−αx′′ (τ)dτ, (6)

pointwise on (0, T]. The kernel (t − τ)1−α is non-singular, although the denominator t1−α

controls the value of LDαx(0+) to avoid inconsistencies: when x ∈ C3[0, T], for example,
we have

LDαx(0) := lim
t→0+

LDαx(t) = x′(0). (7)

In that case, LDαx ∈ C[0, T].
Considering (5), an L-fractional differential equation is

LDαx(t) = f (t, x(t)), (8)

for t ∈ (0, T], with an initial condition or state x(0) = x0, where f : [0, T]× Ω ⊆ [0, T]
×Rd → Rd , or f : [0, T]× Ω ⊆ [0, T]×Cd → Cd , is a continuous function such that x0 ∈ Ω.
The Equation (8) can be understood almost everywhere or everywhere on [0, T], depending
on whether x is smooth and (6) and (7) are of use.
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In contrast to Caputo differential equations, (8) may present smooth solutions, such as
power series

∞

∑
n=0

xntn. (9)

The powers are ordinary, tn, instead of the fractional powers in the Caputo setting,
tαn. This is related to the fact that the units of measurement in (8) are time−1, instead
of time−α. For smooth solutions, note that the property x′(0) ∈ (−∞, ∞) is obtained
by (7). Additionally, the result (7) also tells us that (8) is, locally around t = 0, very similar
to x′(t) = f (t, x(t)), so the change in the dynamics with α is smoother than in Caputo
equations [26].

There is a Mittag–Leffler-type function in this context, alternative to the classical
one [28]:

Eα(s) =
∞

∑
n=0

sn

Γ(2 − α)n ∏n
j=1

Γ(j+1)
Γ(j+1−α)

=
∞

∑
n=0

sn

Γ(2 − α)nΓ(1 + α)n ∏n
j=1 (

j
j−α)

,

(10)

for s ∈ C. The solution of
LDαx = λx (11)

where λ ∈ C and t ≥ 0, is
x(t) = Eα(λt)x0. (12)

Expressions (10)–(12) can be defined for matrix arguments λ = A ∈ Cd×d, as well
as d ≥ 1.

The integral operator associated with LDα is

L Jαx(t) =
1

Γ(α)Γ(2 − α)

∫ t

0
(t − s)α−1s1−αx(s)ds. (13)

If x ∈ L1[0, T], then L Jαx ∈ L1[0, T]. If x is continuous on [0, T], then L Jαx is well-
defined everywhere on [0, T]. In fact, L Jα : C[0, T] → C[0, T] is a continuous operator,
with norm

∥L Jα ∥∞≤ T.

2.3. Connection with Probability Theory

The link of L-fractional calculus with probability theory is the following: given (5) and (13),
we have

L Jαy(t) = tE[y(tV)] (14)

and
LDαy(t) = E

[
y′(tW)

]
, (15)

where V is a random variable with distribution Beta(2 − α, α), W is a random variable with
distribution Beta(1, 1 − α), and E is the expectation operator.

In this paper, we investigate fractional operators from the key property (15).

3. Fractional Operators with Bounded Kernels

This part presents a novel theory on fractional operators with non-singular kernels,
based on rescaling. Our case studies are exponential and Mittag–Leffler integrators.

3.1. Exponential Kernel

The Caputo–Fabrizio operator [29] is defined as

CFDαx(t) =
1

1 − α

∫ t

0
e−

α
1−α (t−s)x′(s)ds, (16)
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often in the context of continuously differentiable functions x : [0, T] → C . Notice that
the kernel

K(t − s) =
1

1 − α
e−

α
1−α (t−s) (17)

is non-singular, because it does not present any singularity (vanishing denominator, for
example) when t = s. The corresponding integral operator is

CF Jαx(t) = (1 − α)(x(t)− x(0)) + α
∫ t

0
x(s)ds, (18)

for continuous functions x : [0, T] → C . It is a convex combination between the discrete
change x(t)− x(0) and the continuous change

∫ t
0 x(s)ds.

Although the use of a non-singular kernel may seem appealing, there are many
drawbacks associated with the Caputo–Fabrizio operator, which are common in fractional
calculus with bounded or continuous kernels [22]. First, it can be proven [30,31] that

CF Jα ◦ CFDαx(t) = x(t)− x(0) (19)

and
CFDα ◦ CF Jαx(t) = x(t)− e−

α
1−α tx(0). (20)

Note that (19) mimics Barrow’s rule, but (20) does not correspond to the fundamental
theorem of calculus: the derivative of the integral is not the identity operator. This fact is
related to the null space of (18), given by〈

e−
α

1−α t
〉

,

where ⟨·⟩ denotes the linear span. Second, when proposing a model of the form

CFDαx(t) = f (t, x(t)), (21)

there is a clear contradiction at t = 0, since

CFDαx(0) = 0

is always satisfied. Hence. the only possibility is to work with the integral problem

x(t) = x0 +
CF Jα f (t, x(t)), (22)

which is not entirely equivalent to (21), due to (20). Third, the units of (16) are time0,
i.e., it has no time units. Indeed, the units of x′(s) cancel out with those of ds, while the
exponential kernel (17) is non-singular and does not behave as time−β for any index β > 0:
by Taylor expansion,

e−
α

1−α (t−s) = 1 − α

1 − α
(t − s) +

1
2

(
α

1 − α

)2

(t − s)2 + . . . .

These disadvantages can be resolved by working with the normalized version of (16).
Simple computations yield

CFDαt =
1
α

(
1 − e−

α
1−α t

)
∼ 1

1 − α
t, (23)

where ∼ denotes here that the two functions are asymptotically equivalent when t → 0+ ,
which is the problematic point. Considering (23), we define

cα(t) =
1
α

(
1 − e−

α
1−α t

)
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and
NCFDαx(t) =

1
(1 − α)cα(t)

∫ t

0
e−

α
1−α (t−s)x′(s)ds. (24)

Notice that convergence towards x′(t) when α → 1− holds for (24). Furthermore,

NCFDαx
(
0+
)
=

x(t)− x(0)
t

, (25)

which is the mean value
1
t

∫ t

0
x′(s)ds.

That is, (24) interpolates between the mean velocity on [0, t] and at t.
It is clear that the units of (24) are time−1, by the division by cα(t). Therefore, the

new operator represents some sort of rate of change in contrast to the standard one (16).
Furthermore, now (24) is a convolution with respect to a probability density function on
[0, t], for each t > 0, so that the weight function seems to be more appropriate.

Definition (24) is well posed for t = 0:

NCFDαx(0) = lim
t→0+

e−
α

1−α t·1
t

∫ t

0
e

α
1−α sx′(s)ds = x′(0). (26)

Even for α = 0, it is true that NCFDαx(0) = x′(0) by (25). In (26), we used (1 − α)cα(t) ∼
t and decomposed the exponential function to readily apply the fundamental theorem of
calculus, but for a general continuous kernel, one can proceed with the Leibniz rule of
differentiation for integrals or integration by parts and arrive at the same result. Thus, the
new fractional operator has an appropriate value at t = 0, the same as the integer-order
one, and one can work with fractional differential equations of the form

NCFDαx(t) = f (t, x(t)), (27)

as opposed to (21). The associated integral operator (see (18)),

NCF Jαx(t) = (1 − α)cα(t)x(t) + α
∫ t

0
cα(s)x(s)ds, (28)

does satisfy the fundamental theorem of calculus, in contrast to (20): for a continuously
differentiable function x,

NCF Jα ◦ NCFDαx(t) =NCF Jα

[
1
cα
·CFDαx

]
(t)

=CF Jα ◦ CFDαx

=x(t)− x(0)

and
NCFDα ◦ NCF Jαx(t) =NCFDα ◦ CF Jα[cαx](t)

=
1

cα(t)
·CFDα ◦ CF Jα[cαx](t)

=
1

cα(t)
cα(t)x(t)

=x(t),

(29)

since cα(t)x(t) is 0 at t = 0. We employed both (19) and (20). Observe that t = 0 is not a
problem for (29), by (26) and (28):

NCFDα
[

NCF Jαx
]
(0) =

(
NCF Jαx

)′
(0) = x(0).
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Equation (27) is now completely equivalent to

x(t) = x0 +
NCF Jα f (t, x(t)), (30)

in the set of C1[0, T] functions.
We do not enter into other possible issues regarding the Caputo–Fabrizio models. For

example, (22) is equivalent to an ordinary differential equation by differentiating. The same
fact occurs for the alternative model (27), which gives

x′(t) =(1 − α)c′α(t) f (t, x(t))
+(1 − α)cα(t)

[
ft(t, x(t)) + x′(t) fx(t, x(t))

]
+ αcα(t) f (t, x(t)),

(31)

by (28) and (30), so the non-local behavior of (27) is debatable. As (31) is well under-
stood, fractional models with an exponential kernel do not seem to give rise to a big new
theory, except concrete mathematical results. When we convolve the derivative x′ with
an exponential in (16), the exponential function decomposes as a product and separates
the variables t (outside the integral) and s (inside the integral), and this gives rise to an
ordinary differential equation at the end. Since the weight function in (24) is related to the
exponential probability distribution, which exhibits the memoryless property, it is intuitive
that the non-local behavior of (27) is lost.

Example 1. The model
CFDαx(t) = −λx(t), (32)

where t > 0 and λ > 0, extends the exponential decay equation to a fractional setting,
for α ∈ (0, 1]. First, observe that if x(0) = x0 ̸= 0, then (32) is not well-defined, because
CFDαx(0) = 0 ̸= −λx0. Additionally, as already proven, the units of CFDαx(t) are time0;
hence, there is no valid power for λ; it does not represent any rate. Finally, the differintegral
Equation (32) is not equivalent to the integral equation x(t) = x0 +

CF Jα[−λx(t)] by (20).
The alternative model

NCFDαx(t) = −λx(t) (33)

fixes all these issues. It is consistent at t = 0, with NCFDαx(0) = x′(0) = −λx0; the units
of NCFDαx(t) and λ are time−1, thus representing true rates; and finally, the differintegral
Equation (33) is equivalent to the integral equation x(t) = x0 +

NCF Jα[−λx(t)], because the
fundamental theorem of calculus holds. The argumentation for this simple example (33)
works for any other model defined via a non-singular kernel. During the time the present
paper has been in the preprint server ArXiv and under review, specific models based on
my proposed normalized operators are being studied [32].

3.2. Mittag–Leffler Kernel

Other possible operators with bounded kernels are based on Mittag–Leffler kernels
instead of exponential ones [33,34]. For example,

ABDαx(t) =
1

1 − α

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
x′(s)ds. (34)

Here, one often considers absolutely continuous functions x : [0, T] → C . The kernel

K(t − s) =
1

1 − α
Eα

(
− α

1 − α
(t − s)α

)
is non-singular. Observe that, again,

ABDαx(0) = 0,
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which is a severe restriction in differential equations (exactly the same issue as for Caputo–
Fabrizio models) [22]. The units of (34) are also time0 (the use of the exponent α does not
change this fact). Since

ABDαtγ =
1

1 − α
Γ(1 + γ)tγEα,γ+1

(
− α

1 − α
tα

)
,

where γ > 0, the rescaled operator associated with (34) is

NABDαx(t) =
1

(1 − α)kα(t)

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
x′(s)ds, (35)

being

kα(t) =
1

1 − α
tEα,2

(
− α

1 − α
tα

)
∼ 1

1 − α
t.

The new fractional operator (35) satisfies

NABDαx(0) = x′(0)

when calculating the limit as t → 0+ , if x′ is continuous, by the Leibniz rule of differentia-
tion for integrals:

lim
t→0+

NABDαx(t) = lim
t→0+

1
t

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
x′(s)ds

=
d
dt

∣∣∣∣
t=0+

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
x′(s)ds

=x′(0) +
α2

1 − α
lim

t→0+

∫ t

0
(t − s)α−1E′

α

(
− α

1 − α
(t − s)α

)
x′(s)ds

=x′(0).

Hence there are no issues at t = 0, compared with (34). The units of (35) are time−1.
Now (35) is a convolution with respect to a probability density function on [0, t], for each
t > 0, so that the weight function is likely more adequate.

The integral operator of (34) is

AB Jαx(t) = (1 − α)(x(t)− x(0)) + α·RL Jαx(t), (36)

which is a convex combination of the discrete change x(t) − x(0) and the continuous
delayed change RL Jαx(t). From (36), one deduces that

NAB Jαx(t) = (1 − α)kα(t)x(t) + α·RL Jα[kαx](t) (37)

is the integral counterpart of (35). It is well known that

AB Jα ◦ ABDαx(t) = x(t)− x(0)

and
ABDα ◦ AB Jαx(t) = x(t)− Eα

(
− α

1 − α
tα

)
x(0) ̸= x(t),

but now
NAB Jα ◦ NABDαx(t) =NAB Jα

[
1

kα(t)
·ABDαx

]
(t)

=AB Jα ◦AB Dαx

=x(t)− x(0)
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and
NABDα ◦NAB Jαx(t) =NABDα ◦AB Jα[kαx](t)

=
1
t
·ABDα ◦AB Jα[kαx](t)

=
1

kα(t)
kα(t)x(t)

=x(t),

because kα(0)x(0) = 0. Therefore, the fundamental theorem of calculus for the new
operator NABDα is verified.

We have the equivalence between

NABDαx(t) = f (t, x(t))

and
x(t) = x0 +

NAB Jα f (t, x(t)),

in the set of C1[0, T] functions. This model is the same as a system with implicit Caputo
derivatives only,

CDαx(t) = (1 − α)·CDα(kα(t) f (t, x(t))) + αkα(t) f (t, x(t))

almost everywhere, by (37) and the fundamental theorem of calculus. This fact is natural
somehow, because the Mittag–Leffler function is directly related to Caputo fractional
differential equations (analogously, the exponential function in the Caputo-Fabrizio model
is directly related to ordinary differential equations): it builds the solution of the basic
equation CDαz(t) = λαz(t) (analogously, the exponential function builds the solution of
the basic equation z′(t) = λz(t)).

In conclusion, the factor (Dt)−1 seems to resolve major issues associated with frac-
tional operators with bounded kernels. Some authors proposed the use of integration by
parts directly in (16) and (34), see [22,35]:

CFD̃αx(t) =
1

1 − α

[
x(t)− e−

α
1−α tx(0)− α

1 − α

∫ t

0
e−

α
1−α (t−s)x(s)ds

]
, (38)

ABD̃αx(t) =
1

1 − α

[
x(t)− Eα

(
− α

1 − α
tα

)
x(0)

− α

1 − α

∫ t

0
Eα

(
− α

1 − α
(t − s)α

)
x(s)ds

]
,

(39)

for Lebesgue integrable functions x. However, since there is an evaluation at 0, the con-
tinuity of x at t = 0 is needed for uniqueness of the fractional derivative. In that case,
the operators (38) and (39) still tend to 0 when t → 0+ , and the inconsistency persists.
Additionally, the issue of the units time0 is present again. There is no derivative in (38) and
(39), which contradicts the notion of the fractional derivative; indeed, some rate of change
should be involved in the formulation.

In terms of explicit or closed-form solutions, a disadvantage of the rescaling of frac-
tional operators in differential equations is that the applicability of the Laplace-transform
method is reduced, because the transform of the product or division is not amenable to
computing. Nonetheless, the power-series technique may still be of application, as one can
find the power series of a product easily.

4. A New Operator with Memory Effects Using Probability Theory

This part of the paper generalizes normalized operators by employing probability
concepts. A theory on the new operators is built.
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4.1. Definition

By generalizing the probabilistic interpretation of the L-fractional derivative, see (15),
we define the new linear operator

Dx(t) = E
[
x′(tW)

]
, (40)

where t ∈ [0, T], x : [0, T] → C is (at least) an absolutely continuous function, and W is a
random variable with the requirements:

support(W) ⊆ [0, 1], (41)

∥ W ∥∞ = 1, (42)

and
lim

n→∞
nE[Wn] = ∞. (43)

The notation ∥ · ∥∞ is the essential supremum of the random variable. Both (41) and (42)
are related to the need of capturing the past history of x′ until the present, along with [0, t],
i.e., exhibiting memory effects. Physically, the new operator (40) is a weighted average of
the velocity on [0, t], where the weight is modeled with a probability distribution. The third
condition (43) will be required later, when dealing with differential equations and series, so that
the new “exponential” function exists on R. Observe that (43) implies (42), but we explicitly
write (42) for the sake of clarity. Assumption (43) means that the past time near the present t
should have enough weight in the memory operator.

We observe that x′ exists almost everywhere. In definition (40), we are assuming that

E
[
|x′(tW)|

]
< ∞. (44)

For example, (44) follows if x′ is essentially bounded on [0, T], i.e., ∥ x′ ∥∞< ∞.
Some examples of D are the following:

• When W = 1 is constant, then Dx = x′ is the classical derivative. Note that the three
assumptions (41)–(43) hold.

• When W ∼ Beta(1, 1 − α), for α ∈ (0, 1), then Dx = LDαx is the L-fractional deriva-
tive. The third condition (43) is satisfied:

lim
n→∞

nE[Wn] = lim
n→∞

n
Γ(2 − α)Γ(n)
Γ(n + 1 − α)

= lim
n→∞

n
Γ(2 − α)

n1−α

=∞.

• If W ∼ Beta(α, β), for α, β ∈ (0, 1), then we obtain a generalization of the L-fractional
derivative [25], denoted as GLDα,β. The condition (43) is verified as follows:

lim
n→∞

nE[Wn] = lim
n→∞

n
Γ(α + β)Γ(α + n − 1)
Γ(α)Γ(α + n − 1 + β)

= lim
n→∞

n
Γ(α + β)

Γ(α)(α + n − 1)β

=∞.

(45)
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Regarding (44), simple computations for integrals yield

GLDα,βx(t) =
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
sα−1(1 − s)β−1x′(ts)ds

=
Γ(α + β)

Γ(α)Γ(β)

1
t

∫ t

0

sα−1

tα−1

(
1 − s

t

)β−1
x′(s)ds

=
Γ(α + β)

Γ(α)Γ(β)

1
tα+β−1

∫ t

0
(t − s)β−1sα−1x′(s)ds

=
1

tα+β−1

(
Γ(α + β)

Γ(α)Γ(β)
tβ−1 ∗

(
tα−1x′

))
(t),

(46)

for t > 0. The density function of the beta distribution and the expression for the
expectation have been used. Thus, if x is absolutely continuous and

tα−1x′ ∈ L1[0, T], (47)

then GLDα,βx exists almost everywhere and belongs to L1[0, T] (recall that a convolu-
tion K ∗ y is well-defined almost everywhere and belongs to L1[0, T] if K, y ∈ L1[0, T]).
Note that, if x′ is essentially bounded on [0, T], that is, ∥ x′ ∥∞< ∞, the integrability
condition (47) follows. The point t = 0 is not a problem, because

GLDα,βx(t) = E
[
y′(0·W)

]
= y′(0)

is well-defined. Note that (46) clearly extends the integral expression for the L-
fractional operator, thus modifying the Caputo operator as well.
Based on the L-fractional derivative, when α → 1− , β → 0+ , and x is continuously
differentiable on [0, T], the ordinary derivative operator is retrieved. If α → 1− and
β → 1− , then the mean value

1
t

∫ t

0
x′(s)ds

is obtained.
• If W ∼ Uniform(0, 1), i.e., Beta(1, 1), then (43) does not hold: by (45),

lim
n→∞

nE[Wn] = 1.

In consequence, that simple probability distribution is not valid. This is an interesting
example, because the uniform distribution should be a good option a priori, as it
maximizes the Shannon entropy (the ignorance) on [0, t] when multiplied by t if there
is no information available on the weight [36].

• Important cases related to the gamma and exponential distributions are given in
Examples 2 and 3, in the context of inverse operators and the fundamental theorem of
calculus. New operators with memory will be obtained.

Given (40), one can define the concept of differential equation as

Dx(t) = f (t, x(t)). (48)

In general, we work in dimension d ≥ 1, with x : [0, T] → Cd . Equation (48) has
an initial condition or state x(0) = x0 ∈ Cd, where f : [0, T]× Ω ⊆ [0, T]×Rd → Rd , or
f : [0, T]× Ω ⊆ [0, T]×Cd → Cd , is a continuous function such that x0 ∈ Ω. The units

in (48) are time−1.
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Compared to an ordinary differential equation x′(t) = f (t, x(t)), now we are relating
the weighted average of the velocity on [0, t] and the position at t. In differential form,

E[x(tW + dt)] = E[x(tW)] + f (t, x(t))dt.

The connection between the past [0, t] and the future (t, t + dt] is stronger than in the
ordinary case, similar to the difference between non-Markovian and Markovian processes.
If x is changed at t, then this has an effect on the whole history of x, not just on (t, t + dt].
In this work, we deal with (48) abstractly.

4.2. Power Series and Mittag–Leffler-Type Function

We study the differentiation rules of power series.

Proposition 1. Consider the operator D from Section 4.1. If

x(t) =
∞

∑
n=0

xntn (49)

is a convergent power series on [0, T], where xn ∈ Cd, then

Dx(t) =
∞

∑
n=0

xnDtn =
∞

∑
n=0

xn+1(n + 1)E[Wn]tn, (50)

pointwise on [0, T].

Proof. Since x is bounded on [0, T], condition (44) is met, and Dx exists pointwise on [0, T].
Let

xN(t) =
N

∑
n=0

xntn

be the truncated sum of (49). It is well-known that

lim
N→∞

∥ xN − x ∥∞ = 0

and
lim

N→∞
∥ x′N − x′ ∥∞ = 0

on [0, T]. Furthermore, by linearity,

DxN(t) =
N

∑
n=0

xnDtn.

Then, from the definition (40) for D, we derive

∥ Dx −DxN ∥∞≤ ∥ x′ − x′N ∥∞
n→∞−→ 0.

Thus, the first equality of (50) is proven. For the second equality in (50), compute

Dtn = ntn−1E
[
Wn−1

]
,

for n ≥ 1. □

In the context of Section 4.1, we define the new Mittag–Leffler-type function

E(s) =
∞

∑
n=0

sn

n! ∏n−1
j=1 E

[
W j
] , (51)
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for s ∈ C. The empty product is interpreted, as usual, as 1. Of course, when
W ∼ Beta(1, 1 − α), we have the L-fractional derivative, and the Mittag–Leffler-type func-
tion (10) is retrieved, after computing the moments of that beta distribution. When W = 1,
the usual exponential function is obtained. Observe that (51) is convergent on C, by the
ratio test and condition (43):

lim
n→∞

n! ∏n−1
j=1 E

[
W j]

(n + 1)! ∏n
j=1 E

[
W j
] = lim

n→∞

1
(n + 1)E[Wn]

= 0.

The same reasoning can be conducted for matrix arguments s = A ∈ Cd×d. The
function (51) is key to solving linear models.

Proposition 2. Consider the operator D from Section 4.1. If A ∈ Cd×d and x0 ∈ Cd, then

x(t) = E(tA)x0

solves
Dx(t) = Ax(t)

with x(0) = x0, pointwise on [0, ∞).

Proof. By Proposition (1),

Dx(t) =
∞

∑
n=0

An+1x0
(n + 1)E[Wn]

(n + 1)! ∏n
j=1 E

[
W j
] tn

=A
∞

∑
n=0

Anx0
1

n! ∏n−1
j=1 E

[
W j
] tn

=Ax(t).

□

4.3. Fundamental Theorem of Calculus

Let W be a fixed random variable satisfying (41)–(43). Suppose that there exists another
random variable V, independent of W and with support in [0, 1], such that

WV = U ∼ Uniform(0, 1). (52)

For example, when W ∼ Beta(1, 1 − α) in L-fractional calculus, α ∈ (0, 1), then
V ∼ Beta(2 − α, α), because

E[Un] =E[Wn]E[Vn]

=
Γ(1 + n)Γ(1 − α)

Γ(2 + n − α)

Γ(2 − α)

Γ(1)Γ(1 − α)

×Γ(2 − α + n)Γ(α)
Γ(2 + n)

Γ(2)
Γ(2 − α)Γ(α)

=
1

1 + n

are the moments of a Uniform(0, 1) distribution (which uniquely determine it).
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Remark 1. In general, the structure of V in (52) is not simple. Let W ∼ Beta(α, β) with
0 < α, β < 1. Suppose that V ∼ Beta

(
α̃, β̃
)

. Equate moments

E[Vr] =
E[Ur]

E[Wr]

for r ≥ 1:
Γ(α̃ + r)Γ

(
α̃ + β̃

)
Γ
(

α̃ + r + β̃
)

Γ(α̃)
=

Γ(α)Γ(α + β + r)
Γ(α + β)(1 + r)Γ(α + r)

. (53)

Asymptotically, the left-hand side of (53) is of the form

1

(α̃ + r)β̃

Γ
(

α̃ + β̃
)

Γ(α̃)
,

while the right-hand side of (53) is

Γ(α)
Γ(α + β)

(α + r)β

1 + r
.

In consequence,
β̃ = 1 − β ∈ (0, 1)

and
Γ(α̃ + 1 − β)

Γ(α̃)
=

Γ(α)
Γ(α + β)

. (54)

Since α, β ∈ (0, 1), we know that
Γ(α) > Γ(α + β). (55)

If α̃ ∈ (0, 1], then we would have Γ(α̃) > Γ(α̃ + 1− β), but this is impossible considering (54) and (55).
Hence,

α̃ > 1.

On the other hand, (53) becomes

Γ(α̃ + r)
Γ(α̃ + r + 1 − β)

=
Γ(α + β + r)

(1 + r)Γ(α + r)
, (56)

for all r ≥ 1. Let µ = α̃ − β. Observe that

(1 + r)Γ(α + r) > (α + r)Γ(α + r) = Γ(α + r + 1),

so, from (56),
Γ(µ + r + β)

Γ(µ + r + 1)
<

Γ(α + r + β)

Γ(α + r + 1)
.

Since Γ increases faster and faster as r grows, we deduce that µ > α, that is,

α̃ > min{1, α + β}.

Computations in software show that if α = 0.99 and β = 0.5, for example, then the unique root
of (56) for r = 1 is α̃ ≈ 1.51284, whereas for r = 2, it is α̃ ≈ 1.51183, which is distinct; therefore, V
cannot follow the beta distribution. For α = 1 and β ∈ (0, 1), we are in the situation of L-fractional
calculus, where V is indeed beta distributed. The root α̃ in that case is unique.

An open problem regarding (52) is the following:
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Conjecture 1. Let W be a random variable satisfying (41)–(43). Then, under certain conditions on
W, there exists a random variable V, independent from W and with support in [0, 1], such that (52)
holds. Note that from

− log W − log V = − log U ∼ Exponential(1), (57)

we essentially need to decompose Exponential(1) as a sum of non-negative and independent random
variables, where

W̃ = − log W

is previously fixed with the properties

P
[
W̃ ∈ [0, ϵ)

]
> 0 for all ϵ > 0,

where P is the probability measure, and

lim
n→∞

nE
[
e−nW̃

]
= 0.

Comments on Conjecture 1: Note that (52) implies that

E[Wr]E[Vr] = E[Ur] =
1

1 + r
,

i.e.,

E[Vr] =
1

(1 + r)E[Wr]
. (58)

The question is whether there exists V with those specific moments (58). On the other
hand, working with (57) and characteristic functions, the point is whether

φ(u) =
φEx(1)(u)

φW̃(u)
(59)

is a characteristic function of a non-negative random variable. Finally, dealing with (57)
and density functions, the question is whether the convolution(

ρW̃ ∗ ρ− log V

)
(t) = ρEx(1)(t) = e−t, t > 0,

is invertible, i.e., computing the deconvolution of functions.

Example 2. Let us see a positive example for Conjecture 1, distinct to the L-fractional
context. Consider

W̃ = − log W ∼ Gamma(α, 1)

and
Ṽ = − log V ∼ Gamma(1 − α, 1),

independent, where 0 < α < 1 is the shape and 1 is the rate. Then (57) holds. Additionally,
for

W = e−W̃ ∼ e−Gamma(α,1), (60)

condition (43) is true, from the moment-generating function of the gamma distribution:

lim
n→∞

nE[Wn] = lim
n→∞

nE
[
e−nW̃

]
= lim

n→∞

n
(1 + n)α = ∞.
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In conclusion, W defined by (60) is a suitable random variable to define a fractional
operator (40) of one parameter α, and its use in modeling shall be investigated. When
α → 1− , the ordinary derivative is obtained. As now will be seen, (62) becomes its inverse
integral operator J . From the densities

ρW(w) = ρW̃(− log w)
1
w

=
1

Γ(α)
(− log w)α−1,

the explicit expressions of the fractional operators are the following:

Dx(t) =
1

Γ(α)t

∫ t

0

(
− log

s
t

)α−1
x′(s)ds

=
1

Γ(α)t

∫ t

0

(
log

t
s

)α−1
x′(s)ds

and

J x(t) =
1

Γ(1 − α)

∫ t

0

(
− log

s
t

)−α
x(s)ds

=
1

Γ(1 − α)

∫ t

0

(
log

t
s

)−α

x(s)ds.

Example 3. Let us see another valid distribution for Conjecture 1, distinct to the gamma.
Consider

W̃ = − log W ∼ Bernoulli(1/2)·Exponential(1)

and
Ṽ = − log V ∼ 1

2
Exponential(1),

independent. Recall that X ∼ Bernoulli(1/2) if it takes the values 0 and 1 with probability
1/2, respectively, and Y ∼ Exponential(1) if its density function is e−y. Observe that W̃ is
not absolutely continuous and its density function is expressed in terms of the Dirac delta
function. The moment-generating functions are

E
[
eW̃u

]
=

1
2

1
1 − u

+
1
2
=

2 − u
2 − 2u

and
E
[
eṼu
]
=

1
1 − u/2

;

therefore,

E
[
e(W̃+Ṽ)u

]
=

2 − u
2 − 2u

× 1
1 − u/2

=
1

1 − u
,

that is, (57) holds. Note that

lim
n→∞

nE[Wn] = lim
n→∞

nE
[
e−nW̃

]
= lim

n→∞
n

2 + n
2 + 2n

= ∞,

so (43) is verified. As now will be seen, (62) is the inverse operatorJ of (40). The explicit
expressions of the operators are

Dx(t) =E
[

x′
(

te−W̃
)]

=
1
2
E
[
x′(tU)

]
+

1
2

x′(t) =
1
2

x(t)− x(0)
t

+
1
2

x′(t)
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and
J x(t) =tE

[
x
(

te−Ṽ
)]

=
∫ t

0
x(s)ρV(s/t)ds =

2
t

∫ t

0
sx(s)ds.

The interpretation of Dx(t) in this case is very simple in terms of x′: the average between
the historical mean value 1

t
∫ t

0 x′(s)ds and the value at the present time t.

Example 4. We present a negative example for Conjecture 1, which shows that certain
conditions on W are required in general for the existence of V. Let

W̃ = − log W ∼ 2·Bernoulli(1/2)·Exponential(1). (61)

Then
E
[
eW̃u

]
=

1
2

1
1 − 2u

+
1
2
=

1 − u
1 − 2u

,

so
lim

n→∞
nE[Wn] = lim

n→∞
nE
[
e−nW̃

]
= lim

n→∞
n

1 + n
1 + 2n

= ∞,

and (43) holds. Now, we have the following ratio (59) of characteristic functions:

φ(u) =
φEx(1)(u)

φW̃(u)

=
1

1−ui
1−ui

1−2ui

=
1 − 2ui

(1 − ui)2

=
1 − 2ui

1 − u2 − 2ui

=
(1 − 2ui)

(
1 − u2 + 2ui

)
(1 − u2 − 2ui)(1 − u2 + 2ui)

=
1 + 3u2 + 2u3i

(1 + u2)
2 ,

where iis the imaginary unit. Then,

|φ(u)| =

√
(1 + 3u2)

2 + 4u6

(1 + u2)
2 .

However, numerical computations show that

|φ(0.1)| ≈ 1.00971, |φ(0.2)| ≈ 1.03561, |φ(0.7)| ≈ 1.15467.

This is impossible for a characteristic function, because its modulus should be less than or
equal to 1 for every u ∈ R. Therefore, there is no random variable Ṽ, independent from
W̃, that meets W̃ + Ṽ ∼ Exponential (1), i.e., (57). We emphasize that it is not necessary
for W̃ to have a discrete part; we can take an absolutely continuous random variable W̃2
that is sufficiently near to (61) in distribution, such that φW̃2

(u) tends to φW̃(u) (by Lévy’s
continuity theorem [37], Section 18.1), and still have |φ(u)| > 1. This example is finished.
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By taking (14) into account, we define the associated integral operator to (40) as

J x(t) = tE[x(tV)], (62)

where t ∈ [0, T], x : [0, T] → C is a continuous function, and V is a random variable,
independent from W and with support in [0, 1], that satisfies (52) (we assume this condition,
as in the L-fractional case or Examples 2 and 3, for instance, in general, we would need
Conjecture 1).

With (62), there is a version of the fundamental theorem of calculus.

Theorem 1. If x : [0, T] → C is a continuously differentiable function, then

J ◦ Dx(t) = x(t)− x(0) (63)

and
D ◦ J x(t) = x(t) (64)

for every t ∈ [0, T]. If x is given by a power series (49), then

J x(t) =
∞

∑
n=0

xnJ tn =
∞

∑
n=0

xn
tn+1

(n + 1)E[Wn]
. (65)

Proof. First, we note that Dx ∈ C[0, T] and J x ∈ C1[0, T]. Indeed, if t1 → t2 in [0, T], then
x′(t1W) → x′(t2W) , and since ∥ x′ ∥∞< ∞ on [0, T], the dominated convergence theorem
gives Dx(t1) → Dx(t2) . For J x ∈ C1[0, T], note that t 7→ E[x(tV)] is C1[0, T], because∣∣∣∣ d

dt
x(tV)

∣∣∣∣= |Vx′(tV)| ≤∥x′ ∥∞,

which has finite expectation; the dominated convergence theorem is employed to ensure
that

d
dt

E[x(tV)] = E
[

d
dt

x(tV)

]
.

Thus, the conclusion of this remark is that both compositions in (63) and (64) are well-
defined when x ∈ C1[0, T]. Now, we aim at proving the equalities in (63) and (64). For (63),
by using the properties of the conditional expectation,

J ◦ Dx(t) =tE[Dx(Vt)]
=tE

[
EW
[
x′(WVt)

]]
=tE

[
x′(WVt)

]
=tE

[
x′(Ut)

]
=t
∫ 1

0
x′(ut)du

=
∫ t

0
x′(s)ds

=x(t)− x(0).



Fractal Fract. 2024, 8, 665 19 of 24

On the other hand, for (64),

D ◦ J x(t) =D[tEV [x(tV)]]

=E[EV [x(tVW)]] + tE
[
WEV

[
Vx′(tVW)

]]
=E[x(tU)] + tE

[
Ux′(tU)

]
=
∫ 1

0
x′(ut)du + t

∫ 1

0
ux′(ut)du

=
1
t

∫ t

0
x(s)ds +

1
t

∫ t

0
sx′(s)ds

=
1
t

∫ t

0
x(s)ds +

1
t

(
tx(t)−

∫ t

0
x(s)ds

)
=x(t).

Integration by parts has been used in the last line. Finally, for (65), observe that J is a
continuous operator from C[0, T] into C[0, T]: if

∥ x − y ∥∞ → 0,

then
∥ J x −J y ∥∞ ≤ T∥ x − y ∥∞ → 0.

Hence, (65) holds, considering that

J tn = tE[tnVn] = tn+1 E[Un]

E[Wn]
=

tn+1

(n + 1)E[Wn]
.

□

We give a version of Picard’s theorem for (48), based on fixed-point theory.

Theorem 2. If f : [0, T]× Ω ⊆ [0, T]×Rd → Rd is continuous and is locally Lipschitz contin-
uous with respect to the second variable (i.e., for every (t1, x1) ∈ [0, T]× Ω, it is Lipschitz on a
neighborhood of it), then the integral problem associated with the differential Equation (48),

x(t) = x0 + J f (t, x(t)) = x0 + tE[ f (tV, x(tV))], (66)

presents local existence and uniqueness of solution in the set of continuous functions. Specifically, if

Q = [0, a]× B(x0, b) ⊆ [0, T]× Ω

is a rectangle where f is M-Lipschitz and B(x0, b) is the closed ball of ∥ · ∥∞-radius b centered at x0,
then an interval of definition of the solution is [0, T∗], such that T∗ ≤ a and

T∗ < min
{

b
∥ f ∥∞

,
1
M

}
,

where ∥ f ∥∞ is the maximum of f on Q. Finally, if the solution of (66) is continuously differentiable,
then it solves (48) locally, by Theorem 1.

Proof. Consider the Banach space

Θ = {y ∈ C[0, T∗] : ∥ y − x0 ∥∞≤ b}.

Let
Λ : Θ → Θ,

Λx(t) = x0 + tE[ f (tV, x(tV))].
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Given x ∈ Θ, if t1 → t2 in [0, T∗], then

f (t1V, x(t1V)) → f (t2V, x(t2V))

almost surely by continuity, and since f is bounded on [0, T]× x([0, T∗]), the dominated
convergence theorem ensures that

Λx(t1) → Λx(t2),

that is, Λx ∈ C[0, T∗]. On the other hand, if t ∈ [0, T∗], then

|Λx(t)−x0| ≤ t ∥ f ∥∞ ≤ b;

therefore,
∥ Λx−x0 ∥∞≤ b

and Λx ∈ Θ. Hence, Λ is well defined.
Let us see that Λ is a contraction: if 1x, 2x ∈ Θ, then

|Λ[1x](t)− Λ[2x](t)| ≤tE[| f (tV, 1x(tV))− f (tV, 2x(tV))|]
≤MtE[||1x(tV)− 2x(tV)|]
≤MT∗∥1 x − 2x ∥∞.

MT∗ < 1, Λ is a contraction and, by Banach fixed-point theorem ([38], Chapter 1), it has a
unique fixed point x ∈ Θ. □

4.4. Power-Series Solutions of Nonlinear Equations: The Cauchy–Kovalevskaya Theorem

We work in the context of Sections 4.1 and 4.2. We do not need the integral operator J
from the previous part.

We focus on scalar problems with the polynomial vector field:

Dx =
m

∑
i=0

aixi, (67)

where a0, . . . , am ∈ R. For example, a logistic vector field would be µx(1 − x/K), µ ∈ R,
and K > 0, with quadratic nonlinearity m = 2, which has previously been studied in the
Caputo sense [11].

Theorem 3. Equation (67) has a power-series solution that converges on a neighborhood [0, ϵ).

Proof. By using a power series of the form (49) and Proposition 1, we have

∞

∑
n=0

xn+1(n + 1)E[Wn]tn =
∞

∑
n=0

(
m

∑
i=0

aiCi(x0, . . . , xn)

)
tn,

where Ci(x0, . . . , xn) are n-th terms of Cauchy products of power i. The coefficients then
satisfy

xn+1 =
1

(n + 1)E[Wn]

m

∑
i=0

aiCi(x0, . . . , xn), x0 = x(0),

where Ci(x0, . . . , xn) are n-th terms of Cauchy products of power i. We know that there
exists a constant K > 0 such that

1
(n + 1)E[Wn]

≤ K
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for all n ≥ 0, by the stronger condition (43). Then, by the triangular inequality,

|xn+1| ≤ K
m

∑
i=0

|ai|Ci(| x0|, . . . , |xn |).

The formal majorizing series ψ(t) = ∑∞
n=0 yntn has coefficients

yn+1 = C
m

∑
i=0

|ai|Ci(y0, . . . , yn), y0 = |x0|.

We have the following functional, algebraic equation:

ψ(t) = y0 + t
∞

∑
n=0

yn+1tn = y0 + Kt
m

∑
i=0

|ai|ψ(t)i.

With

ϕ(t, w) = w − y0 − Kt
m

∑
i=0

|ai|wi, (t, w) ∈ R2,

one has ϕ(0, y0) = 0 and ∂ϕ
∂w (0, y0) = 1 ̸= 0. The implicit-function theorem ([39], Section 8,

Chapter 0) shows that there exists a unique analytic function w ≡ w(z) on a neighborhood
of zero such that w(0) = y0 and ϕ(z, w(z)) = 0. This implies that w(z) = ψ(z) is analytic
at 0. □

Example 5. Fractional differential equations have been used to extend customary epidemic
models [40]. We consider a generalization of the susceptible–infected–recovered (SIR)
model, 

DS = −βSI,
D I = βSI − γI,
DR = γI,

(68)

where β > 0and γ > 0 control the infection and the recovery rates, respectively. With the
form (49) and the differentiation rule from Proposition 1, one has

DS(t) =
∞

∑
n=0

sn+1(n + 1)E[Wn]tn,

D I(t) =
∞

∑
n=0

in+1(n + 1)E[Wn]tn,

DR(t) =
∞

∑
n=0

rn+1(n + 1)E[Wn]tn.

On the other hand, we have the Cauchy product

S(t)I(t) =
∞

∑
n=0

(
n

∑
m=0

smin−m

)
tn.

Then,

sn+1 = − 1
(n + 1)E[Wn]

β
n

∑
k=0

skin−k, (69)

in+1 =
1

(n + 1)E[Wn]

[
β

n

∑
k=0

skin−k − γin

]
, (70)

rn+1 =
1

(n + 1)E[Wn]
γin (71)
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are the coefficients of the solution. The proof of convergence with (69)–(71) is very similar
to Theorem 3, now adapted to the case of a system of three equations [41]. Based on (43),
we bound

|sn+1| ≤ Cβ
n

∑
k=0

|sk||in−k|,

|in+1| ≤ Cβ
n

∑
k=0

|sk||in−k|+ Cγ|in|,

|rn+1| ≤ Cγ|in|,

where C > 0 is a constant. Then we consider the majorizing sequences s̃0 = |s0|, ĩ0 = |i0|,
r̃0 = |r0|,

s̃n+1 = Cβ
n

∑
k=0

s̃k ĩn−k,

ĩn+1 = Cβ
n

∑
k=0

s̃k ĩn−k + Cγĩn,

r̃n+1 = Cγĩn.

If we define the formal power series

S̃(t) =
∞

∑
n=0

s̃ntn,

Ĩ(t) =
∞

∑
n=0

ĩntn,

R̃(t) =
∞

∑
n=0

r̃ntn,

then
S̃(t) = |s0|+ CtβS̃(t) Ĩ(t),

Ĩ(t) = |i0|+ Ct
(

βS̃(t) Ĩ(t) + γ Ĩ(t)
)

,

R̃(t) = |r0|+ Ctγ Ĩ(t).

The analytic function
ϕ : R4 → R3,

(t, x, y, z) 7→ (x − |s0| − Ctxy, y − |i0| − Ct(βxy + γy), z − |r0| − Cty)

satisfies
ϕ
(

0, s̃0, ĩ0, r̃0

)
= 0,

Jϕ
(

0, s̃0, ĩ0, r̃0

)
= 1,

where J is the Jacobian with respect to (x, y, z). By the implicit-function theorem, there are ana-
lytic functions x(t), y(t), and z(t) in a neighborhood of t = 0 such that ϕ(t, x(t), y(t), z(t)) = 0
and x(0) = s̃0, y(0) = ĩ0, z(0) = r̃0. Then, S̃ = x, Ĩ = y and R̃ = z are analytic functions, as
wanted. Once this model (68) is well-defined, further extensions of it could be investigated,
such as the incorporation of a Brownian perturbation giving rise to a stochastic fractional
differential equation.

5. Conclusions and Open Problems

The main novelties of the presented paper were:
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• The definition of normalized fractional operators with non-singular kernel, for the
first time, in Section 3. In the literature, there have been documented deficiencies
of fractional operators with bounded kernels, see [22]. Our work showed that a
rescaling fixes the issues of these operators: inconsistency at zero, units time0, and
lack of fundamental theorem of calculus. Our new operators and equations are
mathematically valid and could be further investigated, beyond exponential and
Mittag–Leffler kernels. During the time the present paper has been in the preprint
server ArXiv and under review, new works citing my suggested normalized operators
are being conducted [32].

• The definition of a general class of fractional operators, based on a probabilistic ap-
proach, in Section 4. My previous articles [25,26] dealt with the L-fractional derivative,
defined as the normalization of the Caputo derivative. The L-fractional derivative
was relevant as it offered alternative properties: units time−1 instead of time−α,
smoothness of solutions, finite ordinary derivative at the origin, etc. These properties
were reviewed in Section 2. The novel Section 4 generalized, for the first time, the
L-fractional derivative and the normalization of the Caputo operator via probability
theory by defining fractional operators with an averaged probabilistically distributed
past. Many properties were stated and demonstrated: the validity and consistency
of the definition, the associated Mittag–Leffler function, existence and uniqueness of
solution by fixed-point theory, and an example related to the SIR model.

In addition to the future research lines suggested in [25], some open problems from
the present paper are the following:

• The study of more properties of rescaled operators with bounded kernels. See Section 3.
• The development of more theory on operators with memory (40). Specifically, it would

be of great relevance to obtain a complete resolution of Conjecture 1. This would better
characterize when the fundamental theorem of calculus and existence-and-uniqueness
results hold; see Section 4.3.

• The study of the new Mittag–Leffler-type function (51): representation formulas,
dynamics, asymptotic values, etc.

• The investigation of dynamical systems based on the new operator (40).
• The design of numerical methods for (48). The search for applications in modeling.
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