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Abstract: Speckle noise is a granular interference that degrades image quality in coherent imaging
systems, including underwater sonar, Synthetic Aperture Radar (SAR), and medical ultrasound.
This study aims to enhance speckle noise reduction through advanced deep learning techniques.
We introduce the Deep Gradient-Guidance Network (DGGNet), which features an architecture
comprising one encoder and two decoders—one dedicated to image recovery and the other to
gradient preservation. Our approach integrates a gradient map and fractional-order total variation
into the loss function to guide training. The gradient map provides structural guidance for edge
preservation and directs the denoising branch to focus on sharp regions, thereby preventing over-
smoothing. The fractional-order total variation mitigates detail ambiguity and excessive smoothing,
ensuring rich textures and detailed information are retained. Extensive experiments yield an average
Peak Signal-to-Noise Ratio (PSNR) of 31.52 dB and a Structural Similarity Index (SSIM) of 0.863 across
various benchmark datasets, including McMaster, Kodak24, BSD68, Set12, and Urban100. DGGNet
outperforms existing methods, such as RIDNet, which achieved a PSNR of 31.42 dB and an SSIM of
0.853, thereby establishing new benchmarks in speckle noise reduction.

Keywords: speckle noise reduction; fractional-order total variation; gradient preservation; deep learning

1. Introduction

Coherent imaging systems, such as underwater sonar [1], Synthetic Aperture Radar
(SAR) [2], and medical ultrasound systems [3], have been widely studied in artificial
intelligence, as shown in Figure 1. This figure illustrates the specific application scenarios
and objectives of the algorithm. However, their image quality is highly influenced by the
speckle noise, which is locally correlated. The speckle noise can hide the finer features of
the image and reduce accuracy in industrial practical applications. Therefore, speckle noise
reduction is very important in enhancing and segmenting coherent images. It involves
sharpening and connecting edges while smoothing speckle regions without causing image
blurring. Furthermore, to make the recovered image structure clear, the methods must
increase the overall contrast but not the graininess of speckles. In other words, speckle
noise reduction aims to augment structural contrast while reducing speckle contrast. The
motivation of this study is to address the challenges of preserving structural details and
avoiding over-smoothness in coherent image denoising. Traditional methods struggle
with balancing noise reduction and edge preservation, leading to either inadequate noise
suppression or the loss of important structural features. This study aims to overcome these
limitations by introducing a novel approach that combines gradient information with deep
learning techniques to achieve superior edge preservation and reduced over-smoothing.
Thus, speckle reduction methods must fulfill essential functions: speckle noise reduction,
edge preservation, boundary enhancement, and texture recovery.
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Thus, speckle reduction methods must fulfill essential functions: speckle noise reduction,
edge preservation, boundary enhancement, and texture recovery.

Figure 1. System architecture of a speckle noise reduction system.

Various denoising methods aim to address noise in coherent images [4]. Traditional
approaches, including spatial domain filters, diffusion filters, Non-Local Mean (NLM)
filters, transform domain techniques, and hybrid filters, have made significant strides in
image denoising [5]. Spatial domain filter methods [6,7] assume multiplicative speckle
noise, utilizing moving filter windows based on local statistical properties to remove noise.
However, they may blur the recovered image due to lacking global structure informa-
tion. Diffusion filter techniques, e.g., the Speckle-Reducing Anisotropic Diffusion filter
(SRAD) [8], aim to enhance image quality but tend to introduce stair-step effects, resulting
in information loss and over-filtering. Non-Local Mean filters combine features of the same
cluster. However, these methods are complex and sensitive to patch quality, and they can
potentially cause blurring when patches are dissimilar. Transform domain techniques de-
noise images using transformed domain properties, e.g., wavelet-based thresholding [9,10],
and tend to introduce artifacts in the denoising results. Zhou et al. [11] proposed a degra-
dation model based on the nonlinear transformation to adjust the intensity of SAR image
pixel values. Bi et al. [12] proposed a mixed-order image denoising algorithm containing
fractional-order and high-order regularization terms, which effectively suppresses the
staircase effect generated by the TV model and its variants while better preserving the
edges and details of the image. Hybrid filter approaches combine methods but suffer from
high complexity, limiting the effectiveness of traditional denoising approaches.

In recent years, deep learning techniques have shown significant progress in image
denoising. The multi-scale-based method [13] and CNN-based method [14] have demon-
strated their advantages. Liang et al. [15] pioneered deep learning for image denoising.
Denoising Convolutional Neural Network (DnCNN) [16] is a universal method but does
not consider underlying structures and textures. Residual Image Denoising Network (RID-
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Various denoising methods aim to address noise in coherent images [4]. Traditional
approaches, including spatial domain filters, diffusion filters, Non-Local Mean (NLM)
filters, transform domain techniques, and hybrid filters, have made significant strides in
image denoising [5]. Spatial domain filter methods [6,7] assume multiplicative speckle
noise, utilizing moving filter windows based on local statistical properties to remove noise.
However, they may blur the recovered image due to lacking global structure informa-
tion. Diffusion filter techniques, e.g., the Speckle-Reducing Anisotropic Diffusion filter
(SRAD) [8], aim to enhance image quality but tend to introduce stair-step effects, resulting
in information loss and over-filtering. Non-Local Mean filters combine features of the same
cluster. However, these methods are complex and sensitive to patch quality, and they can
potentially cause blurring when patches are dissimilar. Transform domain techniques de-
noise images using transformed domain properties, e.g., wavelet-based thresholding [9,10],
and tend to introduce artifacts in the denoising results. Zhou et al. [11] proposed a degra-
dation model based on the nonlinear transformation to adjust the intensity of SAR image
pixel values. Bi et al. [12] proposed a mixed-order image denoising algorithm containing
fractional-order and high-order regularization terms, which effectively suppresses the
staircase effect generated by the TV model and its variants while better preserving the
edges and details of the image. Hybrid filter approaches combine methods but suffer from
high complexity, limiting the effectiveness of traditional denoising approaches.

In recent years, deep learning techniques have shown significant progress in image
denoising. The multi-scale-based method [13] and CNN-based method [14] have demon-
strated their advantages. Liang et al. [15] pioneered deep learning for image denoising.
Denoising Convolutional Neural Network (DnCNN) [16] is a universal method but does
not consider underlying structures and textures. Residual Image Denoising Network
(RIDNet) [17] recovers the image by a single-stage method with the global residual. Atten-
tion mechanisms, e.g., Deep Residual Attention Network (DRAN) [18] and Mixed-Attention
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Residual U-Net (MARU) [19], show their promise in medical image denoising. The Multi-
Scale Attention Network (MSANN) [20] uses a multiscale attention module to denoise.
However, their effectiveness on real ultrasound images is uncertain, and denoised images
often exhibit overly smooth structures. Performance on real coherent image datasets is yet
to be confirmed.

In this paper, we propose a two-branch denoising method to realize edge preserva-
tion and over-smoothness alleviation. Since the gradient map reveals the region where
sharpness is in the image, it is a powerful implementation to guide image restoration;
we design a dual decoder architecture in the proposed network that combines an image
denoising branch and a gradient branch. The gradient branch works in two ways: (i) the
gradient branch provides more structural information to the denoising branch, and (ii) the
multi-level gradient feature can make the denoising branch pay more attention to the sharp
region, which can contribute to the structure-preserving and relieve over-smoothness. Thus,
our proposed DGGNet consists of one encoder and two novel decoders (one is for image
recovery, and the other is for edge preservation). In addition, inspired by the fractional total
variation that can find the fine boundary in signal processing and image processing [21],
we introduced it in our network to preserve texture details. Our method is designed to
improve both edge preservation and over-smoothing reduction. In the subsequent sections,
we present experimental results and ablation studies that validate the effectiveness of the
proposed gradient branch and fractional total variation.

The main contributions of this work are summarized in the following:

• We propose a novel structure-preserving denoising method that utilizes a gradient
branch to guide the recovery of coherent images. This method addresses the challenge
of restoring images from heavy speckle noise while avoiding over-smoothing. To our
knowledge, we are the first to leverage gradient maps to guide speckle noise reduction.

• We introduce a fractional total variational loss function specifically designed to prevent
detail ambiguity and over-smoothing, which are common issues with integral order
methods. This approach effectively preserves rich texture and detail information in
the denoised images. The effectiveness of this loss function is demonstrated through
comprehensive ablation experiments.

• We conduct extensive experiments on established real coherent image datasets. Our
method is compared with existing approaches, and the results show that it achieves
state-of-the-art performance in both quantitative metrics and visual quality.

This paper is organized as follows: Section 2 describes our proposed method. Section 3
presents the experimental results on synthetic and realistic images. The conclusion is
presented in Section 4.

2. Related Work
2.1. Coherent Imaging Denoising

Various efforts have been proposed to remove the noise in coherent images [4]. Tradi-
tional methods, which can be classified into spatial domain filters, diffusion filters, Non-
Local Mean (NLM) filters, transform domain techniques, and hybrid filter approaches, have
achieved significant progress in image denoising [5]. Spatial domain filter methods [6,7]
assume that speckle noise is multiplicative with respect to the noise-free image. In spa-
tial domain filter methods, the pixel in the noise-free image is estimated by a moving
filter window whose weighting coefficients are designed based on statistical properties.
However, these methods only use local information, which can lead to the blurring of the
recovered image due to the loss of global structure. Furthermore, spatial domain methods
may struggle to preserve fine details and textures, potentially leading to suboptimal results
in complex scenarios. Diffusion filter techniques are widely used to improve image quality,
for example, the Speckle-Reducing Anisotropic Diffusion filter (SRAD) [8]. However, it
is important to note that diffusion filters can result in stair-step effects and a loss of infor-
mation while diffusing, which may cause over-filtering. Moreover, diffusion filters often
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face challenges in maintaining edge details, which can impact the overall image quality. In
addition, most of these filters cannot be used for real-time processing.

The Non-Local Mean filters include Non-Local Mean (NLM) [22], the Optimal Bayesian
NLM (OBNLM) filter [23], and the Non-Local Low-Rank Framework (NLLRF) [7]. These
techniques typically combine various features from the same cluster and exhibit high
complexity. They are highly dependent on the quality of the selected patches; if the chosen
patches are dissimilar, the output may end up being blurred. Additionally, the compu-
tational complexity of these methods can be prohibitive, especially for large images or
real-time applications. Low-rank-based methods attempt to approximate the underlying
low-rank matrix from the noisy input [24]. However, these methods perform well only
when the degraded image adheres to the low-rank characteristic. Transform domain tech-
niques denoise images by leveraging properties of the transformed domain image, such
as wavelet-based thresholding techniques [9,10]. Despite their effectiveness, these tech-
niques can introduce artifacts, which can degrade the visual quality of the denoised images.
Hybrid filter approaches combine two or more methods for image denoising but suffer
from high complexity [4]. The combination of multiple methods often results in increased
computational requirements and can complicate the implementation. All of the above
limitations have restricted the effectiveness of traditional image-denoising approaches.

In recent years, deep learning techniques have been widely used for image denoising,
resulting in significant advancements. Some effective speckle-reduction methods based
on deep learning have been developed, including super-resolution via image-adapted
denoising CNNs [25], channel and space attention neural networks [26], and grouped
multi-scale networks [13]. These techniques have shown various advantages in their
respective studies.

Liang et al. [15] were the first to apply deep learning networks to image denoising.
Subsequently, Zhang et al. [16] proposed a feed-forward Denoising Convolutional Neural
Network (DnCNN), which is a universal method for image noise reduction and super-
resolution. DnCNN restores the clean image by estimating the noise present in the input
image. However, it does not account for underlying image structures and textures, as
highlighted by Anwar et al. [17]. To address the limitations of DnCNN, Anwar et al.
proposed a blind Real Image Denoising Network (RIDNet), which is a one-stage method
that achieves good results in natural image denoising. Following this, attention mechanisms
have been introduced in deep learning denoising methods, leading to very promising
results. For instance, Sharif et al. [18] combined attention mechanisms with spatially refined
residual features to address multidisciplinary medical image denoising in the Deep Residual
Attention Network (DRAN). Similarly, Lan et al. [19] proposed a Mixed-Attention Residual
U-Net (MARU), which uses a mixed-attention mechanism for ultrasound image denoising.
A Multi-Scale Attention-guided Neural Network (MSANN) [20] uses a multiscale attention
module to obtain the spatial distribution of speckle noise for processing complex noise.

However, while these methods have been shown to work well with synthetic data, the
effectiveness of denoising real ultrasound images remains uncertain. All denoised images
generated by these deep-learning techniques often suffer from overly smooth structures.
Furthermore, their performance on real ultrasound image datasets has yet to be thoroughly
validated. Unlike conventional approaches, which tend to cause over-smoothing, our
proposed DGGNet is designed to strike a balance between reducing speckle noise and
avoiding excessive smoothing.

2.2. Edge Preservation in Denoising

Image edges are the boundaries between different regions or objects in an image, and
they contain significant information about the image structure and semantics. However,
image edges are often corrupted by noise, blur, or compression artifacts, which degrade
image quality and affect subsequent analysis or processing. Image edge preservation is a
crucial technique in image processing, especially for applications requiring high-quality
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images with clear and undistorted edges, such as medical imaging, remote sensing, and
computer vision.

There are several methods for denoising images while preserving their edges. One
such method is the Non-Local Means (NLM) filter [22]. This method replaces each pixel
with the weighted average of all pixels in the image, with the weights based on the similarity
between the patches centered at the pixels. Another method is the guided filter [27]. This
method applies a guided image filter to the noisy image, with the guidance provided by a
smoothed version of the noisy image, which helps preserve edges while reducing noise.
Finally, the anisotropic diffusion filter [8] applies a diffusion process to the image, with the
diffusion tensor based on the gradient of the image. These methods aim to reduce noise
while preserving edges, corners, and other sharp structures in images.

There are also several edge-preserving image-denoising methods based on deep learn-
ing. One such method is MSANN [20]. It can effectively remove speckle noise using an in-
telligent computing-enabled multi-scale attention-guided neural network. Another method
is Adaptive Thresholding-based DWT [28], which utilizes a modified deep-structured
architecture. This approach applies adaptive thresholding in the Discrete Wavelet Trans-
form (DWT) domain and a modified Deep Convolutional Neural Network (DCNN) to
protect image edges. Unlike other approaches influenced by the quality and diversity of the
training data, our training process extends beyond synthetic image datasets to incorporate
real ultrasound image datasets. This ensures a more comprehensive and robust model that
can better generalize to real-world scenarios.

2.3. Fractional-Order Total Variation

Fractional calculus has been successfully applied to signal processing and image
processing because of its weak singularity, long-term memory, and non-locality [29]. Pu in-
troduced fractional calculus to image processing, leading to the development of a fractional
differential mask [30]. This mask is capable of preserving low-frequency contour features
in smooth areas of an image while enhancing high-frequency edges and textural details
where there are significant variations in grey levels.

Total variation regularization is a well-known sparse representation technique for
image denoising. However, it relies on the assumption of piecewise smooth signals, which
can lead to over-smoothing. Total variation regularization struggles with preserving
intricate details like textures due to this limitation. Various approaches incorporating
higher-order regularization terms have been proposed to address this issue; however, they
often introduce artifacts resembling speckle noise [31]. To strike a balance between over-
smoothing and minimizing noise, Dali et al. [32] proposed integrating a fractional-order
regularization term into image denoising. Due to its superior ability to capture subtle
structures, fractional-order regularization excels at preserving valuable information in
complex patterns. We incorporate this fractional regularization term into our loss function
for speckle noise reduction to mitigate detail ambiguity and over-smoothing.

An efficient matrix approximation method for fractional-order derivatives was pro-
posed by [33], which results in significant simplification in numerical solutions.

Consider the provided signal f (x) obtained by sampling its continuous counterpart
on a uniformly spaced grid with grid size ∆h. Consequently, the discrete representation
is given by f (xi) = f (i∆h), for i = 0, 1, . . . , m. In image processing applications, the
grid size ∆h is commonly set to one, simplifying the description to ∆h = 1. Utilizing the
Grünwald–Letnikov (GL) fractional derivative definition [33], we can express the discrete
formula for the fractional-order derivative of the digital signal as follows:

aG−LDv
x ≈

m

∑
j=0

wv
j f
(
xm−j

)
,

m = 0, j = 0
m = 1, j = 0, 1
m = 2, j = 0, 1, 2
. . .

(1)
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where wv
j = (−1)j

(
v
j

)
represent the coefficients. The coefficients can also be obtained

recursively from

wv
0 = 1, wv

j = (1 − v + 1
j

)wv
j−1, j = 1, 2, . . . . (2)

Using the matrix approximation method, Equation (4) can be rewritten as follows:

Dv
x
−−→
f (x) ≈ ψ

−−→
f (x) (3)

where
−−→
f (x) = [ f (x0), f (x1), . . . , f (xm)]

T and ψ is a matrix defined as

ψ =




wv
0 0 . . . 0

wv
1 wv

0 . . .
...

...
...

. . .
...

wv
m wv

m−1 . . . wv
0




. (4)

When v = 1, the matrix ψ takes the form of a sparse banded matrix, consisting
solely of two diagonals: the main diagonal and a single lower diagonal. Consequently,
the gradient information is determined using only two data points. In cases where v is
not an integer, the matrix ψ transforms into a lower triangular matrix. Notably, all data
points preceding the kth point are utilized to compute the fractional-order derivative of
the point. This enduring reliance on past data points signifies a crucial aspect of fractional
differentiation, distinguishing it significantly from its integer-order counterpart. Due to its
long-term memory, fractional differentiation is an essential tool for modeling characteristic
phenomena in various applications.

3. Proposed Method

The proposed Deep Gradient-Guidance Networks (DGGNet) for coherent image
denoising can be described as follows:

ŷ, ê = DGGNet(u), (5)

where DGGNet is the proposed network, u is the input of noisy coherent image, ŷ is the
output of the denoising result, and ê is the output of the gradient of the image.

The overall architecture of the proposed network is illustrated in Figure 2. This figure
shows that the output of the encoder is directed to two separate decoder branches: one for
image denoising and the other for gradient extraction.
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Figure 2. The network structure of the proposed DGGNet. The DGGNet consists of one encoder and
two decoders (one decoder works for the denoising branch, and the other works for the gradient
branch). The gradient branch guides the denoising branch by fusing gradient information to enhance
structure preservation.

Figure 2. The network structure of the proposed DGGNet. The DGGNet consists of one encoder and
two decoders (one decoder works for the denoising branch, and the other works for the gradient
branch). The gradient branch guides the denoising branch by fusing gradient information to enhance
structure preservation.
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3.1. Denoising Branch

The denoising branch is designed to effectively reconstruct a noise-free image while
preserving structural details. It utilizes a series of convolutional layers and context blocks,
which incorporate multi-scale feature extraction. Each context block employs multiple
dilated convolutions to capture information across various scales, allowing the network to
better understand the structure and texture of the input image. The output of these context
blocks is concatenated and fused, ensuring that important details are maintained while
noise is reduced.

To mitigate the problem of over-smoothing, the denoising branch integrates gradient
information from the gradient branch. The gradients highlight areas of sharpness and
smoothness, enabling the denoising branch to focus on restoring fine details. By imposing
gradient constraints, the denoising branch can effectively reconstruct sharp structures and
reduce the blurring commonly encountered in traditional denoising approaches.

3.2. Gradient Branch

The gradient branch aims to estimate gradient maps from the noisy image. The
gradient map, denoted as Map(u), is derived from the differences between adjacent pixels,
which can be expressed mathematically as

ux(x, y) = u(x + 1, y)− u(x − 1, y),

uy(x, y) = u(x, y + 1)− u(x, y − 1),

∇u(x, y) =
(
ux(x, y), uy(x, y)

)
,

Map(u) = ∥ ∇u ∥2,

(6)

where Map(.) extracts the gradient map, providing essential information about the image’s
edges. The gradient extraction can be efficiently implemented using convolutional layers
with fixed kernels.

3.3. Integration of Branches

The integration of the gradient and denoising branches forms a powerful framework
for image processing. The gradient branch acts as a guiding mechanism, enhancing the
denoising branch’s ability to focus on sharp regions of the image. This dual-branch structure
allows for effective noise reduction without compromising on detail preservation.

The denoising branch also employs a residual architecture with skip connections,
which helps retain fine image details by allowing the gradient and contextual features to be
directly incorporated into the reconstruction process. Additionally, self-attention mecha-
nisms are employed within both branches to capture long-range dependencies and contex-
tual relationships, further enhancing the network’s capability to process images coherently.

3.4. Dilation Rates in Context Blocks

To improve the network’s performance and generalization capabilities, we incorpo-
rate five dilation rates in the context blocks of DGGNet. The dilation rates are set to
1, 2, 4, 8, and 16, with corresponding padding values configured to ensure that the dimen-
sions of output features are consistent with those of input features. This design allows the
model to capture a wider context without losing resolution. Finally, the features extracted
from different dilation rates are concatenated along the channel dimension and mapped
back to the original dimensionality using a convolutional layer.

3.5. Workflow

The algorithm workflow starts by dividing the dataset into training, validation, and
testing sets. The testing set undergoes preliminary structural testing to ensure data integrity.
The training set is used to train the DGGNet network, with performance evaluated on
the validation set after each training iteration to monitor and adjust model parameters.
After the model is fully trained, the testing set is used for final evaluation, producing
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denoised images as the final output. Figure 3 provides a detailed flow diagram of the
proposed algorithm.
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Figure 3. The flow diagram of the proposed DGGNet.

3.6. Fractional Total Variation Regularization

The Grünwald–Letnikov method of fractional calculus is primarily used in signal
processing. Fractional-order differentials can more flexibly capture details and texture
information in images. Compared to integer-order derivatives, fractional-order derivatives
are better suited to handle images with non-integer statistical characteristics. Therefore,
applying fractional-order differential to image denoising allows for better preservation of
image details. We adopt the fractional-order differential expression based on Grünwald–
Letnikov. From [30], we obtain the fractional differential as this formula:
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N

)
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3.6. Fractional Total Variation Regularization

The Grünwald–Letnikov method of fractional calculus is primarily used in signal
processing. Fractional-order differentials can more flexibly capture details and texture
information in images. Compared to integer-order derivatives, fractional-order derivatives
are better suited to handle images with non-integer statistical characteristics. Therefore,
applying fractional-order differential to image denoising allows for better preservation of
image details. We adopt the fractional-order differential expression based on Grünwald–
Letnikov. From [30], we obtain the fractional differential as this formula:

dv

dxv f (x)G−L
∼= x−vNv

Γ(−v)

N−1

∑
k=0

Γ(k − v)
Γ(k + 1)

f
(

x +
vx
2N

− kx
N

)
, (7)

where f (x) is a differ-integrable function, the duration of f (x) is [a, x], and v is any real num-
ber (including a fraction) that indicates the order of the derivation. Γ(v) is a gamma function.
We use this formula as our fractional filter for preserving texture in coherent images.

Based on the filtering function, the fractional filter acts as an attenuation function in
the low-frequency range ( 0 < ω < 1). In the ω > 1 range, it boosts amplitude, and as the
fractional order v increases, the enhancement intensifies. Fractional-order differentiation
can effectively preserve texture in high-frequency image denoising, ensuring enhanced
amplitude in that spectrum. Thus, the fractional total variation regularization can be
utilized for denoising images while preserving both details and edges within the image.

Let f (x, y) = u(x, y) + η(x, y) be the observed noisy image, where (x, y) is the location
with a rectangular image domain Ω ∈ R2, and η is noise. The TVv

p − L2 denoising model
can estimate the desired clean image u(x, y) by solving the following finite-dimensional
optimization problem:

û = arg min
u

{
E(u) = || f − u||22 + λTVv

p(u)
}

, (8)

where || f − u||22 is the data fidelity term, TVv
p(u) is the regularization term, and λ is the

regularization parameter, which controls the level of smoothing.
In this work, we use the discrete definition of the regularization term TVv

p(u) to guide
the training, which is given by the following formula:

TVv
p(u) = ∑

n∈Ω
||∇vu||p, (9)

where ∇v is the fractional-order derivative operator, u is the noisy input image, and p is the
order of the derivative operator.
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Let uv
x and uv

y be linear operators corresponding to horizontal and vertical fractional-
order derivatives. In practical work, we use the matrix approximate method [33] for the
convenient implementation of fractional-order differentiation in the experiments. uv

x and
uv

y in the matrix approximate method can be written in the following form:

{
uv

x = ∇v
x·u

uv
y = u·∇v

y,
(10)

where

∇v
x =




wv
0 0 ... 0

wv
1 wv

0 ...
...

...
...

. . .
...

wv
m wv

m−1 ... wv
0




,∇v
y =




wv
0 wv

1 ... wv
m

... wv
0 ... wv

m−1
...

...
. . .

...
0 0 ... wv

0




. (11)

3.7. Loss Function

The proposed DGGNet uses three loss functions to supervise the training. LID works
for image denoising, LGB works for the gradient branch, and LFTV works for artifact
removal and overall image texture retention. The losses of LID and LGB employ the l1 loss,
while the LFTV loss utilizes fractional total variation. They are defined as follows: assume
that there are N training pairs {ui, yi}i=N

i=1 , where u is the noisy input image and y is the
corresponding ground truth. ŷ is the denoising results of the DGGNet, ê is the gradient
estimation results of the DGGNet, and e is the corresponding ground truth, which is applied
by the Sobel filter [34]. The LID can be formulated as

LID =
1
N

N

∑
i=1

||ŷi − yi||1. (12)

LGB can be formulated as

LGB =
1
N

N

∑
i=1

||êi − ei||1. (13)

As discussed above, total variation regularization is an effective sparse representation
technique for image denoising that can keep the details of the image texture while denoising.
The fractional-order variational loss function LFTV can be formulated as

LFTV =

√
(ŷv

x)
2 +

(
ŷv

y

)2
. (14)

Now, the total loss of our proposed DGGNet can be formulated in the following form:

Ltotal(Θ) = LID + λGBLGB + λFTVLFTV , (15)

where Θ denotes all of the learned parameters in DGGNet and λGB and λFTV are the
balancing weights. Our aim with the proposed DGGNet is to minimize Equation (15). We
experimentally set λGB and λFTV to 0.2 and 0.1, respectively.

4. Experiments

In this section, we evaluate the performance of the existing baselines and our proposed
DGGNet on both synthetic and realistic speckle noise reduction tasks.

We compare our method with several popular despeckling methods (including OBNLM [23],
SRAD [8], NLLRF [7], Multiscale Hybrid Model (MHM) [35]), the representative deep learn-
ing natural image denoising methods (including DnCNN [16], RIDNet [17]), and the latest
ultrasound image denoising method (i.e., MSANN [20]). We use two widely used metrics,
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Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) to quantify the
image quality. We also conduct ablation studies to analyze the effectiveness of different
components of our DGGNet.

4.1. Dataset and Training Settings

In this work, we train the neural networks with two datasets. The first dataset is
synthetic speckle-degraded images, which are generated according to the multiplicative
speckle noise model in [8]. It simulates a noisy image by convolving a 2D point spread
function with the ground truth image using a Radio-Frequency (RF) image. We use
5080 patches of size 128 × 128 from the COCO dataset [36] as the noise-free images.

The second dataset used in this study is sourced from Saset INSIGHT 37C (Saset
Healthcare Inc., Cheng Du, China), which captures real ultrasound images with speckle
noise. During the data collection process, all optimized functions on the machine were
turned off to obtain raw ultrasound images with significant speckle noise. More than
3000 noisy images of the liver were collected. The noisy ultrasound images were then
processed by the noise reduction function of the INSIGHT 37C to produce images that
approximate real noise-free ultrasound images. These processed images are considered
ground truth. All noisy and ground truth image pairs were split into 128 × 128 image
patches. After this initial processing, experienced doctors were invited to review and select
suitable noisy and ground truth image pairs for inclusion in the final ultrasound image
dataset. In our experiment, 5040 image pairs were used for training, 1600 for validation,
and 3760 for the final test.

The proposed DGGNet is implemented on the PyTorch framework and a computer
with four Nvidia GeForce RTX 3090 GPUs. This network is trained for 100 epochs, and the
batch size is 8. The Adam algorithm [37] is applied to optimize the proposed DGGNet. The
Warmup Scheduler [38] was used in the first three epochs, and then CosineAnnealingLR [39]
was utilized for the learning rate between 1 × 10−4 to 1 × 10−6 in the subsequent training
epochs. Peak Signal-to-Noise Ratio (PSNR) [40] and Structural Similarity Index (SSIM) [41]
are used as the metrics in this work.

4.2. Experimental Results on Synthetic Noisy Images and the Ultrasound Image Dataset

After training on the COCO dataset [36], we opted to validate our model on these
five popular datasets (i.e., McMaster [42], Kodak24 [43], BSD68 [44], Set12 [16], and Ur-
ban100 [45]). We generated synthetic noisy images by adding speckle noise with the
parameters f0 ∈ [5.0, 10.0] MHz, σx = 0.1 µs, and σy = 0.15 ms. We also used real speckle
noise data captured from Saset INSIGHT 37C.

(I) Quantitative Analysis: Table 1 shows the PSNR and SSIM values for each method
on these datasets. Our DGGNet method can outperform the baselines in most cases.
This demonstrates the strong generalization ability of our DGGNet method in producing
high-quality despeckled images.

Table 1. PSNR and SSIM results from various despeckling methods on the McMaster [42],
Kodak24 [43], BSD68 [44], Set12 [16], and Urban100 [45] datasets for speckle noise. The best re-
sults are emphasized in bold.

Mcmaster Kodak24 BSD68 set12 URBAN100

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRAD [8] 23.69 0.773 22.55 0.682 22.88 0.744 21.74 0.743 20.71 0.643
OBNLM [23] 23.66 0.623 22.37 0.582 22.90 0.723 22.37 0.724 21.69 0.703

NLLRF [7] 22.81 0.583 21.52 0.498 22.82 0.674 21.50 0.672 20.92 0.631
MHM [35] 29.56 0.856 28.42 0.801 28.22 0.827 28.56 0.838 27.33 0.827

DnCNN [16] 28.30 0.81 27.35 0.76 26.25 0.79 24.54 0.80 25.15 0.75
RIDNet [17] 31.42 0.853 30.11 0.798 30.20 0.832 29.14 0.833 27.0 0.81
MSANN [20] 29.53 0.851 28.02 0.791 28.11 0.823 28.53 0.835 27.21 0.825

DGGNet 31.52 0.863 30.15 0.805 30.17 0.832 29.15 0.845 28.23 0.835
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For quantitative results of the real ultrasound dataset, we trained our DGGNet on
the training set and test it on the validation set. Table 2 shows our established ultrasound
speckle noise dataset’s quantitative results (PSNR/SSIM). It shows that our DGGNet
achieved the best PSNR and SSIM values on this dataset, demonstrating its robustness and
effectiveness. Table 2 supports the claim that the deep learning method can obtain better
results in the denoising task.

Table 2. The quantitative results on our ultrasound speckle noise dataset. The best results are
emphasized in bold.

Method SRAD [8] OBNLM [23] NLLRF [7] MHM [35] DnCNN [16] RIDNet [17] MSANN [20] DGGNet

PSNR 26.90 27.23 27.70 28.30 30.37 33.78 33.80 34.38
SSIM 0.682 0.745 0.794 0.765 0.899 0.923 0.852 0.929

(II) Visual Analysis: Figure 4 compares the visual effects of different despeckling
methods. SRAD [23] and OBNLM [8] smooth the edges and textures too much, losing
fine details. NLLRF [7] does not remove enough noise, resulting in a low-quality image.
MHM [35] and DnCNN [16] reduce noise well, but they tend to over-smooth the denoised
images, especially in regions with fine details or textures. RIDNet [17] over-smooths some
fine details and textures in the denoised images. MSANN [20] can improve the denoising
results but suffers under or over-smooths in some regions. Our DGGNet method can
reduce noise while preserving the integrity of edges, textures, and fine details.
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Figure 4. Denoising visualization of our proposed DGGNet comparing competing methods on
the ultrasound dataset. From left to right, we show the clean, noisy, and denoising results of
SRAD [23], OBNLM [8], NLLRF [7], MHM [35], DnCNN [16], RIDNet [17], MSANN [20] and our
proposed DGGNet.

In this section, we also visualize the denoised results of our proposed method with
those competing methods on a challenging image in our ultrasound image dataset. As
shown in Figure 5, it is clear that our proposed method can restore ultrasound images and
preserve the structure better. However, SRAD [23], OBNLM [8], and NLLRF [7] are over-
smooth images, and NLLRF [7], DnCNN [16], RIDNet [17], and MSANN [20] cannot restore
image structure well. A close inspection of Figure 5 shows that our proposed method can
restore the noisy ultrasound image to the ground truth with better preservation structure
and does not over-smooth. The visual comparisons show that our DGGNet can effectively
suppress the speckle noise while preserving the fine details and textures, whereas the other
methods tend to produce over-smoothed or unnatural results.

Figure 4. Denoising visualization of our proposed DGGNet comparing competing methods on
the ultrasound dataset. From left to right, we show the clean, noisy, and denoising results of
SRAD [23], OBNLM [8], NLLRF [7], MHM [35], DnCNN [16], RIDNet [17], MSANN [20] and our
proposed DGGNet.

In this section, we also visualize the denoised results of our proposed method with
those competing methods on a challenging image in our ultrasound image dataset. As
shown in Figure 5, it is clear that our proposed method can restore ultrasound images and
preserve the structure better. However, SRAD [23], OBNLM [8], and NLLRF [7] are over-
smooth images, and NLLRF [7], DnCNN [16], RIDNet [17], and MSANN [20] cannot restore
image structure well. A close inspection of Figure 5 shows that our proposed method can
restore the noisy ultrasound image to the ground truth with better preservation structure
and does not over-smooth. The visual comparisons show that our DGGNet can effectively
suppress the speckle noise while preserving the fine details and textures, whereas the other
methods tend to produce over-smoothed or unnatural results.
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Figure 5. Denoising visualization of our proposed DGGNet comparing competing methods on the
ultrasound dataset. From left to right, we show the ground truth, noisy, and denoising results of
SRAD [23], OBNLM [8], NLLRF [7], DnCNN [16], MHM [35], RIDNet [17], MSANN [20], and our
DGGNet.

4.3. Realistic Experiments on Various Types of Images

Our DGGNet can effectively reduce speckle noise in various imaging systems, such as
radar imaging, medical ultrasound imaging, and underwater sonar imaging. We provide
the performance of our method on realistic imaging scenarios in Figure 6. This figure
shows that our method can preserve more image details and features than traditional
methods by addressing the lack of adaptability to speckle noise in traditional approaches.
OBNLM [8] and MHM [35] blur the edges and textures of the regions of interest. NLLRF [7]
and SRAD [23] do not remove enough noise, resulting in a low-quality image. DnCNN [16],
RIDNet [17], and MSANN [20] had strong learning abilities and produced enhanced images
with better visual appearance. However, they still had some problems with over-smoothing
or insufficient noise removal. Thanks to the use of gradient branch models that enhance
the network’s ability to preserve edges and the fractional total variation regularization’s
ability preserve texture, the DGGNet outperforms other methods in terms of visual quality.

4.4. Ablation Study

The ablation study is performed on the provided real speckle noise dataset. The
backbone network of our proposed DGGNet is Unet [46]. Our model consists of four
special function blocks: gradient branch architecture, context block, self-attention block,
and fractional total variation. The results of the ablation study are shown in Table 3. When
all components are available, the proposed method achieves the best performance, while
the absence of any of the above components will degrade the performance. The ablation
study shows that all components of our DGGNet contribute to the final denoising result.

Figure 5. Denoising visualization of our proposed DGGNet comparing competing methods on the
ultrasound dataset. From left to right, we show the ground truth, noisy, and denoising results of SRAD [23],
OBNLM [8], NLLRF [7], DnCNN [16], MHM [35], RIDNet [17], MSANN [20], and our DGGNet.

4.3. Realistic Experiments on Various Types of Images

Our DGGNet can effectively reduce speckle noise in various imaging systems, such as
radar imaging, medical ultrasound imaging, and underwater sonar imaging. We provide
the performance of our method on realistic imaging scenarios in Figure 6. This figure
shows that our method can preserve more image details and features than traditional
methods by addressing the lack of adaptability to speckle noise in traditional approaches.
OBNLM [8] and MHM [35] blur the edges and textures of the regions of interest. NLLRF [7]
and SRAD [23] do not remove enough noise, resulting in a low-quality image. DnCNN [16],
RIDNet [17], and MSANN [20] had strong learning abilities and produced enhanced images
with better visual appearance. However, they still had some problems with over-smoothing
or insufficient noise removal. Thanks to the use of gradient branch models that enhance the
network’s ability to preserve edges and the fractional total variation regularization’s ability
preserve texture, the DGGNet outperforms other methods in terms of visual quality.
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Figure 6. Denoising visualization of our proposed DGGNet compares competing methods on
the realistic experiments data. From left to right, we show the noisy, denoising results of
SRAD [23], OBNLM [8], NLLRF [7], MHM [35], DnCNN [16], RIDNet [17], MSANN [20] and
our proposed DGGNet.

Table 3. Ablation study of different components. Both PSNR and SSIM are tested on our real speckle
noise ultrasound image. The best results are emphasized in bold.

Unet ! ! ! ! ! ! ! !

Context block # # ! # # ! ! !

gradient branch # ! # # ! # ! !

Self-attention block # # # ! ! ! ! !

fractional total variation # # # # # # # !

PSNR 33.16 33.27 33.43 33.81 33.83 34.03 34.09 34.38
SSIM 0.919 0.920 0.922 0.923 0.924 0.927 0.928 0.929

As discussed above, our network utilizes the gradient branch to guide the denoising
branch for preserving image structure. The denoising branch obtains additional multi-
level structure features from the gradient branch. To demonstrate the effectiveness of the
gradient branch, we visualize the mean feature map of the image denoising decoding
architecture in Figure 7. The visualization result shows that in the gradient regions, the
map feature that is obtained by the denoising network with the guidance of the gradient
branch can appear more distribution of highlight values. However, the region without the
gradient branch is blurry and has lower brightness. Both Table 3 and Figure 7 support our
claim that the denoising network can perform better in the sharp regions’ recovery and
structure preservation with the guide of the gradient branch.

Figure 6. Denoising visualization of our proposed DGGNet compares competing methods on the realistic
experiments data. From left to right, we show the noisy, denoising results of SRAD [23], OBNLM [8],
NLLRF [7], MHM [35], DnCNN [16], RIDNet [17], MSANN [20] and our proposed DGGNet.
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4.4. Ablation Study

The ablation study is performed on the provided real speckle noise dataset. The
backbone network of our proposed DGGNet is Unet [46]. Our model consists of four
special function blocks: gradient branch architecture, context block, self-attention block,
and fractional total variation. The results of the ablation study are shown in Table 3. When
all components are available, the proposed method achieves the best performance, while
the absence of any of the above components will degrade the performance. The ablation
study shows that all components of our DGGNet contribute to the final denoising result.

Table 3. Ablation study of different components. Both PSNR and SSIM are tested on our real speckle
noise ultrasound image. The best results are emphasized in bold.

Unet ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Context block ✕ ✕ ✓ ✕ ✕ ✓ ✓ ✓

gradient branch ✕ ✓ ✕ ✕ ✓ ✕ ✓ ✓
Self-attention block ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓

fractional total variation ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

PSNR 33.16 33.27 33.43 33.81 33.83 34.03 34.09 34.38
SSIM 0.919 0.920 0.922 0.923 0.924 0.927 0.928 0.929

As discussed above, our network utilizes the gradient branch to guide the denoising
branch for preserving image structure. The denoising branch obtains additional multi-
level structure features from the gradient branch. To demonstrate the effectiveness of the
gradient branch, we visualize the mean feature map of the image denoising decoding
architecture in Figure 7. The visualization result shows that in the gradient regions, the
map feature that is obtained by the denoising network with the guidance of the gradient
branch can appear more distribution of highlight values. However, the region without the
gradient branch is blurry and has lower brightness. Both Table 3 and Figure 7 support our
claim that the denoising network can perform better in the sharp regions’ recovery and
structure preservation with the guide of the gradient branch.
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Figure 7. Average feature maps of results of the upsampling block in the decoding architecture of
the denoising branch in our proposed DGGNet. The top image in (a) is our denoising result, and
the bottom image is the corresponding noisy image. (b–d) are the average feature maps of 16 × 16,
32 × 32, 64 × 64, and 128 × 128 in the denoising branch of the decoding structure. The upper images
of those image pairs are the average feature map of the denoising branch with the gradient branch,
while the lower images are not. This shows that with the guide of the gradient branch in our DGGNet,
the denoising result can preserve structure information better.

5. Conclusions

In this paper, we propose a structure-preserving coherent image-denoising network,
termed DGGNet, which aims to effectively balance image denoising and structural preser-
vation. Our network employs a gradient branch to guide the denoising process and mitigate
the problem of over-smoothing. Additionally, we introduce a fractional total variational
loss function to avoid detail ambiguity and reduce the excessive smoothing often associated
with integral-order methods.

The quantitative results, as shown in Table 2, highlight that DGGNet significantly
outperforms traditional methods in terms of PSNR and SSIM on the ultrasound speckle
noise dataset. Our method achieves a PSNR of 34.38 and an SSIM of 0.929, surpassing
other methods such as SRAD, OBNLM, and NLLRF. Table 1 further confirms that DGGNet
provides the highest PSNR and SSIM values across various datasets, including McMaster,
Kodak24, BSD68, Set12, and Urban100, demonstrating its superior performance compared
to DnCNN, RIDNet, and MSANN.

In summary, DGGNet represents a significant advancement in denoising speckle noise,
providing improved quality for medical imaging, underwater sonar, and synthetic aperture
radar applications. We believe that our method’s integration of cutting-edge preprocessing
techniques and advanced network design offers a substantial improvement over existing
deep learning-based approaches.

6. Future Work

In future work, we aim to enhance denoising techniques by exploring advanced reg-
ularization strategies, hybrid methods, adaptive approaches, and extensive real-world
testing to improve both noise suppression and structural detail preservation. Addition-
ally, we plan to integrate our DGGNet with other models, including generative models,
ensemble techniques, cross-modal approaches, and advanced deep learning frameworks,
to leverage their complementary strengths and achieve superior performance. These ef-
forts will help advance the state-of-the-art in coherent image denoising and extend the
applicability of our methods across diverse imaging domains.

Author Contributions: Conceptualization, H.Y.; methodology, L.W.; software, L.W.; validation, L.W.
and Y.-F.P.; formal analysis, H.Y.; investigation, P.L.; resources, P.L.; data curation, P.L.; writing—
original draft preparation, L.W. and J.L.; writing—review and editing, Y.-F.P.; visualization, J.L.;

Figure 7. Average feature maps of results of the upsampling block in the decoding architecture
of the denoising branch in our proposed DGGNet. The top image in (a) is our denoising result,
and the bottom image is the corresponding noisy image. (b–e) are the average feature maps of
16 × 16, 32 × 32, 64 × 64, and 128 × 128 in the denoising branch of the decoding structure. The upper
images of those image pairs are the average feature map of the denoising branch with the gradient
branch, while the lower images are not. This shows that with the guide of the gradient branch in our
DGGNet, the denoising result can preserve structure information better.

5. Conclusions

In this paper, we propose a structure-preserving coherent image-denoising network,
termed DGGNet, which aims to effectively balance image denoising and structural preser-
vation. Our network employs a gradient branch to guide the denoising process and mitigate
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the problem of over-smoothing. Additionally, we introduce a fractional total variational
loss function to avoid detail ambiguity and reduce the excessive smoothing often associated
with integral-order methods.

The quantitative results, as shown in Table 2, highlight that DGGNet significantly
outperforms traditional methods in terms of PSNR and SSIM on the ultrasound speckle
noise dataset. Our method achieves a PSNR of 34.38 and an SSIM of 0.929, surpassing
other methods such as SRAD, OBNLM, and NLLRF. Table 1 further confirms that DGGNet
provides the highest PSNR and SSIM values across various datasets, including McMaster,
Kodak24, BSD68, Set12, and Urban100, demonstrating its superior performance compared
to DnCNN, RIDNet, and MSANN.

In summary, DGGNet represents a significant advancement in denoising speckle noise,
providing improved quality for medical imaging, underwater sonar, and synthetic aperture
radar applications. We believe that our method’s integration of cutting-edge preprocessing
techniques and advanced network design offers a substantial improvement over existing
deep learning-based approaches.

6. Future Work

In future work, we aim to enhance denoising techniques by exploring advanced reg-
ularization strategies, hybrid methods, adaptive approaches, and extensive real-world
testing to improve both noise suppression and structural detail preservation. Addition-
ally, we plan to integrate our DGGNet with other models, including generative models,
ensemble techniques, cross-modal approaches, and advanced deep learning frameworks,
to leverage their complementary strengths and achieve superior performance. These ef-
forts will help advance the state-of-the-art in coherent image denoising and extend the
applicability of our methods across diverse imaging domains.
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Abbreviations
The following abbreviations are used in this manuscript:
CNN Convolutional Neural Network
DGGNet Deep Gradient-Guidance Networks
DnCNN Denoising Convolutional Neural Network
DRAN Deep Residual Attention Network
MARU Mixed-Attention Residual U-Net
MHM Multiscale Hybrid Model
MSANN Multi-Scale Attention Network
NLLRF Non-Local Low-Rank Filter
NLM Non-Local Means
OBNLM Order-Based Nonlocal Means
PSNR Peak Signal-to-Noise Ratio
RF Radio-Frequency
RIDNet Residual Image Denoising Network
SAR Synthetic Aperture Radar
SRAD Speckle Reducing Anisotropic Diffusion
SSIM Structural Similarity Index
U-Net U-Net Network
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