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Abstract: This paper investigates the leader-following H∞ consensus of fractional-order multi-agent
systems (FOMASs) under input saturation via the output feedback. Based on the bounded real
lemma for FOSs, the sufficient conditions of H∞ consensus for FOMASs are provided in α ∈ (0, 1)
and [1, 2), respectively. Furthermore, the iterative linear matrix inequalities (ILMIs) approaches are
applied for solving quadratic matrix inequalities (QMIs). The ILMI algorithms show a method to
derive initial values and transform QMIs into LMIs. Mathematical tools are employed to transform
the input saturation issue into optimal solutions of LMIs for estimating stable regions. The ILMI
algorithms avoid the conditional constraints on matrix variables during the LMIs’ construction and
reduce conservatism. The approach does not disassemble the entire MASs by transformations to the
Laplacian matrix, instead adopting a holistic analytical perspective to obtain gain matrices. Finally,
numerical examples are conducted to validate the efficiency of the approach.

Keywords: fractional-order multi-agent systems; H∞ control; static output feedback; iterative linear
matrix inequality

1. Introduction

In recent decades, multi-agent systems (MASs) have been the subject of extensive
research, resulting in substantial achievements in the field. MASs are utilized in many
practical domains, including traffic management [1] and power systems [2,3]. These
applications rely significantly on the consensus of MASs, which involves the states of agents
converging to a desired state based on information from neighbouring agents [4]. Extensive
studies have been conducted on the consensus for MASs with integer-order differential
models. However, integer-order models are inadequate for accurately representing some
non-classical phenomena in various physical systems.

With the advancement of fractional calculus theory, fractional-order systems (FOSs)
and fractional-order MASs (FOMASs) have emerged as a significant direction. Many
achievements have been made in integer-order systems [5–7], but the utilization of frac-
tional derivatives allows for a more comprehensive understanding of the characteristics
of materials and systems exhibiting power-law, nonlocal, or long-term memory. FOSs
offer enhanced capabilities for modelling and analysing complex systems, e.g., electrical
systems [8,9], economic systems [10], motion models [11], and biological models [12,13].
The stability of control systems is a fundamental problem, certainly including those in-
volving FOSs. It is not possible to derive the stability criteria of FOSs directly from those
of integer-order systems. Fortunately, in [14], the authors establish LMI-based stability
criteria and design a method for robust feedback state stabilization control for commen-
surate FOSs with α ∈ (0, 1) and α ∈ [1, 2). In [15], a necessary and sufficient condition
for unified LMI formulation is provided to ensure the stability of FOSs within α ∈ (0, 2).
The aforementioned study makes a contribution to the consensus problem of FOMASs. In
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leader-following consensus, the state of followers needs to be consistent with the leader.
In [16], the leader-following consensus of FOMASs with time delay is studied. Using
the Lyapunov method, some consensus criteria are proposed to guarantee the consen-
sus. Focusing on singular systems, the authors in [17] investigate the observer-based
leader-following consensus problem of singular FOMASs. Then, the paper provides the
corresponding control protocol and the calculation method of gain matrices. In [18], the
distributed fixed-time leader-following consensus for FOMASs with a dynamic virtual
leader under external disturbances is investigated, and a sliding-mode control protocol is
designed. Meanwhile, singular-perturbation FOMASs are modelled and studied in [19],
which provides a sufficient condition for the leader-following consensus. Nevertheless,
the leader-following consensus of FOMASs in these results is based on state feedback. In
most cases, only the measurement output of the agents is available, which indicates that
the above method has certain limitations.

In comparison to state feedback, control via output feedback is a challenging problem,
largely due to the effect of measurement matrices. Furthermore, the consensus of FOMASs
via output feedback is a highly intricate issue. The stability criteria of FOSs with α ∈ (0, 1)
comprise two matrix variables, whereas in α ∈ [1, 2), the matrix variable is related to
the order number. In [20–23], static output feedback control is employed for FOSs, and a
matrix exchange condition is utilized to integrate the matrix variable with gain matrices.
This approach utilizes singular value decomposition (SVD) of the measurement matrices.
Nevertheless, this approach imposes constraints on the form of matrix variables and tends
to be conservative. The authors in [24] also adopt some strong assumptions to obtain a
feasible solution, which brings conservatism. Similarly, in the output feedback consensus
of FOMASs, limitations often exist. In [20], sufficient conditions are provided for the leader-
following consensus of singular FOMASs with α ∈ (0, 2). The authors in [25] perform an
analogous study, and the SVD method is always indispensable. To complicate matters,
disturbances persist in actual systems, and the output information transmitted between the
agents contains the disturbances.

For FOMASs, the H∞ control method provides substantial benefits in addressing
system uncertainty, robustness optimization, and other pertinent issues. Ref. [26] derives
the bounded real lemma for FOSs and establishes the foundation for H∞ control. In [27], a
proposal is made to extend the application of the H∞ control method from integer-order
systems to FOSs. Robust fault-tolerant H∞ control for FOSs with actuator faults and
uncertainties is addressed in [28] through the design of an output feedback controller. For
singular FOSs, a state feedback control strategy is presented that guarantees the prescribed
H∞ performance in [29]. These works form the foundation of the H∞ consensus of FOMASs.
In [30], the admissible consensus of fuzzy singular FOMASs is considered, a sufficient
condition for a system achieving admissible consensus while satisfying H∞ performance.
Ref. [31] investigates the H∞ consensus problem for discrete-time FOMASs. However,
the research remains limited. The output feedback H∞ consensus remains a challenging
field. Meanwhile, the control input saturation is a common feature of practical engineering
systems, due to physical limitations [32–34]. This renders the output feedback consensus
for FOMASs a complex process.

The discussion provides the impetus for the ILMI algorithms towards the leader-
following H∞ consensus of FOMASs with input saturation via output feedback. The
contributions are as follows:

(i) Based on the real bound lemma of FOSs, sufficient conditions for leader-following
output feedback H∞ consensus of FOMASs in α ∈ (0, 1) and [1, 2) are provided. The
Laplacian matrix precludes the direct design of controllers. In traditional methods,
transformation and decomposition of the error system are invariably required, hin-
dering the investigation of its robustness. The proposed method adopts a holistic
analytical perspective to the entire error system, which differs from the decomposition
of error systems using traditional methods in [17,19,20] .
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(ii) For solving the QMIs, the ILMI algorithms are provided, which propose a calculation
method for initial values. Based on the stability region of FOSs, the iterative conditions
are designed to guarantee the consensus condition of FOMASs. This paper delves
deeper into the issue of the input saturation, which is reframed as an LMI-based opti-
misation problem. The ILMI algorithms circumvent the necessity for matrix exchange
conditions from the SVD method. Compared to the work in [20,24,25], no strong
assumptions are required for feasible solutions, and this reduces the conservatism.

Notations: Given a matrix A, sym(A) denotes AT + A, where AT is the transpose
of A, and her(A) = A∗ + A, where A∗ is the conjugate transpose of matrix A. A > 0
and A < 0 represent that A is positive definite and negative definite, respectively. Then,
A ⩾ 0 denotes that A is positive semi-definite and the ⋆ symbol stands for the symmetric
part. The Kronecker product is represented by ⊗. arg(·) denotes the argument of complex
numbers, and spec(A) indicates the spectrum of matrix A. Rn×m stands for sets of n × m
real matrices. diag(·) represents a diagonal matrix. With α ∈ (0, 2), denote a = sin

(
α π

2
)
,

b = cos
(
α π

2
)
.

2. Problem Formulation and Preliminaries

An MAS consists of N followers represented by the undirected graph G = (V , E ,A),
where V = {1, 2, . . . ,N} represents a set of N followers, and E = {(i, j) : i, j ∈ V} is the
edge set. The adjacency matrix is A =

[
aij
]
N×N , and if (i, j) ∈ E , aij > 0, otherwise aij=0.

Furthermore, the communication graph between the leader and followers is denoted
as G̃. diag(h1, h2, · · · , hN ) represents the communication. If follower i receives the infor-
mation from the leader, then hi > 0, otherwise hi = 0. The Laplacian matrix is defined as
L =

[
lij
]
∈ RN×N , where

lij =

−aij, i = j,

∑N
j=1 aij, i ̸= j.

Consider the FOMAS under actuator saturation, and the N followers are described by
Dαxi(t) = Axi(t) + Bsat(ui(t)) + D1wi(t),
zi(t) = Cxi(t) + D2wi(t),
yi(t) = Cyxi(t) + D3wi(t),

(1)

where xi(t) ∈ Rn, ui(t) ∈ Rnu , yi(t) ∈ Rm, zi(t) ∈ Rnz , and wi(t) ∈ Rnw denote the
state, control input, measured output, controlled output, and disturbances, respectively;
A∈ Rn×n, B∈ Rn×nu , D1∈ Rn×nw , D2∈ Rnz×nw , D3∈ Rm×nw , C∈ Rnz×n, and Cy∈ Rm×n are
known system matrices; Dα represents the Caputo fractional derivative of f (t) as

Dα f (t) =
1

Γ(⌈α⌉ − α)
=
∫ t

0

f (⌈α⌉)(τ)

(t − τ)α+1−⌈α⌉ dτ,

and Γ(·) is the Euler gamma function; the saturation function sat(·) for u(t) is denoted as

sat(u) = [sat(u1) · · · sat(unu)]
T ,

sat(us) = sign(us)min{|us|, 1}, s = 1, · · · , nu.

The leader is described by 
Dαx0(t) = Ax0(t),
z0(t) = Cx0(t),
y0(t) = Cyx0(t),

(2)
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where x0(t) ∈ Rn is the state; z0(t) ∈ Rnz and y0(t) ∈ Rm are the control output and the
measured output, respectively.

Assumption 1. The pair (A, B) is controllable and the pair (A, Cy) is observable.

Definition 1 ([35]). The leader-following consensus of the FOMAS in (1) and (2) is achieved if

lim
t→∞

∥xi(t)− x0(t)∥ = 0, i = 1, 2, · · · ,N .

For achieving consensus of the FOMAS in (1) and (2), a distributed consensus protocol
is carried out by

ui(t) = K

(
N
∑
j=1

aij
(
yi(t)− yj(t)

)
+ hi(yi(t)− y0(t))

)
, i = 1, 2, · · · ,N .

If the follower i and the leader are directly connected, then hi > 0, otherwise hi = 0.
The initial values are considered as xi(0) ∈ Rn. Denote the state trajectory as

T(xi(0), t), and the domain of attraction is

D =

{
xi(0) : lim

t→∞
T(xi(0), t) = 0

}
.

For F ∈ Rnu×m, let

L(F) =
{

x(t) ∈ Rn :
∣∣ fsCyx(t)

∣∣ ⩽ 1, s = 1, · · · , nu
}

,

where fs denotes the s-th row of the matrix F; L(F) denotes the region where FCyx(t) is
not saturated.

Lemma 1 ([17,36,37]). Denote K, F ∈ Rnu×m, then for any y(t) ∈ L(F), there is

sat(Ky(t)) ∈ co
{

ΓlKy(t)+Γ−
l Fy(t), l = 1, · · · , 2nu

}
,

where co{·} indicates a convex hull; Γl are diagonal matrices, whose diagonal elements are 0 or 1;
Γ−

l are set as Γ−
l = 1 − Γl . Further, the input saturation is written as

sat(Ky(t)) =
2nu

∑
l=1

ηl
(

ΓlK + Γ−
l F
)
y(t), (3)

where ηl ⩾ 0 and
2nu

∑
l=1

ηl = 1.

Set xei = xi − x0, zei = zi − z0. With the consensus protocol, the error system of
FOMAS in (1) and (2) is written as{

Dαxe(t) =
(

IN ⊗ A + (H⊗ B)K̃(IN ⊗ Cy)
)
xe(t) +

(
IN ⊗ D1 + (H⊗ B)K̃(IN ⊗ D3)

)
w(t),

ze(t) = (IN ⊗ C)xe(t) + (IN ⊗ D2)w(t),
(4)

where xe(t) =
[
xT

e1(t) · · · xT
eN (t)

]T , ze(t) =
[
zT

e1(t) · · · zT
eN (t)

]T , w(t) =
[
wT

1 (t) · · ·

wT
N (t)

]T , K̃ = IN ⊗
2nu

∑
l=1

ηl(ΓlK + Γ−
l F), H = L+ diag(h1, h2, · · · , hN ). Its transfer function

Gwz(s) is (IN ⊗C)
(
sα I − (IN ⊗ A + (H⊗ B)K̃(IN ⊗Cy)))−1(H⊗ B)K̃(IN ⊗ D3)

)
+ IN ⊗D2.
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Lemma 2 ([38]). Consider the FOS as{
Dαx(t) = Ax(t) + Bsat(u(t)),
y(t) = Cyx(t),

(5)

where x(t) ∈ Rn, u(t) ∈ Rnu , and y(t) ∈ Rnu ; A ∈ Rn×n, B ∈ Rn×nu , and Cy ∈ Rm×n. With
u(t) = 0, the system in (5) reduces to

Dαx(t) = Ax(t). (6)

The system in (6) is stable if and only if |arg(spec(A))| > α π
2 .

Remark 1. Based on Lemma 2, if the eigenvalues of A are in the region of the eigenvalues shown in
Figure 1, it is obvious that the system in (6) is stable. Meanwhile, the system in (6) is also stable
even if the eigenvalues of A are moved by τ

2 units in the positive direction of the x-axis, where τ > 0.
Thus, the presence of eigenvalues of A in a specific region of Figure 1 serves as a sufficient condition
for the system’s stability.

Figure 1. Stability region of the system in (6) and region of spec(A): (a) α ∈ (0, 1) and (b) α ∈ [1, 2).

Lemma 3 ([39]). Via u(t) = KCyx(t), if the system in (5) satisfies the stability condition in
Lemma 2, i.e.,

∣∣arg
(
spec

(
A + BKCy

))∣∣ > α π
2 , then the system in (5) is asymptotically stable for

x(0) ∈ Bσ =
{

x(t) ∈ Rn : xTx ⩽ σ
}
⊂ L(F).

Definition 2 ([29]). Define the H∞ norm of transfer function G(s) as ∥G(s)∥∞ = sup
Re(s)⩾0

σmax(G(s)),

where σmax(·) is the maximum singular value of a matrix.

Lemma 4 ([26]). Consider the FOS as{
Dαx(t) = Ax(t) + D1w(t),
z(t) = Cx(t) + D2w(t),

(7)

with the transfer function Gwz(s) = C(sα I − A)−1D1 + D2, where x(t) ∈ Rn and w(t) ∈ Rnw .
Given a scalar γ > 0, the system in (7) is stable and ∥Gwz(s)∥∞ < γ is guaranteed if

(1) For the case α ∈ (0, 1) there exist X ∈ Rn×n and Y ∈ Rn×n such that[
X Y
−Y X

]
> 0, (8)
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sym(A(aX + bY)) (aX + bY)TCT D1
⋆ −γI D2
⋆ ⋆ −γI

 < 0. (9)

(2) For the case α ∈ [1, 2) there exists X ∈ Rn×n > 0 such thather(rAX) rCTX D1
⋆ −γI D2
⋆ ⋆ −γI

 < 0, (10)

where r= ej(1−α) π
2 = a + jb.

Lemma 5 ([40]). X + Yj > 0 is equivalent to (8).

3. Main Results

This section introduces the iterative algorithms for solving the H∞ consensus of
FOMASs via output feedback.

3.1. ILMI Algorithm for Output Feedback H∞ Consensus with α ∈ (0, 1)

In this subsection, it is essential to reference the following lemmas, which form the
basis of the ILMI algorithms. To facilitate the derivation process, the matrices are expressed
as follows:

Pα =

aX + bY 0 0
⋆ I 0
⋆ ⋆ I

, Ã =

IN ⊗ A IN ⊗ D1 0
0 − 1

2 γI 0
IN ⊗ C IN ⊗ D2 − 1

2 γI

, B̃ =

 H⊗ B
0
0

, (11)

C̃ =
[
IN ⊗ Cy IN ⊗ D3 0

]
.

Theorem 1. With α ∈ (0, 1) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved and ∥Gwz(s)∥∞ < γ is guaranteed in
error system (4), if there exist X ∈ RN n×N n, Y ∈ RN n×N n, K ∈ Rnu×m, and F ∈ Rnu×m such
that (8) and

(Ã + B̃K̃C̃)T Pα + PT
α (Ã + B̃K̃C̃) < 0, (12)

where Pα, Ã, B̃, and C̃ are shown in (11) and K̃ is from (4).

Proof. In the case of α ∈ (0, 1) of Lemma 4, consider matrices X0 > 0, Y0 = −YT
0 such thatsym(A(aX0 + bY0)) (aX0 + bY0)

TCT D1
⋆ −γI D2
⋆ ⋆ −γI

 < 0. (13)

Then, introduce a congruence transformation. Pre- and post-multiplying (13) by(aX0 + bY0)
−T 0 0

⋆ 0 I
⋆ ⋆ 0

,

and its transpose, one obtainssym(AT(aX0 + bY0)
−1) (aX0 + bY0)

−T D1 CT

⋆ −γI DT
2

⋆ ⋆ −γI

 < 0.
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Meanwhile, there exist matrices X = XT and Y = −YT that satisfy

(aX0 + bY0)
−1 = aX + bY. (14)

To verify (14), set X and Y as

X =
(aX0 + bY0)

−1 + (aX0 − bY0)
−1

2a
, Y =

(aX0 + bY0)
−1 − (aX0 − bY0)

−1

2b
,

which also satisfy X = XT and Y = −YT . It is easy to see that (aX0 + bY0)(aX + bY) = I,
which proves (14). Then, (13) is transformed intosym(AT(aX + bY)) (aX + bY)T D1 CT

⋆ −γI DT
2

⋆ ⋆ −γI

 < 0. (15)

And the positive definite property of
[

X Y
−Y X

]
is proved by pre- and post-multiplying

it by I2 ⊗ (aX0 + bY0).
Under Assumption 1, the consensus is achieved if and only if the error system in (4)

is stable. Apply (15) in the consensus problem of the FOMAS via output feedback. Then,
the consensus of the FOMAS in (1) and (2) without input saturation is achieved and
∥Gwz(s)∥∞ < γ is guaranteed in error system (4) with α ∈ (0, 1), if there exist X, Y, K, and
F such that (8) andsym(AK̃

T(aX + bY)) (aX + bY)T DK̃ (IN ⊗ Cy)T

⋆ −γI (IN ⊗ D2)
T

⋆ ⋆ −γI

 < 0, (16)

where

AK̃ = IN ⊗ A + (H⊗ B)K̃(IN ⊗ Cy), DK̃ = IN ⊗ D1 + (H⊗ B)K̃(IN ⊗ D3). (17)

Then, using basic matrix operations, one simplifies inequality (16) into (12).

Theorem 2. With α ∈ (0, 1) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved and ∥Gwz(s)∥∞ < γ is guaranteed in
error system (4) if there exist X ∈ RN n×N n, Y ∈ RN n×N n, K ∈ Rnu×m, and F ∈ Rnu×m such
that (8) and

sym(ÃT Pα)− PT
α B̃B̃T Pα + (B̃T Pα + K̃C̃)T(B̃T Pα + K̃C̃) < 0, (18)

where Pα, Ã, B̃, and C̃ are shown in (11) and K̃ is from (4).

Proof. With matrix transformation, (18) is rewritten as

(Ã + B̃K̃C̃)Pα + PT
α (Ã + B̃K̃C̃)T + C̃TK̃TK̃C̃ < 0.

As C̃TK̃TK̃C̃ ⩾ 0 is obvious, it is readily apparent that (12) holds. Based on Lemma 2,
the H∞ consensus is achieved without input saturation.

Theorem 3. With α ∈ (0, 1) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved and ∥Gwz(s)∥∞ < γ is guaranteed in
error system (4) if there exist X ∈ RN n×N n, Y ∈ RN n×N n, K ∈ Rnu×m, F ∈ Rnu×m, and S with
appropriate dimensions such that (8) and[

sym(ÃT Pα − ST B̃B̃T Pα) + ST B̃B̃TS (B̃T Pα + K̃C̃)T

⋆ −I

]
< 0, (19)



Fractal Fract. 2024, 8, 667 8 of 22

where Pα, Ã, B̃, and C̃ are shown in (11) and K̃ is from (4).

Proof. For matrices S and Pα, (S − Pα)T B̃B̃T(S − Pα) ⩾ 0 always holds, and this inequality
is written as

ST B̃B̃T Pα + PT
α B̃B̃TS − ST B̃B̃TS − PT

α B̃B̃T Pα ⩽ 0. (20)

Using the Schur complement on (19), one obtains

sym(ÃT Pα − ST B̃B̃T Pα) + ST B̃B̃TS + (B̃T Pα + K̃C̃)T(B̃T Pα + K̃C̃) < 0. (21)

Combining (20) and (21) yields (18). With the sufficient condition from Lemma 2, this
completes the proof.

Theorem 4. With α ∈ (0, 1) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved for any initial value xi(0) ∈ Bε ⊂
L(F) and ∥Gwz(s)∥∞ < γ and is guaranteed in error system (4) if there exist X ∈ RN n×N n,
Y ∈ RN n×N n, K ∈ Rnu×m, F ∈ Rnu×m, and S with appropriate dimensions and a constant ε > 0
such that (8) and[

sym(ÃT Pα − ST B̃B̃T Pα) + ST B̃B̃TS (B̃T Pα + IN ⊗ (ΓlK + Γ−
l F)C̃)T

⋆ −I

]
< 0, l = 1, . . . , 2nu , (22)

[ 1
ε I CT

y f T
s

fsCy 1

]
⩾ 0, s = 1, · · · , nu. (23)

where Pα, Ã, B̃, and C̃ are shown in (11).

Proof. Since hl ⩾ 0, (22) holds, then (19) is guaranteed. Based on Lemma 3, if (19), (8),
and (23) hold, the FOMAS in (1) and (2) achieves consensus without input saturation.

Then, consider that input is limited. According to the statement in Lemma 3, the
FOMAS achieves consensus for x(0) ∈ Bσ ⊂ L(F). From (23), using the Schur complement,
one obtains

1
ε

I ⩾ CT
y f T

s fsCy, s = 1, · · · , nu.

So 1 ⩾ 1
ε xi(t)Txi(t) ⩾ xi(t)TCT

y f T
s fsCyxi(t) holds, for s = 1, 2, · · · , nu, xi(t) ∈ Bε, and

Bε ⊂ L(F). Therefore, L(F) is estimated by Bε.

According to Lemma 4, the stable region is approximated by utilizing optimization theory:

Maximize ε

X, Y, K, F, subject to (8), (22), and (23).

It is evident that the LMIs from (22) display nonlinear characteristics, particularly due
to the incorporation of product terms. Nevertheless, if the matrix S is predetermined and
holds constant, the QMIs (22) are simplified into LMIs, which inherently possess convexity.
This transformation allows the LMIs to contain feasible solutions for the gain matrices
K and F. Consequently, this paper presents an iterative algorithm aimed at solving (22)
through the following steps.

Prior to commencing the ILMI algorithm, it is essential to define the following notation:

Pαp =

aXp + bYp 0 0
⋆ I 0
⋆ ⋆ I

, and P̃αp =

aXp 0 0
⋆ 0 0
⋆ ⋆ 0

. (24)
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Remark 2. For simplification, the inequality is still not presented in detail. Pα, Ã, B̃, and C̃ are
shown in (11), and Pαp, P̃αp are in (24). p only denotes the number of iterations.

Remark 3. To verify the necessity of step 1, one considers inequality (20), where the equality holds
with S = Pα. S is close to Pα, then the solutions of (19) are also close to those of (18). For obtaining
the appropriate initial value S1, consider the following equation based on (18):

ÃT Pα + PT
α Ã − PT

α B̃B̃T Pα + Q̃ = 0,

where Q̃ represents the product term (B̃T Pα + K̃C̃)T(B̃T Pα + K̃C̃). However, if Q̃ is set to a certain
positive definite matrix directly, the solution of Pα is difficult to obtain and may not be formally
consistent with that in (11). For convenient calculation, setting Y = 0 yieldssym(a(IN ⊗ A)TX)− a2X(H⊗ B)(H⊗ B)TX aX(IN ⊗ D1) (IN ⊗ C)T

⋆ −γI (IN ⊗ D2)
T

⋆ ⋆ −γI



+

Q11 Q12 Q13
⋆ Q22 Q23
⋆ ⋆ Q33

 = 0,

where Q11 = Qα01 is the sub-block of Q̃. After setting Q11 and obtaining the solution of X, it is
obvious that the results of other sub-blocks are obtained and Q̃ is automatically generated. Therefore,
it is only necessary to set Q11 in Algorithm 1.

Algorithm 1 ILMI algorithm for α ∈ (0, 1).
Step 1: Set p = 1 and Y∆,p = 0. Select Qα01 ∈ Rn×n > 0 and solve the Riccati equation:

a(IN ⊗ A)T X∆,p + aX∆,p(IN ⊗ A)− a2X∆,p(H⊗ B)(H⊗ B)T X∆,p + Qα01 = 0. (25)

Step 2: Set

Sp =

aX∆,p + bY∆,p 0 0
⋆ I 0
⋆ ⋆ I

.

Maximize τp subject to the following LMIs:[
sym

(
ÃT Pαp − ST

p B̃B̃T Pαp

)
+ ST

p B̃B̃TSp + τp P̃αp

(
B̃T Pαp + IN ⊗

(
ΓlK + Γ−

l F
)
C̃
)T

⋆ −I

]
< 0,

l = 1, · · · , 2nu ,
(26)

[
Xp Yp
−Yp Xp

]
> 0. (27)

Step 3: Denote τmax,p as the maximum value of τp. If τmax,p ⩾ 0 holds, go to step 7.
Step 4: Minimize trace

(
Xp
)

subject to the LMIs (26) and (27) with τmax,p until the minimized trace
Xmin,p and the corresponding Ymin,p are obtained.
Step 5: Give a small tolerance δ > 0. If ∥ X∆,p − Xmin,p ∥< δ holds, then go to step 6; else, set
p = p + 1, X∆,p = Xmin,p−1, Y∆,p = Ymin,p−1, and return to step 2.
Step 6: The leader-following consensus of the FOMAS in (1) and (2) may not be achieved by static
output feedback, stop.
Step 7: Maximize ε subject to (8), (22), and (23) with Sp and obtain gain matrices K and F for
stabilizing the system, stop.
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Remark 4. Considering (26) from step 2, the system matrix is substituted with IN ⊗ A + τ
2 I,

whose eigenvalues are translated τ
2 units towards the x-axis relative to the eigenvalues of IN ⊗ A

with τ > 0.

In step 3, if τmax,p ⩾ 0 holds, with τ = τmax,p, (26) guarantees that the eigenvalues of
IN ⊗ A are still in the stability region after they move forward by τmax,p

2 units towards the
x-axis, e.g., in Figure 1. And with τ = τmax,p, (26) is seen as a sufficient condition for the
consensus.

Remark 5. In step 4, Yp satisfies YT
p = −Yp and its trace is 0. Thus, the minimization problem

only involves the trace of Xp.

Remark 6. After multiple iterations, Sp is obtained to ensure (8) and (22) have feasible solutions.
To obtain a large domain of attraction L(F) for the initial value xi(0), thus in step 7, an optimization
problem is solved subject to (8), (22), and (23) to acquire gain matrices.

3.2. ILMI Algorithm for Output Feedback Consensus with α ∈ [1, 2)

In the section, the case of α ∈ [1, 2) is considered. Complex numbers exist in (10) of
Lemma 4 and bring difficulties to the solution. Thus, similar to the case in α ∈ (0, 1), the
following lemmas are given for obtaining the gain matrices. Then, the parameter matrices
are set as

X̃a =

aX 0 0
⋆ I 0
⋆ ⋆ I

, X̃b =

bX 0 0
⋆ I 0
⋆ ⋆ I

, X̌ =

[
X̃a X̃b
−X̃b X̃a

]
, (28)

Ǎ = I2 ⊗ Ã, B̌ = I2 ⊗ B̃, Č = I2 ⊗ C̃, Ǩ = I2 ⊗ K̃ = I2N ⊗
2nu

∑
l=1

ηl(ΓlK + Γ−
l F),

where Ã, B̃, and C̃ are shown in (11).

Theorem 5. With α ∈ [1, 2) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved and ∥Gwz(s)∥∞ < γ is guaranteed in
error system (4) if there exist X ∈ RN n×N n > 0, K ∈ Rnu×m, and F ∈ Rnu×m such that

(Ǎ + B̌ǨČ)TX̌ + X̌T(Ǎ + B̌ǨČ) < 0, (29)

where Ǎ, B̌, Ǩ, Č, and X̌ are shown in (28).

Proof. Based on the proof from (13) to (15), the system in (7) is stable and ∥Gwz(s)∥∞ < γ
holds if there exists X > 0 such thather(rATX) rXD1 CT

⋆ −γI D2
⋆ ⋆ −γI

 < 0. (30)

Considering the FOMAS in (1) and (2) without input saturation, one obtains

her

 AK̃ DK̃ 0
0 − 1

2 γI 0
IN ⊗ C IN ⊗ D2 − 1

2 γI

(a + bj)X 0 0
⋆ I 0
⋆ ⋆ I

 < 0, (31)

where AK̃ and DK̃ are shown in (17).
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Based on Lemma 5, an equivalent condition of (31) is given as[
sym

(
(Ã + B̃K̃C̃)TX̃a

)
(Ã + B̃K̃C̃)TX̃b − X̃T

b (Ã + B̃K̃C̃)

⋆ sym
(
(Ã + B̃K̃C̃)TX̃a

) ]
< 0. (32)

Simplify (32) and this completes the proof.

Due to the similarity in the proof process with Lemmas 2–4, proofs are not provided
for the following lemmas.

Theorem 6. With α ∈ [1, 2) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved and ∥Gwz(s)∥∞ < γ is guaranteed in
error system (4) if there exist X ∈ RN n×N n > 0, K ∈ Rnu×m, and F ∈ Rnu×m such that

ǍTX̌ + X̌T Ǎ − X̌T B̌B̌TX̌ + (B̌TX̌ + ǨČ)T(B̌TX̌ + ǨČ) < 0, (33)

where Ǎ, B̌, Ǩ, Č, and X̌ are shown in (28).

Theorem 7. With α ∈ [1, 2) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved and ∥Gwz(s)∥∞ < γ is guaranteed in
error system (4) if there exist X ∈ RN n×N n > 0, K ∈ Rnu×m, F ∈ Rnu×m, and S with appropriate
dimensions such that[

ǍTX̌ + X̌T Ǎ − ST B̌B̌TX̌ − X̌T B̌B̌TS + ST B̌B̌TS (B̌TX̌ + ǨČ)T

⋆ −I

]
< 0, (34)

where Ǎ, B̌, Ǩ, Č, and X̌ are shown in (28).

Theorem 8. With α ∈ [1, 2) and a given scalar γ > 0, the leader-following consensus of the
FOMAS in (1) and (2) without input saturation is achieved for any xi(0) ∈ Bε ⊂ L(F) and
∥Gwz(s)∥∞ < γ and is guaranteed in error system (4) if there exist X ∈ RN n×N n > 0, K ∈
Rnu×m, F ∈ Rnu×m, S with appropriate dimensions, and a constant ε > 0 such that (23) and[

ǍTX̌ + X̌T Ǎ − ST B̌B̌TX̌ − X̌T B̌B̌TS + ST B̌B̌TS (B̌TX̌ + ǨlČ)T

⋆ −I

]
< 0, (35)

l = 1, . . . , 2nu ,

where Ǎ, B̌, Č, and X̌ are shown in (28) and Ǩl = I2N ⊗ (ΓlK + Γ−
l F).

Similarly, as with the issue pertaining to α ∈ (0, 1), the domain of attraction is esti-
mated by the following method:

Maximize ε

X, Y, K, F, subject to X > 0, (23), and (35).

In addition, (35) are not LMIs and difficult to solve with the LMI toolbox in MATLAB
R2022a. Accordingly, the following iterative algorithm is provided for obtain matrices K
and F. To simplify writing, one denotes

P̌αp = I2 ⊗

aXp 0 0
⋆ 0 0
⋆ ⋆ 0

. (36)
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Remark 7. In order to provide greater clarity, the inequalities are not presented in full detail. Ǎ, B̌,
Č, and X̌p are shown in (28), and p is the number of iterations. Ǩl is from Lemma 8.

Remark 8. The iterative process is similar to that in Algorithm 1. Due to the difficulty in solving

ǍTX̌ + X̌T Ǎ − X̌T B̌B̌TX̌ + Q̃ = 0,

X△,1 is solved by (37), which is the sub-block in the first row and first column in the consolidation
of the left matrices ǍTX̌ + X̌T Ǎ − X̌T B̌B̌TX̌. In step 2, Sp is constructed and close to X̌p.

Remark 9. After certain experiments, the initial value X△,1 is related to the convergence of the
algorithm. Then, the selection of Qα01 and Qα12 in step 1 indirectly influences the convergence
property. In some cases, Qα01 and Qα12 are set as WTW, where W is nonsingular. Qα12 = I is also
a choice, which leads to a convergent result.

Remark 10. In most existing studies, the consensus problem of MASs relies on transformation towards
to H, such as H = T−1 JT, where J is a diagonal matrix containing eigenvalues λi of H. If each
subsystem matrix A + λiBKCy satisfies the stability condition, i.e.,

∣∣arg
(
spec

(
A + λiBKCy

))∣∣ >
α π

2 , the consensus of the MAS is achieved. However, when an MAS contains disturbances w(t)
or nonlinear terms, the analysis process becomes complex after multiplying the parameter matrix
with the transformation matrix T. In contrast, ILMI algorithms contribute a holistic analysis of the
MAS, which facilitates performance assessment under disturbances.

Remark 11. From Algorithms 1 and 2, it is evident that no constraint is imposed on the matrix
variables containing X and Y.

Algorithm 2 ILMI algorithm for α ∈ [1, 2).
Step 1: Set p = 1 and select Qα12 > 0, then solve the Riccati equation:

a(IN ⊗ A)T X∆,p + aX∆,p(IN ⊗ A)− a2X∆,p(H⊗ B)(H⊗ B)T X∆,p + Qα12 = 0. (37)

Step 2: Set Sp =

[
1 0
0 1

]
⊗

aX∆,p 0 0
⋆ I 0
⋆ ⋆ I

+

[
0 1
−1 0

]
⊗

bX∆,p 0 0
⋆ I 0
⋆ ⋆ I

.

Maximize τp subject to the following LMIs:

Xp > 0,[
ǍT X̌p + X̌T

p Ǎ − ST
p B̌B̌T X̌p − X̌T

p B̌B̌TSp + ST
p B̌B̌TSp−τp P̌αp

(
B̌T X̌p+ǨlC̃

)T

⋆ −I

]
< 0,

(38)
l = 1, · · · , 2nu , (39)

Step 3: Denote τmax,p as the maximum value of τp, if τmax,p ⩾ 0, go to step 7.
Step 4: Minimize trace

(
Xp
)

subject to the LMIs (39) and (38 ) with τmax,p until the minimized
traceXmin,p is obtained.
Step 5: Give a small tolerance δ > 0, if ∥ X∆,p − Xmin,p ∥< δ, then go to step 6; else, set p = p + 1
and X∆,p = Xmin,p−1, and go back to step 2.
Step 6: The leader-following consensus of the FOMAS in (1) and (2) may not be achieved by static
output feedback, stop.
Step 7: Maximize ε subject to (35), (23) with Sp and obtain K and F for achieving consensus, stop.

The existing main method involves SVD towards Cy, such as Cy = U
[
C̃y 0

]
VT ,

where U and V are the unitary matrices. Then, the structure of X is restricted as

X = V
[

X11 0
0 X22

]
VT ,
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or an upper triangular matrix in special cases for satisfying the exchange condition CyX =
XeCy, where Xe is another matrix variable. Note that for satisfying the exchange condition,
the stability criterion used is similar to that of integer-order systems, which is independent
of the order α. Thus, the method is conservative.

Remark 12. In Table 1, it is shown that this paper takes into account multiple scenarios in the
study of FOMASs with α ∈ (0, 1) or [1, 2). In the existing literature, there is relatively little
research on the H∞ consensus for FOMASs, e.g., [30]. With the further consideration of output
feedback, the limitation to the matrix variables is a common feature of many articles and an essential
condition. The ILMI algorithms presented in this article avoid this limitation and are used in cases
where there are disturbances from the output information and the control input saturation. Thus,
the ILMI algorithms have a broad scope of applicability.

Table 1. Comparison of existing methods.

Ref. Range of α Output Feedback H∞ MAS Input Saturation No Limitation to Matrix Variables

[41] (0, 1) ✓ × × × ×
[25] (0, 1) ✓ × ✓ ✓ ×
[42] (0, 1) ✓ × × × ×
[43] (0, 1) ✓ × × × ×
[44] (0, 1) ✓ × × × ×
[30] (0, 1) ✓ ✓ ✓ × ×
[45] 1 × ✓ ✓ × -
[24] (0, 2) ✓ ✓ × × ×
[17] (0, 2) × × ✓ ✓ -

Ours (0, 1), [1, 2) ✓ ✓ ✓ ✓ ✓

4. Numerical Examples

This section presents two numerical examples to verify the effectiveness of the pro-
posed ILMI algorithms with α ∈ (0, 1) and [1, 2), respectively.

Example 1. Consider the FOMAS in (1) and (2) with α = 0.7 and set γ = 10. The undirected
graph is shown in Figure 2 and

H =


3.2 −0.5 0 −0.7
−0.5 3.2 −0.7 0

0 −0.7 3.4 −0.7
−0.7 0 −0.7 1.4

.

Figure 2. The weighted undirected graph in example 1.

The system matrices of each agent are

A =

−1 3 1
1 −0.5 −2
1 0 −1

, C =

1 0 1
0 1 0
1 1 0

, B =

1 0.5
2 1
1 0

,
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D1 =

1 2
1 0
1 1

, D2 =

1 0
0 1
1 1

, D3 =

[
1 0
0 1

]
, Cy =

[
1 0.5 1
2 0 1

]
.

Based on Algorithm 1, select Qα01 = I in step 1. Solve Equation (25) and obtain

X△,1 =



0.2453 −0.0051 0.1220 0.0238 0.0142 0.0224 0.0215 0.0137 0.0194 0.0762 0.0474 0.0699
−0.0051 0.2994 −0.3851 0.0142 0.0555 −0.0784 0.0137 0.0520 −0.0725 0.0474 0.1822 −0.2555
0.1220 −0.3851 0.9754 0.0224 −0.0784 0.2007 0.0194 −0.0725 0.1838 0.0699 −0.2555 0.6495
0.0238 0.0142 0.0224 0.2344 −0.0122 0.1123 0.0287 0.0170 0.0272 0.0293 0.0187 0.0263
0.0142 0.0555 −0.0784 −0.0122 0.2724 −0.3475 0.0170 0.0667 −0.0943 0.0187 0.0712 −0.0994
0.0224 −0.0784 0.2007 0.1123 −0.3475 0.8808 0.0272 −0.0943 0.2418 0.0263 −0.0994 0.2514
0.0215 0.0137 0.0194 0.0287 0.0170 0.0272 0.2401 −0.0081 0.1170 0.0733 0.0455 0.0673
0.0137 0.0520 −0.0725 0.0170 0.0667 −0.0943 −0.0081 0.2875 −0.3681 0.0455 0.1752 −0.2458
0.0194 −0.0725 0.1838 0.0272 −0.0943 0.2418 0.1170 −0.3681 0.9318 0.0673 −0.2458 0.6250
0.0762 0.0474 0.0699 0.0293 0.0187 0.0263 0.0733 0.0455 0.0673 0.4418 0.1170 0.3024
0.0474 0.1822 −0.2555 0.0187 0.0712 −0.0994 0.0455 0.1752 −0.2458 0.1170 0.7689 −1.0436
0.0699 −0.2555 0.6495 0.0263 −0.0994 0.2514 0.0673 −0.2458 0.6250 0.3024 −1.0436 2.6498


.

Then, S1 is obtained from step 2.
Maximize τ subject to (39) and (27) and the result is τmax,1 = 6.6930 × 10−4 > 0. Go to

step 7 and maximize ε subject to (8), (37), and (23) with Sp. The following feasible solutions
are obtained:

ε = 9.8434,

K =

[
0.3339 −0.3049
−0.6050 0.3377

]
,

F =

[
0.3350 −0.3018
−0.6050 0.3377

]
.

Consider the case sat(Ky(t)) = FCyx(t). Calculating spec(I4 ⊗ A + (H⊗ B)(I4 ⊗ F)
(I4 ⊗ Cy)), one obtains −1.3795 + 2.6138j, −1.3795 − 2.6138j, 0.0422 + 1.6390j, 0.0422 −
1.6390j, −0.9505+ 2.1520j, −0.9505− 2.1520j, −0.6546+ 1.9703j, −0.6546− 1.9703j, −2.6729,
−2.1906, −1.5200, −3.7509, which satisfies the stability condition in Lemma 2.

The state of each agent and the control input u(t) are shown in Figure 3. At the beginning,
the input is saturated. From Figures 4–6, it is shown that the FOMAS has achieved consensus.
Figure 7 depicts that the error always tends to zero after the state change in leader.

Figure 3. The control input of each agent in example 1.
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Figure 4. The state of each agent in example 1.

Figure 5. The state of each agent in example 1.

Figure 6. The state of each agent in example 1.
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Figure 7. The state of error system in example 1.

Remark 13. From the eigenvalues in the results, it is obvious that 0.0422± 1.6390j contain positive
real parts. As mentioned in Remark 11, the stability criterion is not related to α for the exchange
condition CyX = XeCy. Thus, the eigenvalues of the matrix must have negative real parts. In other
words, there exist gain matrices for the consensus of FOMASs, but they may not be obtained by using
the SVD method. Thus, the ILMI algorithms in this paper are less conservative than the SVD method.

Example 2. Consider the FOMAS in (1) and (2) with α = 1.3 and set γ = 20. The undirected
graph is shown in Figure 8 and the parameter matrices are as follows:

H =


3.5 −0.5 0 −1
−0.5 2 −1 0

0 −1 1.5 −0.5
−1 0 −0.5 1.5

.

A =

−2 0.4 1
1 −1 −2
2 0 −1

, C =

1 1 1
0 1 0
1 0 1

, B =

1 1
2 1
1 0

,

D1 =

0.5 1
1 0
1 1

, D2 =

1 0
1 1
2 1

, D3 =

1 0.5
0 1
1 1

, Cy =

[
1 0 0
0 1 1

]
.

Figure 8. The weighted undirected graph in example 2.

Given Qα12 = I, the equation (37) has a feasible solution as
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X△,1 =



0.4009 −0.2134 0.4429 0.1142 0.0233 0.1134 0.1326 0.0353 0.1167 0.1741 0.0283 0.1876
−0.2134 0.3677 −0.4388 0.0233 0.0205 0.0008 0.0353 0.0105 0.0287 0.0283 0.0365 −0.0142
0.4429 −0.4388 0.9906 0.1134 0.0008 0.1490 0.1167 0.0287 0.1075 0.1876 −0.0142 0.2732
0.1142 0.0233 0.1134 0.6321 −0.1767 0.6930 0.3452 0.0730 0.3401 0.1882 0.0520 0.1617
0.0233 0.0205 0.0008 −0.1767 0.4202 −0.4643 0.0730 0.0500 0.0220 0.0520 0.0149 0.0426
0.1134 0.0008 0.1490 0.6930 −0.4643 1.3651 0.3401 0.0220 0.4164 0.1617 0.0426 0.1438
0.1326 0.0353 0.1167 0.3452 0.0730 0.3401 0.8325 −0.1319 0.8855 0.2938 0.0716 0.2705
0.0353 0.0105 0.0287 0.0730 0.0500 0.0220 −0.1319 0.4474 −0.4464 0.0716 0.0347 0.0401
0.1167 0.0287 0.1075 0.3401 0.0220 0.4164 0.8855 −0.4464 1.5914 0.2705 0.0401 0.2925
0.1741 0.0283 0.1876 0.1882 0.0520 0.1617 0.2938 0.0716 0.2705 0.7213 −0.1652 0.7954
0.0283 0.0365 −0.0142 0.0520 0.0149 0.0426 0.0716 0.0347 0.0401 −0.1652 0.4385 −0.4742
0.1876 −0.0142 0.2732 0.1617 0.0426 0.1438 0.2705 0.0401 0.2925 0.7954 −0.4742 1.5189


.

From step 2, S1 is set immediately.
Maximize τ subject to (39) and (38 ), then one obtains τmax,1 = −0.0170 < 0. Thus, go

to step 4 and minimize trace(X1) subject to the LMIs (39) and (38 ) with τmax,1 = −0.0170 < 0.
The result is

Xmin,1 =



1.0178 −0.1140 −0.0537 0.6247 0.0507 −0.0730 0.8731 0.0244 −0.1176 0.7418 0.0805 −0.0479
−0.1140 0.2079 −0.1218 0.0507 0.0240 0.0649 0.0244 0.0682 0.0672 0.0805 0.0199 0.0873
−0.0537 −0.1218 0.7936 −0.0730 0.0649 0.1732 −0.1176 0.0672 0.2692 −0.0479 0.0873 0.2169
0.6247 0.0507 −0.0730 2.0204 0.0076 −0.1279 1.8336 0.1095 −0.1881 1.3089 0.0398 −0.1901
0.0507 0.0240 0.0649 0.0076 0.2225 0.0026 0.1095 0.1078 0.1706 0.0398 0.0969 0.1023
−0.0730 0.0649 0.1732 −0.1279 0.0026 1.0694 −0.1881 0.1706 0.5597 −0.1901 0.1023 0.3911
0.8731 0.0244 −0.1176 1.8336 0.1095 −0.1881 3.1551 0.0700 −0.2581 1.8251 0.0851 −0.2382
0.0244 0.0682 0.0672 0.1095 0.1078 0.1706 0.0700 0.2907 0.1055 0.0851 0.1164 0.1577
−0.1176 0.0672 0.2692 −0.1881 0.1706 0.5597 −0.2581 0.1055 1.4102 −0.2382 0.1577 0.5402
0.7418 0.0805 −0.0479 1.3089 0.0398 −0.1901 1.8251 0.0851 −0.2382 2.2835 0.0394 −0.1132
0.0805 0.0199 0.0873 0.0398 0.0969 0.1023 0.0851 0.1164 0.1577 0.0394 0.2334 0.0353
−0.0479 0.0873 0.2169 −0.1901 0.1023 0.3911 −0.2382 0.1577 0.5402 −0.1132 0.0353 1.1664


.

Set X△,2 = Xmin,1 and obtain S2. Then, maximize τ subject to (39) and (38 ), then one
obtains τmax,2 = 0.2062 > 0. Jump to step 7, and maximize ε subject to the LMIs (23), X > 0,
and (35) with S2. The feasible solutions are

ε = 1.3548,

K =

[
−1.6295 −0.1643
−0.9381 −0.1125

]
,

F =

[
−0.8538 −0.0600
−0.8470 −0.0882

]
.

The input saturation in the FOMAS is shown in Figure 9. The state of each agent
and the error are shown in Figures 10–13. It is shown that the FOMAS has achieved
leader-following consensus.

One can also choose another Qα12 for different initial values X△,1. At the start of the
algorithm, the positive definite matrix Qα12 is selected as I4 ⊗ WTW, where

W =

1 0 1
0 1 0
2 2 3

.

Solve Equation (37) and obtain
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X△,1 =



0.5607 −0.1210 0.8171 0.2470 0.1139 0.2463 0.2853 0.1571 0.2501 0.3677 0.1517 0.4034
−0.1210 0.6278 −0.3897 0.1139 0.1180 0.0723 0.1571 0.1001 0.1304 0.1517 0.2054 0.0793
0.8171 −0.3897 1.3809 0.2463 0.0723 0.3039 0.2501 0.1304 0.2545 0.4034 0.0793 0.5480
0.2470 0.1139 0.2463 1.0534 0.0779 1.3582 0.7335 0.3517 0.7292 0.4094 0.2284 0.3490
0.1139 0.1180 0.0723 0.0779 0.9073 −0.2933 0.3517 0.3369 0.2448 0.2284 0.1373 0.1906
0.2463 0.0723 0.3039 1.3582 −0.2933 2.1199 0.7292 0.2448 0.8865 0.3490 0.1906 0.3408
0.2853 0.1571 0.2501 0.7335 0.3517 0.7292 1.4823 0.2894 1.7722 0.6347 0.3281 0.5836
0.1571 0.1001 0.1304 0.3517 0.3369 0.2448 0.2894 1.0944 −0.1408 0.3281 0.2524 0.2503
0.2501 0.1304 0.2545 0.7292 0.2448 0.8865 1.7722 −0.1408 2.6063 0.5836 0.2503 0.6436
0.3677 0.1517 0.4034 0.4094 0.2284 0.3490 0.6347 0.3281 0.5836 1.2340 0.1467 1.5745
0.1517 0.2054 0.0793 0.2284 0.1373 0.1906 0.3281 0.2524 0.2503 0.1467 1.0200 −0.2612
0.4034 0.0793 0.5480 0.3490 0.1906 0.3408 0.5836 0.2503 0.6436 1.5745 −0.2612 2.4336


.

Then, maximize τ subject to (39) and (38 ), and the result is τmax,1 = 0.0743 > 0. Go to
step 7. The subsequent solving process is omitted.

Figure 9. The control input of each agent in example 2.

Figure 10. The state of each agent in example 2.
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Figure 11. The state of each agent in example 2.

Figure 12. The state of each agent in example 2.

Figure 13. The state of error system in example 2.
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Remark 14. It is seen that the number of iterations in Qα12 = I4 ⊗ WTW is less than that in
Qα12 = I. Qα12 = I is convenient to set, but I is a diagonal matrix, which differs from the
(a(H ⊗ B)TX + K̃(I4 ⊗ Cy))T(a(H ⊗ B)TX + K̃(I4 ⊗ Cy)) under general conditions. Thus,
the choice of Qα01 and Qα12 affects the number of iterations. When the algorithm cannot rapidly
converge, replacement of the initial value may be considered. Choosing Qα12 > 0 and Qα01 > 0
is the key to ensuring fast convergence of the algorithm. Otherwise, τmax,1 = −2.2478, τmax,2 =
−0.4005, τmax,3 = −0.0644, and τmax,4 = 0.1303 are obtained in step 2 after setting

Qα12 =

[
I6 0
0 0

]
⩾ 0,

which greatly increases the number of iterations.

5. Conclusions

The leader-following H∞ consensus of FOMASs under input saturation via the output
feedback was investigated. Lemmas 3 and 7 provided sufficient conditions for the H∞
consensus for FOMASs in (1) and (2) with α ∈ (0, 1) and [1, 2), respectively. Additionally,
based on the ILMI approach, Algorithms 1 and 2 were presented to compute the gain
matrices. In both ILMI algorithms, the methods to derive initial values were also given and
ILMI algorithms solved the H∞ consensus problem for FOMASs under actuator saturation.
The algorithms are effective and convergent, avoiding matrix exchange condition in the
SVD method and strong assumptions. The method also provides a holistic approach for
calculating the gain matrices of MASs. Finally, numerical examples were conducted to
validate the efficiency of the proposed approach.
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