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Abstract: An innovative approach is utilized in this paper to solve the fractional Fokker-Planck-Levy
(FFPL) equation. A hybrid technique is designed by combining the finite difference method (FDM),
Adams numerical technique, and physics-informed neural network (PINN) architecture, namely, the
FDM-APINN, to solve the fractional Fokker-Planck-Levy (FFPL) equation numerically. Two scenarios
of the FFPL equation are considered by varying the value of (i.e., 1.75, 1.85). Moreover, three cases of
each scenario are numerically studied for different discretized domains with 100, 200, and 500 points
inx € [-1, 1] and ¢t € [0, 1]. For the FFPL equation, solutions are obtained via the FDM-APINN
technique via 1000, 2000, and 5000 iterations. The errors, loss function graphs, and statistical tables
are presented to validate our claim that the FDM-APINN is a better alternative intelligent technique
for handling fractional-order partial differential equations with complex terms. The FDM-APINN can
be extended by using nongradient-based bioinspired computing for higher-order fractional partial
differential equations.

Keywords: fractional Fokker—Planck-Levy equation; physics-informed neural networks (PINNs);
finite difference method (FDM); Adams numerical technique; hybrid numerical method; fractional
partial differential equations; computational fluid dynamics; bioinspired computing

1. Introduction

The fractional Fokker-Planck (FFP) equation, also known as the Fokker—Planck-Levy
(FPL) equation, is a generalization of the traditional Fokker—Planck (FP) equation, which
includes Levy processes, such as heavy-tailed distributions or leaps. The fractional Fokker—
Planck-Levy (FFPL) equation is applied in finance, ecology, and physics for anomalous
diffusion in complex systems, abrupt, long-range movements in animal movement patterns,
and jumps or heavy tails in the underlying asset. The traditional Fokker-Planck equation
describes the time evolution of a particle’s probability density function of velocity under
the influence of forces and Gaussian white noise. Gaussian processes, however, cannot
fully explain the leaps and heavy tails observed in a wide range of physical and economic
phenomena. A more suitable mathematical framework for such situations is provided by
Levy processes, which comprise a larger class of stochastic processes defined by stable
distributions and leaps. The fractional derivative causes nonlocality, which requires spe-
cialized numerical techniques that are capable of handling integral terms efficiently. By
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adding fractional derivatives, the fractional Fokker-Planck-Levy (FFPL) equation extends
the traditional Fokker-Planck (FP) equation, which is capable of modelling these jump-like,
nonlocal dynamics. Recently, fractional calculus has improved financial system modelling
by providing a more complete understanding of asset dynamics. Fractional calculus ex-
tends integration and differentiation to fractional orders, empowering the introduction of
memory and long-range dependencies in mathematical models [1-3]. While conventional
numerical techniques are excellent for solving classic PDEs, they may not handle fractional
derivatives effectively. Scholars such as Chen et al. [4] and Nikan et al. [5] have attempted
to improve conventional numerical techniques by adopting mesh-free approaches such
as the radial basis function (RBF) method to solve fractional PDEs. However, the RBF
technique complicates the selection of the basis function. Moreover, ref. [6] discussed
Hilfer’s fractional impulsive neutral Levin—Nohel integrodifferential system with variable
time delay, ref. [7] discussed the problem of a two-order Caputo-Hadamard fractional
pantograph with Dirichlet boundary conditions, and ref. [8] discussed a mathematical
study of a coupled fully hybrid (k, ®)-fractional order system.

Solving the FFPL equation numerically is challenging because both the large discrete
changes caused by the jump term and the small-scale behaviour driven by the diffusion
term are needed. The FFPL equation of interest in this paper poses additional important
challenges, where classical grid-based approaches fail because of the increase in computa-
tional requirements with the nonlocality of the partial differential equation (PDE), making
them impractical. Physics-informed neural networks (PINNs) [9] are currently popular in
solving partial differential equations (PDEs) because neural networks have high univer-
sal approximation characteristics [10], robust optimization [11], meshless plus grid-free
training, and generalization capacities [12].

The PINN is a promising strategy for solving large PDEs because it incorporates phys-
ical rules and constraints directly into the learning process [13,14]. The PINN technique
uses fractional derivatives in the governing partial differential equation (PDE) to obtain
an acceptable approximation of the solution. The PINN design includes a loss function
that enforces the differential equation, boundary, and initial conditions, resulting in precise
solutions even with insufficient input. The PINN algorithm integrates the fractional deriva-
tive into the FFPL equation and uses neural networks to acquire the basic solution. The
PINN ensures that the solution has physical stability and responds to real-world financial
complications. Several studies, including those of Ibrahim et al. [15,16], Jamshaid et al. [17],
and Lou et al. [18], have employed this approach to solve PDEs instead of other approaches.
High-dimensional PINNSs [19,20] use automatic differentiation to calculate integer-order
derivatives. Compared with automatic differentiation, the FDM-APINN is faster and con-
sistently results in fewer errors [21]. A PDE solver PINN technique is generated by [22]
and inspired by the FDM-APINN, which shows that the method consistently results in
minimal errors. Automatic differentiation and FDM-APINN libraries currently do not
cover fractional-order derivatives. Approximating the fractional Laplacian still remains a
significant challenge. For the approximation of the fractional Laplacian, we used the finite
difference method (FDM) in this manuscript. Fractional FPL equations present a challenge
for both classical and novel methodologies, such as PINNs.

We introduce a special type of FDM-APINN technique to solve the fractional FPL
equation. The loss function used in this technique considers not only the mean squared
error (MSE) between actual and predicted data (data loss) but also physics-based loss.
This additional loss element requires the neural network to follow the physical principles
specified by the FFPL equation. The fractional Laplacian is also under consideration in
this technique. The fractional Laplacian is an essential component in fractional PDEs,
distinguishing them from classical PDEs. The FDM is used for the approximation of
the fractional Laplacian and then utilized in the PINN. This technique employs automatic
differentiation to produce the gradients required for calculating the physics-based loss. This
enables the FDM-APINN to handle the complex derivatives found in the FFPL equation.
Furthermore, the physics loss is also computed. The neural network predictions are



Fractal Fract. 2024, 8, 671

30f29

guaranteed to satisfy the FFPL equation via physics loss, which makes the model physics
informed. Therefore, the proposed technique is unique and efficient.

1.1. Related Work

FPL and FP equations are frequently encountered in statistical mechanics, and their
large dimensionality presents notable difficulties for conventional analytical techniques
such as finite difference [23,24]. However, physics-informed neural networks (PINNs),
which are machine learning techniques, present a promising mesh-free approach that
seamlessly integrates observational data. PINNs were used in Chen et al.’s research [25] to
solve forward and inverse problems related to the Fokker-Planck-Levy equations. Zhang
et al. [26] addressed FP equations involving sparse data via deep KD-tree techniques.
Similarly, deep learning was used by Zhai et al. [27] and Wang et al. [28] to solve steady-
state FP equations. Moreover, Lu et al. [29] concentrated on employing normalizing flows
to learn high-dimensional probability densities modelled by FP equations. Furthermore,
normalization flow approaches were used for FP equations by Feng et al. [30]. Guo et al. [31]
and Tang et al. [32] presented an adaptive deep density approximating technique for steady-
state FP equations based on normalizing flows. For FP equations, Hu et al. [33] presented a
score-based SDE solution. This paper introduces an innovative technique that combines
the FDM, ADAMS, and PINN to solve the fractional Fokker—Planck-Levy (FFPL) equation.

1.2. Paper Highlights

> Aninnovative approach is utilized in this paper to solve the fractional Fokker-Planck-
Levy (FFPL) equation. The equation contains the Levy noise and fractional Laplacian,
making the equation computationally complex.

> A hybrid technique is designed by combining the finite difference method (FDM),
Adams numerical technique, and physics-informed neural network (PINN) architec-
ture, namely, the FDM-APINN, to solve the fractional Fokker—Planck-Levy (FFPL)
equation numerically.

> Related work on solving partial differential equations (PDEs) and fractional partial
differential equations (FPDEs) is discussed.

> The fractional Fokker—Planck-Levy (FFPL) equation is solved numerically via the
proposed technique.

> The manuscript is categorized into two main scenarios by varying the value of
the fractional order parameter a. The equation is solved for the two values of «,
ie, (@ =1.75,1.85).

> The loss values given for each case can be visualized in the tables. The loss values
are very minimal, ranging between 10~ and 10~°, indicating the precision of the
proposed technique.

> All the solutions of the proposed technique are compared with those of the score-fPINN
technique, which is a well-known technique for solving fractional differential equations.

> The residual error graph and tables show the errors between both techniques. The
errors range between 1072 and 10~%. The small error indicates the validity of our
proposed technique.

> Furthermore, loss and error graphs have been added to the manuscript to explore
the proposed technique further. The histogram graph shows the consistency of the
proposed technique.

> All the results presented in the tables and graphs indicate that the proposed technique
is a state-of-the-art technique that is robust.

2. Defining the Problem

Stochastic differential equations are commonly used to represent the time develop-
ment of dynamic systems in fields such as natural sciences, engineering, economics, and
statistics [34-36]. The density is obtained by solving the Fokker-Planck equation (FPE),
which may be written as [37]:
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dpr(x) = =V x (fpe(x) =GV py), 1)

where p¢(x) € R > 0 represents the value of the density at time t, G(x, t) is a tensor called
a diffusion matrix, and f(x, t) is a vector field known as the drift function. If the a-stable
Levy noise term is introduced to Equation (1) and p¢(x) is replaced as u(x, t), then the
fractional Fokker-Planck-Levy (FFPL) equation is given as:

a”(;‘; D Ux(Fuly, )+ Vx (G Vulx, )+ o L2 u(xb), @)
where
e f,isdefined as
= —xtanh(”\;g"), @3)

> G(x, t) represents the diffusion term; in this problem, it is taken as the identity matrix.

G=1I (4)
where ¢ is the Levy noise.

> wis the order of the fractional Laplacian, where 0 < a < 2.
> L" represents the fractional Laplacian operator of order a.

Given the constants and definitions mentioned above, the equation’s full form can be
expressed as follows.

au(gct, H_ _ V x ((—xtanh( |\/x£| ))u(x, t)) + Vx (IVu(x, t))+ o L u(x,t), ()

a”g"tf H_ vy <(xtanh(||x\[;|>)u(x, t)) + VX (Vulx, )+ o Lu(x,1), (6)

here,
> Vx ((xtanh( % ))u(x, t)) is the drift term.
> V2u(x, t) is the diffusion term
There are several specific distributions regarding « values:

If « = 2, then it is a Gaussian distribution.
If « = 1, then it is a Cauchy distribution.
If &« = 1.5, then it is a Holtsmark distribution, whose PDF is a hypergeometric function.

Fractional Laplacian

The term L* represents the fractional Laplacian term. This term is beneficial for
solving fractional equations involving fractional derivatives, such as the FFPL solved in this
paper. The fractional Laplacian used in this paper is calculated through the finite difference
method (FDM).

The fractional Laplacian A7 is a nonlocal operator that generalizes the classical Lapla-
cian A to fractional powers, with « generally between 0 and 2. The fractional Laplacian can
be defined in various ways, but one of the most frequent uses is the spectral method or an
integral representation, which reflects its nonlocal character.
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In R?, the fractional Laplacian through the FDM of u can be defined as follows:
« u(x;) —u(x;)
(—8)% u(x;) ~ 2% 8)
i# | =il
where
e  arepresents the fractional order of the Laplacian.
e  dis the dimension.
The domain is divided into N grid points with regular spacing dx.
L
dx = 5/ ©)

where

L = 2 is the length of the domain of x ([—1, 1]).

The fractional Laplacian is represented in matrix form. The matrix D is designed to
approximate the fractional Laplacian operator. The primary goal is to simulate the fractional
Laplacian with a discrete sum over the grid points. The discrete fractional Laplacian is
represented in matrix form as:

. N
(—A)7 u, =~ Z Dij u]‘, (10)
j=1
where Dj;, defined as
1
L T ifi=j
D — k#i |1X,‘ — Xk|d+“ (11)
ij = o .
 dta’ if i ]

|xi — x|

The matrix element D;; reflects the contribution from point x; to the fractional Lapla-
cian at x;. The contribution is inversely proportional to the distance. |x; — xj| is raised to
the power d + «. The fraction is scaled by dx to accommodate the integral’s discretization.
The diagonal element Dj; ensures that the sum of all the elements in each matrix row is
zero. The Laplacian’s conservation property requires that the total flux into a point x; be
zero if u is constant. The proposed flexible technique can be used in different boundary
conditions and domains.

3. Proposed Methodology

Since the beginning, the PINN has undergone extensive study to improve its ability to
solve complicated problems in numerous fields. Several researchers have focused on im-
plementing advanced algorithms in PINNSs, such as adaptive sampling approaches [38—42],
adaptive activation functions [43—45], dynamic weighting for loss terms [46—48], and se-
quential training [49,50]. New architectural frameworks have been developed to address
specific problems more efficiently. Some notable examples include the conservative PINN
(cPINN) [51], parareal physics-informed neural network (PPINN) [52], Bayesian PINN
(BPINN) [53], extended PINN (XPINN) [54,55], physics-informed generative adversarial
network (PI-GAN) [56], and the gradient-enhanced neural network (gPINN) [57-59]. Al-
though PINNSs have a promising future, they have yet to be applied to some PDEs. More
importantly, fractional problems, such as the fractional Fokker-Planck-Levy (FFPL) equa-
tion discussed in this paper, are challenging to solve. The FDM-APINN technique is used
to solve the FFPL equation.

The proposed technique has two input values, i.e., x and t. There are two fully
connected hidden layers, each having 50 neurons. The ReLU activation function is used in
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the proposed approach. The deep learning phenomenon is used. The optimizer used is the
Adam optimizer. The proposed technique evaluates the trained network on the test data,
and the predicted solutions are obtained from the results. The loss values are obtained as
the sum of two types of loss. One is data loss, and the second is physics loss. To calculate
the physics loss, the fractional Laplacian and all the gradients are calculated, ensuring that
all the operations comply with the FFPL equation.

The general working phenomenon of the proposed technique is shown in Figure 1. In
Figure 1, the inputs are associated with hidden layers consisting of hidden neurons. After
performing some hidden calculations, the output layer is obtained. After that, the loss is
calculated as the sum of the data loss and physics loss. The minimum loss obtained means
that the technique converges to the optimal solutions.

|\- Hidden Layers ' | Output Layer l  Losses ' t Tatal

Loss

Physics
Loss

Figure 1. General working procedure of the PINN.

3.1. Loss Function

The loss function consists of two elements: data loss and physical loss. This ensures
that the trained neural network matches the training data and follows the physical rules
stated in the fractional Fokker—Planck-Levy (FFPL) equation.

3.1.1. Data Loss

Data loss determines how closely the neural network’s predictions correspond to the
training data. It is the mean squared error (MSE) between the actual predicted values.

1Y 2
Data loss = NZ (upred(xi/ £ ) - uactual(xir ti)) ’ (12)
i=1
where N represents the sample of training data, u(x;, t;) represents the predicted solution
at (x;,t;), and ugepyq1 (x4, t;) is the actual solution at (x;, t;).
3.1.2. Errors

The mathematical model under consideration in Equation (1) is given as

au(x, t)
ot

= —Vx (f(x, Hu(x, t))+ Vx (G(x, t) Vu(x, t))+ o LY u(x,t). (13)

The errors for the given FFPL equation are given as

E(upml) _ulx b + Vx (f(x, Hu(x, t)) — Vx (G(x, t) Vu(x, t)) — o L u(x,t). (14)

ot
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3.1.3. Physical Loss

The physical loss for the proposed technique is defined as the mean square of the

N

. 1 2
Physics loss = Nl; (E (up,ed(x,», ti )) . (15)

3.1.4. Total Loss

The total loss for the proposed technique is calculated as
Total loss = Physics loss + Data loss. (16)

In short, the total loss function combines data loss with physics loss. The proposed
technique influences the rule of neural networks to predict data and ensures that the
solution is physically meaningful.

The network contains an input layer for x and ¢, two hidden layers with ReLU activa-
tion and an output layer for u(x, t). There are 50 neurons attached to each layer. Synthetic
data have been generated to mimic u(x, t) while training the network. Different physical
parameters are used in the mathematical model. The values of the parameters of the FFPL
equation are defined, including « (fractional order), o, and the functions f and G. The
network is trained via mini-batches across several epochs. The loss function combines data
loss with physics loss. Gradients are calculated and utilized to adjust network settings via
the Adam optimizer. The overall loss is calculated by adding data loss and physics loss.
During training, the network is assessed on test data to predict u(x, f), which is then visual-
ized. This strategy integrates data-driven machine learning with the physical constraints of
the FFPL equation, utilizing the strengths of each approach to discover a solution. One of
the primary novelties here is the incorporation of physics loss into neural network training,
which ensures that the acquired solution follows basic physical principles.

3.2. Optimizer

The optimizer used in the proposed technique is the Adam optimizer. Adam is the
short form of adaptive moment estimation. It is an optimization algorithm that integrates
the benefits of two widely used optimization algorithms, AdaGrad and RMSProp.

Operating of the Adam Optimizer

Set the time step (t) to 0, the 1st moment vector () to 0, and the 2nd moment vector
(v) to 0. Define the hyperparameters. Then, the gradients are computed by

gt = Vof(0i-1), (17)

update the biassed 1st moment value by

my = By X my_1+ (1 —B1) X &, (18)

update the biassed 1st moment value by

v = P2 X Vo1 + (1= B2) X &7, (19)
compute the bias-corrected 1st moment estimates

A s
iy = ———7, (20)
1-5

compute the bias-corrected 2nd moment estimates

(4:

b= —1, 21
e (1)
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update the parameters by

, (22)

where

t is the time step.

6; represents the parameters at time step t.

gt is the gradient of the objective function with respect to 0; at time step t.
my is the 1st moment vector (mean of the gradients).

v; is the 2nd moment vector (uncentered variance of the gradients).

«, is the learning rate.

B1, B2 are the exponential decay rates for the moment estimates.

where € is a small constant for numerical stability.

YYVYVYVYVYY

The FDM-APINN technique is used to solve the given mathematical model in the
manuscript. The working phenomenon of the proposed architecture is explained in the
pseudocode given in Algorithm 1.

The flow chart of the paper is given in Figure 2. All the working phenomena of the
proposed technique in the manuscript are given in the flow chart of the paper in Figure 2.
The flow chart shows the procedure followed in the manuscript.

Algorithm 1: Pseudocode representing all the working procedures of FDM-APINN

Starting FDM-APINN
1 Defining Neural Networks
2 Select number of input layers as 2
3 50 is the number of hidden neurons selected
4 Parameters setting
5 Select the number of iterations and learning rate
6 Set values of physical parameters « and o
7
8
9

Generate training data
Grid points creation of x and t
Set the initial condition

10 Training Loop

11 Select a mini-batch sample

12 Prepare input data and convert it to a deep-learning array

13 Compute gradients and loss functions

14 Use the Adam optimizer to update the network

15 Display loss

16 Evaluation of the network

17 Predict and plot u(x, t) using test data

18 Calculate the targeted functions
19 Compute the derivatives uy, Ut, Uxy.
20 Compute the function of fraction Laplacian using FDM
21 Compute the data loss function

22 Compute the physics loss functions
23 Compute gradients and total loss

End of the algorithm FDM-APNN
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Mathematical Model Working Procedure of FDM-APINN

Q) 4 ((n.mh( |]x[|

at V2

where,

. u(x) - u(x) T
£ = (-8)7ulx) * Z(L ) Step3: Generate training Data

))u(x,r)) + (Vu(x,t)) + 0 L% u(x.t),

Step4: Select training loop
FDM-APINN Architecture S— S —_— —
Step 5: Evaluate the network on test data 8

Stepl: Design the loss function to adjust
physics informed neural netwo

rk weights B

Toe 0%

Step2: Set all the parameters

}1, X.lf-z

(ome]  (ssoies] (o) @

Step 6: Compute the loss functions

Give optimal solutions

Figure 2. Flowchart for solving the fractional Fokker—Planck-Levy equation via the FDM-APINN.

The FDM-APINN methodology is used in this paper to solve the FFPL equation. The
neural networks used in the PINNs are trained several times to explore the technique’s
efficiency thoroughly, while the fractional Laplacian term is approximated through the
FDM. The paper is divided into two different scenarios by varying the value of the fractional
order parameter a. For each value of &, the domain of the inputs x and ¢ is distributed to
100, 200, and 500 different points. For each distribution, 1000, 2000, and 5000 iterations are
performed. We used the outputs of the score-fPINN technique as a reference solution to
validate our results. Different loss and error graphs are given for each number of iterations
to evaluate the technique’s validity and accuracy. From all the graphs, it is clear that the
proposed technique is state-of-the-art with great accuracy. Moreover, different tables are
also provided in the paper for further evaluation of the proposed method. The MATLAB
code of the designed methodology is as follows: https:/ /github.com/ffazall /FDM_APINN.
git (accessed on 9 September 2024) whenever our paper is accepted for publication.

4. Results and Discussion

This section presents all the results of the proposed technique, i.e., the FDM-APINN
technique. Two scenarios are created by varying the value of the fractional order parameter
«. For each value of the fractional parameter «, the domain of x and ¢ is distributed to
100, 200, and 500 different equidistant points. Then, for each distribution, 1000, 2000, and
5000 iterations are performed. All the results obtained are given in this section. The residual
error tables and graphs presented in the manuscript are the errors between the outputs
of the proposed technique (FDM-APINN) and the reference technique (score-fPINN).
Graphical and statistical illustrations are discussed in detail in this section.

Table 1 shows the pattern of the paper. In the first column of Table 1, the value of
the fractional order « varies. The mathematical model is solved for each value, and the
results are obtained via the FDM-APINN in the MATLAB window. In the first scenario,
the mathematical model is solved for the value of the fractional order « = 1.75. The
second column of Table 1 shows the distribution of points taken between the domains
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of x and t. We distributed the domain of x (i.e., [—1, 1]) into 100 different equidistant
points and solved the FFPL equation. Similarly, the domain of ¢ (i.e., [0, 1]) is distributed
to 100 different equidistant points to obtain the solutions about 100 different points. The
third row of the second column shows the distribution of the domain to 200 points. We
distributed the domain of x (i.e., [—1, 1]) into 200 different equidistant points and solved
the FFPL equation.

Table 1. Table showing all the patterns of the manuscript for both scenarios.

Scenarios Cases Iterations

1000
100 points 2000
5000

1000
a=175 200 points 2000
5000

1000
500 points 2000
5000

1000
100 points 2000
5000

1000
«=185 200 points 2000
5000

1000
500 points 2000
5000

Similarly, the domain of ¢ (i.e., [0, 1]) is distributed to different 200 different equidis-
tant points to obtain solutions about 200 different points. Similarly, the same procedure
is repeated for the distribution of the domains into 500 points, as shown in the fourth
row of the second column. After that, we trained the FDM-APINN for 1000 iterations for
100 points and obtained the results. Then, the FDM-APINN is run for 2000 iterations for
the same distribution, i.e., 100 points distribution. In the final round, 5000 iterations are
performed to obtain the solutions at 100 different points. In the same manner, 1000, 2000,
and 5000 iterations are performed to obtain the results for 200 and 500 points for the same
value of @ = 1.75. All the procedures discussed above are repeated for the values of the
fractional order « = 1.85 and &« = 1.95.

4.1. Scenario 1

This section discusses all the results obtained for the first scenario. In the first scenario,
the value of the fractional order parameter « is set to 1.75. Then, three cases are formed
for the first scenario by dividing the domains of x and ¢ into 100, 200, and 500 different
points. The mathematical model is solved for each case by performing 1000, 2000, and
5000 iterations. The graphical and tabular results of the first scenario are discussed in this
section of the manuscript.

Table 2 shows the average loss for the value of the fractional order & = 1.75. The
first column of the table shows the 100-, 200-, and 500- point distributions between the
domains of x and ¢. For 100 points, 1000, 2000, and 5000 iterations are performed for each
distribution individually, as given in the second column of Table 2. The third column of
Table 2 shows the average loss obtained after 1000, 2000, and 5000 iterations. Table 2 shows
that the average loss obtained in this paper is minimal, which confirms the validity of our
proposed technique. Each value of the average loss is in the range of 10> and 10~°. This
finding indicates that our proposed technique is highly consistent.
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Table 2. Average loss values after performing 1000, 2000, and 5000 iterations of the first scenario for
100-, 200-, and 500-point distributions of the domains, respectively.

=175
Points Iterations Average Loss
1000 1.79 x 105

100 2000 4.69 x 10~°
5000 1.05 x 10~°

1000 317 x 107¢

200 2000 1.27 x 10~
5000 2.06 x 107°

1000 556 x 107°

500 2000 221 x 10~
5000 1.12 x 107°

Figure 3 shows a graphical illustration of the solution graphs of the fractional Fokker—
Planck-Levy (FFPL) equation. From Figure 3, the density u(x, t) is the maximum at the
mean and decreases as we move towards the extreme points. The maximum value of the
density is 1. Solution graphs obtained after solving the fractional Fokker-Planck-Levy
(FFPL) equation for 100-, 200-, and 500-point distributions. Five thousand iterations are
performed for each case.

Points 0 1

Figure 3. Solution graphs of the fractional Fokker—Planck-Levy equation.

After performing 1000, 2000, and 5000 iterations, the residual error values are obtained,
as shown in Table 3. These values are obtained by taking 100 different points between
the domains of x and t, while the value of the fractional parameter is & = 1.75. Table 3
shows the residual error values between the solutions of the proposed technique and the
score-fPINN. The first column of the table shows the input x values. These values are
obtained for the distribution of the domains of x and ¢ into 100 different points. The second
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column of the table shows the input ¢ values. The third column represents the residual
error values after 1000 iterations are performed. Similarly, the fourth and five columns
show the residual error values after performing 2000 and 5000 iterations, respectively.
The table clearly shows that the residual errors are close to 0, ranging between 10~2 and
10~*, which demonstrates that the proposed technique is a state-of-the-art, accurate, and
valid technique.

Table 3. Residual error values of the 100-point distribution when the value of the fractional order
parameter is « = 1.75.

X £ Residual Errors Residual Errors Residual Errors

(1000 Iterations) (2000 Iterations) (5000 Iterations)
—1.00 0.00 —2.29 x 1072 249 x 1072 —1.60 x 1073
—0.80 0.10 1.90 x 1073 —5.20 x 103 —7.00 x 1074
—0.60 0.20 590 x 1073 —4.00 x 1073 2.20 x 1073
—0.40 0.30 2.80 x 1073 —8.80 x 1073 —8.00 x 1074
—0.20 0.40 —9.50 x 1073 8.60 x 1073 1.40 x 1073
0.00 0.50 —1.00 x 103 400 x 1073 2.10 x 1073
0.20 0.60 —1.00 x 10~* 3.20 x 1073 —1.70 x 1073
0.40 0.70 —5.20 x 1073 6.00 x 103 —2.20 x 1073
0.60 0.80 7.70 x 1073 1.90 x 1073 —1.20 x 1073
0.80 0.90 3.60 x 1073 —4.00 x 1073 6.00 x 1074
1.00 1.00 9.90 x 1073 5.00 x 1074 1.60 x 1073

Figure 4a shows the graph of the loss values. Figure 4a shows the 1000 iterations for
the 100-point distribution of the domain of x and ¢, while the value of the fractional order
is @ = 1.75. The x-axis of the graph represents the number of iterations, and the y-axis
represents the loss values. From Figure 4a, the loss value decreases and approaches zero
as the number of iterations increases, which shows that we are approaching the optimal
solutions. At the beginning, the loss value is not close to zero, but at the 1000th iteration,
the loss value is very close to zero. This means that as we approach the 1000th iteration, the
solutions approach their optimal values. Figure 4b shows the graph of the residual error
values between the proposed technique and the score-fPINN technique. Figure 4b shows
the errors obtained during the 1000 iterations for the 100-point distributions of the domains
of x and t. Figure 4b shows the values of x, t, and the corresponding errors. All 100 points
lie between 102 and 10~3, which shows that minimal residual errors are present. These
minimal residual errors indicate the accuracy and consistency of the proposed technique.

The graph of the loss values of the proposed technique is shown in Figure 4c. Figure 4c
shows the loss values for 2000 iterations of the 100-point distribution of the domains of x
and t, where the value of the fractional order parameter is « = 1.75. The x-axis of the graph
represents the number of iterations, and the y-axis shows the loss values. Figure 4c shows
that the loss value decreases and approaches zero as the number of iterations increases.
This shows that we are approaching the optimal solutions. At the start of the iterations,
the loss value is not close to zero, but after 500 iterations, the loss values oscillate around
10°. As we approach 2000 iterations, the loss value approaches 0. This means that as we
approach the 2000th iteration, the solutions approach their best optimal values. Figure 4d
shows the graph of the residual error values. Figure 4d shows the errors obtained during
the 2000 iterations for the 100-point distributions of the domains of x and t. Figure 4d shows
the values of x, t, and the corresponding errors. We take 11 points to observe the residual
errors. Figure 4d shows that the errors are very close to zero, indicating the accuracy and
consistency of our proposed technique.
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Figure 4. Graphs of the loss and residual error values for the 100-point distributions of the domains of
x and t after 1000,2000, and 5000 iterations. (a) Loss value graph for 1000 iterations for the 100-point
distribution. (b) Residual error graph After 1000 iterations for 100 points. (c) Loss value graph
for 2000 iterations for the 100-point distribution. (d) Residual error graph after 2000 iterations for
100 points. (e) Graphical illustration of 5000 loss values for 100 points distribution of the domain of
x and ¢. (f) Graphical illustration of the error values after 5000 iterations performed for 100 points
distribution of the domain of x and ¢..
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Figure 4e shows the histogram graph for the loss values. Figure 4e shows the loss
values for 5000 iterations of the 100-point distribution of the domains of x and ¢, where
the value of the fractional order parameter is @ = 1.75. The x-axis of the graph represents
the loss values, and the y-axis of the graph represents the number of iterations. The
graph shows that at approximately 3700 iterations, the loss values are the same and very
close to 0. This finding indicates that our proposed technique is highly consistent and
reliable. Figure 4f shows the graph of the residual error values. Figure 4f shows the errors
obtained during the 5000 iterations for the 100-point distributions of the domains of x and
t. Figure 4f shows the x, t, and residual error values. All the error values lie between 102
and 10~%. Figure 4f shows that the errors are very close to zero, indicating the accuracy
and consistency of our proposed technique.

Table 4 shows the residual error values between the actual and predicted values. The
domains of x and t are divided into 100 different equidistant points. The fractional order &
is 1.75. In Table 4, the first column shows the input x values, whereas the second column
represents the input f values. The third, fourth, and fifth columns show the residual errors.
The third column shows the residual error values after performing 1000 iterations. Similarly,
after 2000 iterations, the residual errors obtained are shown in the fourth column. The fifth
column shows the residual error values after performing 5000 iterations. All the values
of the residual errors are minimal, confirming the validity of the technique. Furthermore,
the residual error values are also very close to each other, indicating the consistency of the
proposed technique. The residual error values range from 10~2 to 10~#, which is very good
for fractional problems.

Table 4. Tabular illustration of the error values of the 200-point distribution when & = 1.75.

. " Residual Error Residual Error Residual Error

(1000 Iterations) (2000 Iterations) (5000 Iterations)
—1.00 0.00 151 x 1072 1.70 x 1073 —3.40 x 1073
—0.80 0.10 5.70 x 1073 350 x 1073 —-1.10 x 1073
—0.60 0.20 1.00 x 1073 —8.00 x 104 1.30 x 1073
—0.40 0.30 —450 x 1073 400 x 1074 —4.00 x 1074
—0.20 0.40 330 x 1073 240 x 1073 2.60 x 1073
0.00 0.50 3.10 x 1073 —9.00 x 104 —1.90 x 1073
0.20 0.60 —1.60 x 1073 —-1.10 x 1073 9.00 x 1074
0.40 0.70 —7.00 x 1073 —1.50 x 1073 9.00 x 104
0.60 0.80 3.70 x 1073 —2.10 x 1073 —3.00 x 1073
0.80 0.90 —8.30 x 1073 0.00 —1.80 x 1073
1.00 1.00 1.00 x 1073 4,60 x 1073 —230x 1073

Figure 5a shows the graph for the loss values. Figure 5a shows the loss values for
1000 iterations of the 200-point distribution of the domains of x and f, where the value of
the fractional order parameter is « = 1.75. The x-axis of the graph represents the number of
iterations, and the y-axis of the graph represents the loss values. Figure 5a shows that as the
number of iterations increases, the loss value decreases and approaches zero. This shows
that we are approaching the optimal solutions. At the start of the iterations, the loss value
is not close to zero, but after 1000th iterations, the loss value approaches 0. As we reach the
1000 iterations, the loss value approaches 0. Figure 5b shows the graph of the residual error
values in the output of the proposed technique and the score-fPINN technique. Figure 5b
shows the errors obtained during the 1000 iterations for the 200-point distributions of the
domains of x and ¢. Figure 5b shows the values of x, t, and the corresponding errors. All
200 points have very minimal residual error values, as shown in Figure 5b, indicating the
accuracy and consistency of our proposed technique.
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Figure 5. Graphical illustration of the loss and residual error values after performing 1000,2000, and
5000 iterations, respectively, for the 200-point distributions of the domains of x and ¢. (a) Graphical
representation of loss values after 1000 iterations for the 200-point distribution when value of & = 1.75.
(b) The residual error graph shows an 200 error values after performing 1000 iterations when & = 1.75.
(c) Graph of the loss values after performing 2000 iterations for 200 points distribution for the first
scenario. (d) Residual error graph when the domain of inputs is distributed to 200 different points
when the value of « = 1.75. (e) Error histogram graph of the loss values each iteration. (f) Graph of
the residual errors after performing 5000 iterations.

The loss value graph is shown in Figure 5c. The graph shown in Figure 5c is for the
loss values obtained after approximately 2000 iterations by taking 200 different points
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between the domains of x and f. The value of the fractional parameter « is 1.75. The
iterations are represented through the x-axis, while the loss values are shown on the y-axis
of Figure 5c. As the number of iterations increases, the loss value decreases and approaches
zero, indicating that we are approaching the optimal solutions. At the beginning of the
graph, the loss values are not close to zero, whereas at the end of the graph, the values
are close to zero. Additionally, at the start of the graph, the loss values vary, but after
1000 iterations, the graph becomes smooth, showing that the solutions obtained through the
proposed technique approach optimal solutions. The error values are shown in Figure 5d.
These errors are obtained through 200 different points between the domains of x and ¢.
2000 iterations are performed to obtain these errors. We take 11 different points from the
200 points. Clearly, the errors are very close to 0, confirming the validity and consistency of
the proposed technique.

The graph shown in Figure 5e is for the loss values obtained after approximately
5000 iterations by taking 200 different points between the domains of x and t. The value of
the fractional parameter « is 1.75. The iterations are represented through the y-axis, while
the loss values are shown on the x-axis of Figure 5e. In approximately 3800 iterations, the
loss values overlap each other. The histogram in Figure 5e shows the consistency of our
proposed technique. The residual error values are shown in Figure 5f. These are the errors
obtained through 200 different points between the domains of x and t. These residual errors
were obtained after 5000 iterations. Clearly, the errors are very close to 0, confirming the
validity and consistency of the proposed technique.

Table 5 shows the residual error values between the actual and predicted values.
The domains of x and t are divided into 500 different equidistant points. The fractional
order « is 1.75. The table’s first column shows the input x values, whereas the second
column represents the input ¢ values. The third, fourth and fifth columns show the residual
errors. The third column shows the residual error values after performing 1000 iterations.
Similarly, after 2000 iterations, the residual errors obtained are demonstrated by the fourth
column. Moreover, the fifth column shows the residual error values after performing
5000 iterations. All the values of the residual errors are minimal, confirming the technique’s
validity. Furthermore, the residual error values are also very close to each other, confirming
the consistency of the proposed technique. The residual error values range from 102 to
10~3, which is very good for fractional problems.

Table 5. Residual error values for the proposed technique and the reference solutions of the 500-point
distribution when a = 1.75.

. ; Residual Error Residual Error Residual Error

(1000 Iterations) (2000 Iterations) (5000 Iterations)
—1.00 0.00 1.30 x 1073 2.80 x 1073 —7.00 x 1074
—0.80 0.10 7.10 x 103 240 x 1073 —220x 1073
—0.60 0.20 7.20 x 1073 3.70 x 1073 —3.70 x 1073
—0.40 0.30 —6.00 x 1074 1.20 x 1073 2.10 x 1073
—0.20 0.40 —6.40 x 1073 1.80 x 1073 —1.70 x 1073
0.00 0.50 230 x 1073 —5.10 x 1073 3.20 x 1073
0.20 0.60 —5.10 x 1073 410 x 1073 6.20 x 1073
0.40 0.70 —5.20 x 1073 1.46 x 1072 —2.00 x 1074
0.60 0.80 —1.33 x 102 6.00 x 1073 5.80 x 1073
0.80 0.90 —9.40 x 1073 6.50 x 1073 2.30 x 1073
1.00 1.00 1.00 x 104 6.00 x 1073 2.00 x 10~4

Figure 6a shows the graph for the loss values. Figure 6a shows the loss values for
1000 iterations of the 500-point distribution of the domains of x and ¢, where the value of
the fractional order parameter is « = 1.75. The x-axis of the graph represents the number
of iterations, and the y-axis of the graph represents the loss values. Figure 6a shows that
the loss value decreases and approaches zero as the number of iterations increases. This
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indicates that the proposed technique converges toward the optimal solutions. At the start
of the iterations, the loss value is not close to zero, but at the 1000th iteration, the loss
value approaches 0. As we reach the 1000 iterations, the loss value approaches 0. Figure 6b
shows the graph of the residual error values. Figure 6b shows the errors obtained during
the 1000 iterations for the 500-point distributions of the domains of x and ¢. Figure 6b
shows the x, t, and error values. All the 500 error values range from 1072 to 107%. In
Figure 5b, the errors are very close to zero, indicating the accuracy and consistency of our
proposed technique.

The loss value graph is shown in Figure 6¢. The graph shown in Figure 6c¢ is for the loss
values obtained after approximately 2000 iterations by taking 500 different points between
the domains of x and ¢. The value of the fractional parameter « is 1.75. The iterations are
represented through the x-axis, while the loss values are shown on the y-axis of Figure 6c. As
the number of iterations increases, the loss value decreases and approaches zero, indicating
that the optimal solutions are obtained. At the beginning of the graph, the loss values are
not close to zero, whereas at the end, the values are close to zero. Additionally, at the start of
the graph, the loss values vary, but after 1000 iterations, the graph becomes smooth, showing
that the solutions obtained through the proposed technique approach optimal solutions. The
error values are shown in Figure 6d. These errors were obtained through 500 different points
between the domains of x and t. 2000 iterations are performed to obtain these errors. We take
11 different points from the 500 points. The errors are very close to 0, confirming the validity
and consistency of the proposed technique.

Figure 6e shows the graph for the loss values. Figure 6f shows the loss values for
5000 iterations of the 500-point distribution of the domains of x and t, where the value of
the fractional order parameter is &« = 1.75. The x-axis of the graph represents the loss values,
and the y-axis of the graph represents the number of iterations. The histogram graph shows
the consistency of the proposed technique. The graph is given for 5000 iterations. Out of
5000 iterations, approximately 3800 iterations of the loss values overlap. Figure 6f shows
the graph of the residual error values. Figure 6f shows the errors obtained during the
5000 iterations for the 500-point distributions of the domains of x and t. Figure 6f shows the
values of x, t and the corresponding errors. Figure 6f shows that the errors are very close to
zero for all 500 points, indicating the accuracy and consistency of our proposed technique.
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Figure 6. Graphical illustration of all the loss and residual error values for 500. Distribution of the
domain when the value of the fractional order parameter « = 1.75. (a) Graph of the loss values of
1000 iterations for 500 points when the value of the fractional order is @ = 1.75. (b) graphical illustra-
tion of all the 500 residual error values for the first scenario. (c) Total loss values of 2000 iterations
for the first scenario of 500 distribution points. (d) Residual errors when the value of & = 1.75, after
2000 Iterations for the 500 point distribution. (e) Error histogram graph of all the 5000 loss values
when value of the fractional order &« = 1.75, while the domain is distributed to 500 different points.
(f) Graphical representation of all the 500 residual error values of the first scenario.

4.2. Scenario 2

In this section, all the results obtained for the second scenario are discussed. In the
second scenario, the fractional order parameter alpha value is 1.85. Three cases are formed
for the second scenario by dividing the domains of x and ¢ into 100, 200, and 500 different
points. The mathematical model is solved for each case by performing 1000, 2000, and
5000 iterations. All the graphical and tabular results of the second scenario are discussed in
this section of the manuscript.

Table 6 shows the average loss for the value of the fractional order. &« = 1.75. The first
column of Table 6 shows the 100-, 200-, and 500-point distributions between the domains of
x and ¢. For 100 points, 1000, 2000, and 5000 iterations are performed for each distribution
individually, as given in the second column of Table 6. The third column of Table 6 shows
the average loss obtained after 1000, 2000, and 5000 iterations. The third column of Table 6
shows that the average loss obtained in this paper is minimal, which shows the validity of
our technique. Each value of the average loss ranges between 10~ and 10~°. This shows
the consistency of our technique.
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Table 6. Residual error values of the 100-point distribution when the value of the fractional order
parameter is & = 1.85.

x =175
Points Iterations Average Loss
1000 338 x 107>

100 2000 2.63 x 10~°
5000 1.90 x 10~°

1000 9.25 x 107

200 2000 561 x 107°
5000 330 x 107°

1000 2.36 x 107°

500 2000 427 x 107°
5000 433 x 107

Figure 7 shows a graphical illustration of the solution graphs of the fractional Fokker—
Planck-Levy (FFPL) equation. From Figure 7, the density u(x, t) is the maximum at the
mean and decreases as we move towards the extreme points. The maximum value of
the density is 1. These are the solutions obtained after performing 5000 iterations for the
100, 200, and 500 distributions, respectively.

0.3
1 0.4

0.5

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

u(x, t)

200 oa 06 08

Points
Figure 7. Solution graphs of the FFPL equation via the FDM-APINN.

After performing 1000, 2000, and 5000 iterations, respectively. The residual error
values are obtained, as shown in Table 7. These values are obtained by taking 100 different
points between the domains of x and ¢, while the value of the fractional parameter is
« = 1.85. Table 7 shows the residual errors obtained from the proposed technique. The first
column of the table shows the input x values. These values are obtained for the distribution
of the domains of x and t into 100 different points. The second column of the table shows
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the input ¢ values. The third column of the table represents the residual error values after
1000 iterations are performed. Similarly, the fourth and fifth columns show the residual
error values after performing 2000 and 5000 iterations, respectively. Table 7 clearly shows
that the residual errors are close to 0, ranging between 10~2 and 10~*, which demonstrates
that the proposed technique is a state-of-the-art, accurate, and valid technique.

Table 7. Residual error values for the proposed technique and the reference solutions of the 100-point
distribution when a = 1.85.

X ; Residual Error Residual Error Residual Error

(1000 Iterations) (2000 Iterations) (5000 Iterations)
—1.00 0.00 —5.00 x 10~4 310 x 1073 —1.36 x 102
—0.80 0.10 2.80 x 1073 1.60 x 1073 —6.00 x 1073
—0.60 0.20 —1.80 x 1073 —2.70 x 1073 —2.40 x 1073
—0.40 0.30 6.60 x 1073 —1.18 x 102 —3.20 x 1073
-0.20 0.40 5.80 x 1073 9.00 x 10~4 3.20 x 1073
0.00 0.50 9.80 x 1073 —1.80 x 1073 6.00 x 1074
0.20 0.60 1.40 x 1073 —2.30 x 1073 —1.90 x 1073
0.40 0.70 3.50 x 1073 1.30 x 1073 3.10 x 103
0.60 0.80 —6.00 x 1073 1.40 x 1073 7.00 x 1073
0.80 0.90 —7.60 x 1073 —6.00 x 1074 6.40 x 1073
1.00 1.00 5.00 x 1074 —3.60 x 1073 8.10 x 1073

Figure 8a shows the graph for the loss values. Figure 8a shows the loss values for
1000 iterations of the 100-point distribution of the domains of x and ¢, where the value of
the fractional order parameter is « = 1.85. The x-axis of the graph represents the number
of iterations, and the y-axis of the graph represents the loss values. Figure 8a shows that
the loss value decreases and approaches zero as the number of iterations increases. This
indicates that the proposed technique converges toward the optimal solutions. At the start
of the iterations, the loss value is not close to zero, but at the 1000th iteration, the loss value
approaches zero. As we reach the 1000 iterations, the loss value approaches 0. Figure 8b
shows the graph of the residual error values. Figure 8b shows the errors obtained during
the 1000 iterations for the 100-point distributions of the domains of x and t. Figure 8b
shows the values of x, f, and the corresponding errors. All the 100 error values range from
1072 to 10~3. Figure 8b shows that the errors are very close to zero, indicating the accuracy
and consistency of our proposed technique.
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Figure 8. Graphs of the loss and residual error values for the 100-point distribution of the domains of x
and t after 1000, 2000, and 5000 iterations when the value of the fractional order is « = 1.85. (a) Graph
of the loss values of 1000 iterations for 100 values when the value of the fractional order is « = 1.85.
(b) graphical illustration of all the 100 residual error values for the second scenario. (c) Graphical
representation of loss values after 2000 iterations for the 100-point distribution when value of & = 1.85.
(d) The residual error graph shows an 100 error values after performing 2000 iterations when a = 1.85.
(e) Graphical illustration of the 5000 loss values for 100 points distribution of the domains of x and
t. (f) Graphical illustration of the error values after 5000 iterations 100 points distribution of the
domains of x and t.

The loss value graph is shown in Figure 8c. The graph shown in Figure 8c is for the
loss values obtained after approximately 2000 iterations by taking 100 different points
between the domains of x and t. The value of the fractional parameter « is 1.85. The
iterations are represented through the x-axis, while the loss values are shown on the
y-axis of Figure 8c. As the number of iterations increases, the loss value decreases and
approaches zero, indicating that the optimal solutions are obtained. At the beginning of
the graph, the loss values are not close to zero, whereas at the end, the values are close to
zero. Additionally, at the start of the graph, the loss values vary, but after 1500 iterations,
the graph becomes smooth, showing that the solutions obtained through the proposed
technique approach optimal solutions. The error values are shown in Figure 8d. These
are the errors obtained through 100 different points between the domains of x and t.
2000 iterations are performed to obtain these errors. We take 11 different points from the
100 points. Clearly, the errors are very close to 0, confirming the validity and consistency of
the proposed technique.
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The graph shown in Figure 8e is for the loss values obtained after approximately
5000 iterations by taking 100 different points between the domains of x and ¢. The value of
the fractional parameter « is 1.85. The iterations are represented through the y-axis, while
the loss values are shown on the x-axis of Figure 8e. In approximately 3800 iterations, the
loss values overlap each other. The histogram in Figure 8e shows the consistency of our
proposed technique. The residual error values are shown in Figure 8f. These are the errors
obtained through 100 different points between the domains of x and ¢. 5000 iterations are
used to obtain these residual errors. The errors are very close to those of 0, clearly showing
the validity and consistency of the proposed technique.

Table 8 shows the residual error values between the actual and predicted values. The
domains of x and t are divided into 200 different equidistant points. The fractional order a
is 1.85. In Table 8, the first column shows the input x values, whereas the second column
represents the input ¢ values. The third, fourth and fifth columns show the residual errors.
The third column shows the residual error values after performing 1000 iterations. Similarly,
after 2000 iterations, the residual errors obtained are shown in the fourth column. Moreover,
the fifth column shows the residual error values after performing 5000 iterations. All the
values of the residual errors are minimal, confirming the technique’s validity. Furthermore,
the residual error values are also very close to each other, indicating the consistency of the
proposed method. The residual error values range from 102 to 10~#, which is very good
for fractional problems.

Table 8. Residual error values between the proposed technique and the reference solutions of the
200-point distribution when a = 1.85.

" ¢ Residual Error Residual Error Residual Error

(1000 Iterations) (2000 Iterations) (5000 Iterations)
—1.00 0.00 2.17 x 1072 3.10 x 1073 1.90 x 103
—0.80 0.10 2.30 x 1073 —6.00 x 1074 410 x 1073
—0.60 0.20 —3.10 x 103 3.00 x 1074 3.30 x 1073
—0.40 0.30 —4.00 x 1073 2.00 x 1074 240 x 1073
—0.20 0.40 330 x 1073 9.00 x 104 —410 x 103
0.00 0.50 4.60 x 1073 1.90 x 1073 —2.50 x 1073
0.20 0.60 6.00 x 1073 9.60 x 1073 —320%x 1073
0.40 0.70 7.30 x 1073 1.60 x 1073 —2.30 x 1073
0.60 0.80 1.06 x 102 —7.00 x 1074 —4.20 x 1073
0.80 0.90 —4.00 x 1074 330 x 1073 —6.50 x 1073
1.00 1.00 8.80 x 1073 7.90 x 1073 —1.21 x 102

The graph of the loss values is shown in Figure 9a. Figure 9a shows the loss values for
1000 iterations of the 200-point distribution of the domains of x and t, where the value of
the fractional order parameter is « = 1.85. The x-axis of the graph represents the number
of iterations, and the y-axis represents the loss values. From Figure 9a, the loss value
decreases and approaches zero as the number of iterations increases, which shows that
we are approaching the optimal solutions. At the start of the iterations, the loss value
is not close to zero, but at the 1000th iteration, the loss value is very close to zero. This
means that as we approach the 1000th iteration, the solutions approach their best optimal
values. Figure 9b shows the graph of the residual error values. Figure 4b shows the errors
obtained during the 1000 iterations for the 200-point distributions of the domains of x and .
Figure 9b shows the x, t, and error values. All the 200 error values range from 10~2 t0 1073.
Figure 4b shows that the errors are very close to 0, indicating the accuracy and consistency
of our proposed technique.
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Figure 9. Graphical illustration of all the loss and residual error values for 200-point distribution of the
domain when the value of the fractional order parameter « = 1.85. (a) Graphical representation of loss
values after 1000 iterations for the 200-point distribution when value of « = 1.85. (b) The residual error
graph shows an 200 error values after performing 1000 iterations when the value of « = 1.85. (c) Graph
of the loss values of 2000 iterations for 200 points when the value of « = 1.85. (d) graphical illustration
of all the 200 residual error values for the second scenario. (e) Error histogram graph of all the 5000 loss
values when value of the fractional order &« = 1.85, where the domain is distributed to 200 different
points. (f) Graphical representation of all the 200 residual error values of the second scenario.
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The loss value graph is shown in Figure 9c. The graph shown in Figure 9c¢ is for the loss
values obtained after approximately 2000 iterations by taking 200 different points between
the domains of x and t. The value of the fractional parameter « is 1.85. The iterations are
represented on the x-axis, while the loss values are shown on the y-axis of Figure 9¢c. As the
number of iterations increases, the loss value decreases and approaches zero, indicating
that we are approaching the optimal solutions. At the beginning of the graph, the loss
values are not close to zero, whereas at the end, the values are close to zero. Additionally,
at the start of the graph, the loss values vary, but after 1000 iterations, the graph becomes
smooth, showing that the solutions obtained through the proposed technique approach
optimal solutions. The error values are shown in Figure 9d. These errors are obtained
through 200 different points between the domains of x and . 2000 iterations are performed
to obtain these errors. We take 11 different points from the 200 points. Clearly, the errors
are very close to 0, confirming the validity and consistency of the proposed technique.

Figure 9e shows the histogram graph for the loss values. Figure 9e shows the loss
values for 5000 iterations of the 200-point distribution of the domains of x and ¢, where
the value of the fractional order parameter is @ = 1.85. The x-axis of the graph represents
the loss values, and the y-axis of the graph represents the number of iterations. The
graph shows that at approximately 3700 iterations, the loss values are the same and very
close to 0. This finding indicates that our proposed technique is highly consistent and
reliable. Figure 9f shows the graph of the residual error values. Figure 9f shows the errors
obtained during the 5000 iterations for the 200-point distributions of the domains of x and
t. Figure 9f shows the x, t and residual error values. All the error values lie between 103
and 10~%. Figure 9f shows that the errors are very close to zero, indicating the accuracy
and consistency of our proposed technique.

After performing 1000, 2000, and 5000 iterations, respectively. The residual error
values are obtained and shown in Table 9. These values are obtained by taking 500 different
points between the domains of x and f, while the value of the fractional parameter is
« = 1.85. Table 9 shows the residual errors obtained from the proposed technique. The first
column of the table shows the input x values. These values are obtained for the distribution
of the domains of x and ¢ into 500 different points. The second column of the table shows
the input t values. The third column of Table 9 represents the residual error values after
1000 iterations were performed. Similarly, the fourth and fifth columns show the residual
error values after performing 2000 and 5000 iterations, respectively. Table 9 clearly shows
that the residual errors are close to 0, which demonstrates that the proposed technique is
state-of-the-art, accurate, and valid.

Table 9. Residual error values of the 500-point distribution when the value of the fractional order
parameter is & = 1.85.

Residual Error Residual Error Residual Error

* t (1000 Iterations) (2000 Iterations) (5000 Iterations)
—1.00 0.00 9.00 x 1073 8.50 x 1073 7.00 x 1073
—0.80 0.10 —2.10 x 1073 1.29 x 1072 5.30 x 1073
—0.60 0.20 340 x 1073 9.50 x 1073 3.30 x 1073
—0.40 0.30 —2.60 x 1073 2.00 x 1073 480 x 1073
—0.20 0.40 5.30 x 1073 5.00 x 1073 5.00 x 10~4
0.00 0.50 510 x 1073 —6.00 x 1074 1.80 x 103
0.20 0.60 1.20 x 103 420 x 1073 250 x 1073
0.40 0.70 —3.60 x 1073 1.10 x 1073 —4.20 x 1073
0.60 0.80 —5.70 x 1073 —7.70 x 1073 —2.50 x 1073
0.80 0.90 —2.80 x 1073 —450 x 1073 —5.80 x 1073

1.00 1.00 —1.95 x 102 —7.90 x 1073 —5.30 x 1073
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Figure 10a shows the graph for the loss values. Figure 10a shows the loss values for
1000 iterations of the 500-point distribution of the domains of x and t and the value of
the fractional order parameter. « = 1.85. The x-axis of the graph represents the number
of iterations, and the y-axis represents the loss values. From Figure 10a, the loss value
decreases and approaches zero as the number of iterations increases, which shows that
we are approaching the optimal solutions. At the start of the iterations, the loss value is
not close to zero, but after reaching the 1000th iteration, the loss value approaches 0. This
means that as we approach the 1000th iteration, the solutions approach their best optimal
values. Figure 10b shows the graph of the residual error values. Figure 10b shows the
errors obtained during the 1000 iterations for the 500-point distributions of the domains of
x and t. Figure 10b shows the x, t and error values. All 500 error values range from 10~2 to
10~3. In Figure 6b, the errors are very close to zero, indicating the accuracy and consistency
of our proposed technique.
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Figure 10. Graphs showing the loss and residual error values for the 500-point distribution of the
domains of x and t after 1000,2000, and 5000 iterations when the value of « = 1.85. (a) Graphical
representation of loss values after 1000 iterations for the 500-point distribution when value of & = 1.85.
(b) The residual error graph shows an 500 error values after performing 1000 iterations when a = 1.85.
(c) Graph of the loss values after performing 2000 iterations for 500 points distribution for the second
scenario. (d) Residual error graph when the domain of inputs is distributed to 500 different points
when the value of « = 1.85. (e) Error histogram graph of all the 5000 loss values when value of
the fractional order & = 1.85, where the domain is distributed to 500 different points. (f) Graphical
representation of all the 500 residual error values of the second scenario.

The graph of the loss values is shown in Figure 10c. Figure 10c shows the loss values
for 2000 iterations of the 500-point distribution of the domains of x and ¢, where the value
of the fractional order parameter is @ = 1.85. The x-axis of the graph represents the number
of iterations, and the y-axis of the graph represents the loss values. Figure 10c shows
that as the number of iterations increases, the loss value decreases and approaches zero.
This indicates that the proposed technique converges to the optimal solutions. At the
start of the iterations, the loss value is not close to zero, but after 1000 iterations, the loss
value approaches zero. As we approach the 2000 iterations, the loss value approaches 0.
This means that as we approach the 2000th iteration, the solutions approach their best
optimal values. Figure 10d shows the graph of the error values. Figure 10d shows the
errors obtained during the 5000 iterations for the 500-point distributions of the domains
of x and t. Figure 10d shows the x, t and error values. We take 11 points to observe the
errors. Figure 10d shows that the errors are very close to zero, indicating the accuracy and
consistency of our proposed technique.

The graph shown in Figure 10e is for the loss values obtained after approximately
5000 iterations by taking 500 different points between the domains of x and t. The value
of the fractional parameter « is 1.85. The iterations are represented through the y-axis,
while the loss values are shown on the x-axis of Figure 6e. In approximately 3800 iterations,
the loss values overlap each other. The histogram in Figure 10e shows the consistency of
our proposed technique. Moreover, the loss values are very close to 0, which confirms
the validity of the proposed technique. The residual error values are shown in Figure 10f.
The graph shows the residual errors between the proposed and score-fPINN techniques.
These errors are obtained through 500 different points between the domains of x and ¢.
5000 iterations are performed to obtain these residual errors. Furthermore, all 500 error
values range between 10~2 and 10~%. Clearly, the errors are very close to 0, confirming the
validity and consistency of the proposed technique.
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5. Conclusions

The conclusions of the analysis performed throughout the manuscript are given in
this section. The following are some key concluding remarks.

> The fractional Fokker-Planck-Levy (FFPL) equation is solved in this manuscript.
The equation contains the Levy noise and fractional Laplacian, making the equation
computationally complex.

> The analytical solution is not possible. The proposed technique to solve the FFPL

equation is a hybrid technique that involves the finite difference method (FDM),

Adams numerical techniques, and physics-informed neural networks (PINNs).

The FDM technique calculates the term fractional Laplacian, which is used in the equation.

The PINN technique then approximates the solutions via the ADAMS optimizer and

minimizes the overall loss function.

>  The manuscript is categorized into two main scenarios by varying the value of
the fractional order parameter x. The equation is solved for the two values of «,
ie., (o = 1.75,1.85).

> For each value of the fractional order parameter «, three cases are made by distributing
the domain of x and ¢ into 100, 200, and 500 points.

>  The equation is solved via the proposed technique for each case. 1000, 2000, and
5000 iterations are performed for each case individually.

> The loss values given for each case can be visualized in the tables. The loss values
are very minimal, ranging between 10~ and 10~°, indicating the precision of the
proposed technique.

> All the solutions of the proposed technique are compared with those of the score-fPINN
technique, which is a well-known technique for solving fractional differential equations.

> The residual error graph and tables show the errors between both techniques. The

vy

errors range between 1072 and 10~%. The small error indicates the validity of our
proposed technique.

> Furthermore, loss and error graphs have been added to the manuscript to explore
the proposed technique further. The histogram graph shows the consistency of the
proposed technique.

> All the results presented in the tables and graphs indicate that the proposed technique
is a state-of-the-art technique that is robust.
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