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Abstract: This study explores the novel dynamics of the (3+1)-dimensional generalized Korteweg–de
Vries–Zakharov–Kuznetsov (KdV-ZK) equation. A Galilean transformation is employed to derive
the associated system of equations. Perturbing this system allows us to investigate the presence
and characteristics of chaotic behavior, including return maps, fractal dimension, power spectrum,
recurrence plots, and strange attractors, supported by 2D and time-dependent phase portraits. A
sensitivity analysis is demonstrated to show how the system behaves when there are small changes
in initial values. Finally, the planar dynamical system method is used to derive anti-kink, dark
soliton, and kink soliton solutions, advancing our understanding of the range of solutions admitted
by the model.

Keywords: KdV-ZK model; return map; fractal dimension; chaos; numerical methods

1. Introduction

Nonlinear partial differential equations (PDEs) are fundamental techniques for describ-
ing a wide array of natural phenomena in various fields, including aerospace industries,
science, and engineering [1,2]. A central focus in the study of these phenomena is finding
solutions to nonlinear mathematical models. Various effective methods exist for deriving
exact solutions to nonlinear PDEs, including the exponential rational function approach [3],
the variation of parameters method [4], the generalized separation of variable (GSV) meth-
ods [5], the inverse scattering technique [6], the modified hyperbolic function method [7],
the Exp (−ϕ(ζ)) expansion method [8], the extended G′

G2 expansion method [9], the planar
dynamical system scheme [10], and many others [11–15].

Extensive research has documented different kinds of soliton solutions, such as bright,
dark, and kink solitons. Tariq et al. [16] derived bright solitons using a novel F-expansion
approach for the (2+1)-dimensional chiral equation. Ding et al. [17] investigated dark
solitary waves in the context of the Davey–Stewartson II model. Similarly, Chen and co-
authors [18] discovered kink waves in the 3D BLMP equation using the three-wave method.

In contemporary research, mathematicians extensively engage with nonlinear PDEs
and their associated dynamical systems (DSs). The use of advanced symbolic software
has greatly improved the comprehension of these systems, enabling more structured
analysis. Investigating dynamical systems (DSs) includes approaches like bifurcation anal-
ysis, sensitivity analysis, and examining chaotic behaviors. Recently, academic interest
has grown significantly in these facets of DSs. Prominent examples include investiga-
tions of the Radhakrishnan–Kundu–Lakshmanan equation [19], the nonlinear Schrödinger
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equation [20], the Kadomtsev–Petviashvili equation in (3+1)-dimensional equations, the
Jimbo–Miwa equation in (3+1)-dimensional equations [21], and the Sasa–Satsum model
equation [22].

This study focuses on a comprehensive examination of the (3+1)-dimensional general-
ized KdV-ZK equation:

Gt + λ1G2Gx + λ2Gxxx + λ3
(
Gyy + Gzz

)
x = 0. (1)

Here, G is a function of the spatial variables x, y, z and the temporal variable t, while λ1, λ2,
and λ3 are constants. Our analysis aims to deeply illustrate the dynamics of this equation.
We begin with a Galilean transformation, a foundational step that allows us to derive the
dynamical system (DS) associated with model (1). Using the comprehensive framework of
planar DSs, we perform an in-depth bifurcation analysis, uncovering the intricate behaviors
of the system. Additionally, we demonstrate the model’s chaotic dynamics by introducing
a perturbation term to the DS. We display these chaotic behaviors via a variety of two- and
three-dimensional phase plots, offering a comprehensive understanding of the system’s
complex dynamics.

Moreover, we utilize the RK4 method to study sensitivity analysis. This endeavor
reveals the resilience and stability of the obtained solutions when subjected to minor
alterations in initial values. By introducing slight changes and examining their effects
on stability, we gain a comprehensive understanding of the bifurcation analysis for the
unperturbed DS, accompanied by intricate phase diagrams. Additionally, we consider
chaos in the perturbed DS, using diverse methodologies to detect chaotic outlines in both
temporal sequences and phase diagrams.

Finally, we employ the planar DS approach to construct various bright, dark, and kink
soliton solutions for the governing system. Significantly, this type of exploration has not
been previously undertaken within the framework of the considered equation.

2. Dynamics of the Aforementioned Model

In this section, we transform the proposed PDE into an ODE, followed by its conversion
into a system of ODEs. Let the (3+1)-dimensional generalized KdV-ZK equation be given by

Gt + λ1G2Gx + λ2Gxxx + λ3
(
Gyy + Gzz

)
x = 0. (2)

Now, consider the following wave transformation:

G(x, t) = Z(δ), (3)

where δ = −ϱt + ζ1x + ζ2y + ζ3z. Substituting Equation (3) into Equation (2), we obtain
the following ODE:

−ϱZ ′(δ) + λ1ζ1Z2(δ)Z ′(δ) + λ2ζ3
1Z ′′′(δ) + λ3

(
ζ1ζ2

2Z ′′′(δ) + ζ1ζ2
3Z ′′′(δ)

)
= 0. (4)

Integrating Equation (3) with respect to δ, we have

ζ1Z ′′(δ)
(

λ3

(
ζ2

2 + ζ2
3

)
+ ζ2

1λ2

)
+

1
3

ζ1λ1Z(δ)3 − ϱZ(δ) = 0. (5)

From Equation (5), one can obtain the following dynamical system:{
dZ(δ)

dδ = W ,
dW(δ)

dδ = −F1Z3(δ) +F2Z(δ),
(6)

where F1 = λ1
3(λ3(ζ2

2+ζ2
3)+ζ2

1λ2)
,F2 = ϱ

ζ1(λ3(ζ2
2+ζ2

3)+ζ2
1λ2)

.

3. Periodic Orbits

In dynamical models, periodic orbits are observed when the system’s trajectory visit
goes back to its initial state after a fixed period, following a repeating cycle.
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For the generalized KdV-ZK equation, the system initially displays periodic behavior
when specific parameters, such as the parameter M and frequency u, are small. As these
parameters increase, the system undergoes a transition from order (periodic or quasi-
periodic motion) to chaos. This transition can be explored by analyzing the governing
system with varying parameter values.

By simulating the system with small values for M and u, we observe regular, periodic
behavior. For example, with M = 0.01 and u = 0.01, the phase portraits exhibit a closed
loop, indicating that the system follows a periodic orbit, as can be observed in Figure 1.
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Figure 1. (a,b) Visualization of the dynamics of the proposed perturbed system by setting specific
parameter values as λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1, ζ2 = 1, ζ3 = 0.4, ϱ = 0.7, M = 0.01, and
u = 0.01.

3.1. Transition from Order to Chaos

The transition from order to chaos is a critical juncture in the behavior of the system.
The bifurcation analysis helps us understand this transition by examining how variations
in parameters M and u affect the system’s trajectory.

As M and u increase (e.g., M = 0.4, u = 0.4), we notice that the phase portraits begin to
stretch and fold, representing chaos. The system no longer follows a closed, periodic path
but instead moves through a strange attractor, indicating chaotic behavior. The diagrams
below show how the system evolves as the value of M is increased, leading to the onset
of chaos:

dZ(t)
dt

= W(t),
dW(t)

dt
= −F1Z3(t) +F2Z(t) +M sin(ut),

where the introduction of the term M sin(ut) induces the chaotic behavior which can be
observed in Figure 2.
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Figure 2. (a,b) Visualization of the dynamics of the proposed perturbed system by setting specific
parameter values as λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1, ζ2 = 1, ζ3 = 0.4, ϱ = 0.7, M = 0.5, and
u = 0.1.
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3.2. Chaos and Other Novel Dynamics of the Proposed System

This section investigates the chaotic and other novel dynamical behaviors of the
proposed system. Here, we study the chaotic behavior of the system (6) by introducing a
perturbed term. We then analyze the resulting two- and three-dimensional phase portraits.
The perturbed dynamical system is given by{

dZ(t)
dt = W(t),

dW(t)
dt = −F1Z3(t) +F2Z(t) +M sin(ut).

(7)

Figures 3 and 4 illustrate the effect of the perturbation term M sin(ut) on the system (7).
Here, M and u denote the amplitude and frequency, respectively. Different values of M
and u are considered for the simulations in Figures 3 and 4. The 2D figures represent the
dynamics of the state variables Z −W , and the 3D phase portraits show the dynamics
versus time. The parameters are fixed as λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1, ζ2 = 1,
ζ3 = 0.4, and ϱ = 0.7, while various values for M and u are assumed.
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Figure 3. (a–d) Chaotic behavior by assuming the parameters λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1,
ζ2 = 1, ζ3 = 0.4, and ϱ = 0.7.

For Figure 3a,b, M = 1.8 and u = 1, and for Figure 3c,d, M = 1.3 and u = 1. For
Figure 4a,b, M = 1.3 and u = 0.95, and for Figure 4c,d, M = 2.3 and u = 0.85. Upon
investigation of the phase portraits, intriguing dynamics unfold. In Figure 3a,b, the DS
described by Equation (7) demonstrates strange chaotic behavior, while the multiscroll
attractors can be seen in Figure 3c,d. Furthermore, some more complex structures are
observed in Figure 4. These observations highlight how the system is influenced by
changes in the parameters u and M and give treasured insights into the effects of M sin(ut)
on the system’s conduct as a whole.
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Figure 4. (a–d) Chaotic behavior by assuming the parameters λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1,
ζ2 = 1, ζ3 = 0.4, and ϱ = 0.7.

3.3. Sensitivity

Here, we study the sensitivity of the system (6) by varying the initial conditions of the
governing system, therefore solving the following system:{

dZ(t)
dt = W ,

dW(t)
dt = −F1Z3(t) +F2Z(t) +M sin(ut).

(8)

We implement the RK4 method with the specific values of λ1 = 0.01, λ2 = −2, λ3 = 1,
ζ1 = 1, ζ2 = 1, ζ3 = 0.4, ϱ = 0.7, M = 1, and u = 1 with the following initial conditions
in Figure 5a,b: blue color curves represent Z(0) = 0.1 and W = 0, green color curves
represent Z(0) = 0.15 and W = 0, and red color curves represent Z(0) = 0.2 and W = 0.

For Figure 5c,d, the following values are used:
Blue color curves: Z(0) = 0 and W = 0.1; green color curves: Z(0) = 0 and W = 0.15;

and red color curves: Z(0) = 0 and W = 0.2.
The simulations of the phase portraits are carried out using the RK4 method with

dt = 0.01. The phase portraits in Figure 5 reveal intricate details of the chaotic behavior of
the proposed system under various initial conditions. Each subplot shows the trajectories in
the W −Z plane, where the dynamics of the system unfold in a complex and non-repeating
manner, indicative of strange attractors. Strange attractors are characterized by their fractal
structure, meaning that trajectories exhibit self-similar patterns at different scales, and their
paths never repeat. This fractal nature is evident in the dense looping patterns observed in
the figures, where the trajectories do not converge to fixed points or repeating cycles but
continue to evolve seemingly randomly.
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Figure 5. (a–d) Visualizations based on numerical simulations of the various state variables over
time t assuming λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1, ζ2 = 1, ζ3 = 0.4, and ϱ = 0.7 with various
initial values.

In Figure 5a,b, where the initial values vary in Z(0) while keeping W(0) constant,
the blue, green, and red curves show the distinct paths for slight differences in Z(0). This
sensitive nature toward initial conditions is a hallmark of chaos, where small variations
can lead to vastly different outcomes. The resulting trajectories are densely packed and
complex, filling the phase space without forming closed loops or periodic patterns. This
behavior reveals that the system is highly sensitive to initial conditions and its long-term
dynamics are unpredictable.

Similarly, Figure 5c,d show the phase dynamics for varying initial values of W(0)
while keeping Z(0) constant. The obtained trajectories again highlight the chaotic nature of
the proposed system. The complex loops in these figures indicate the possible presence of
strange attractors, further emphasizing the chaotic dynamics. The trajectories do not settle
into fixed points or limit cycles, reinforcing the idea that the system’s evolution is highly
sensitive to initial conditions and exhibits a complex interplay between the system states.

The simulations in Figure 6 are carried out using the Ode45 built-in function in MAT-
LAB R21b with dt = 0.01. The initial conditions used are presented earlier in this section.
The complex dynamics observed across the phase portraits in Figure 6 suggest that the
system oscillates in a chaotic regime for the considered parameter values with varying
initial conditions. The strange attractors depicted here illustrate the system’s fractal nature,
where the trajectories occupy a fractal subset in the phase space. This fractal dimension,
which is typically non-integer, reflects the complexity and density of the attractors. In the
following section, the fractal dimension is visualized for better understanding. Analyzing
these strange attractors is crucial for investigating the system’s behavior as they provide
insights into the sensitive and unpredictable nature of chaotic dynamics.



Fractal Fract. 2024, 8, 673 7 of 15

(a) (b)

-0.4 -0.2 0 0.2 0.4
-0.5

0

0.5

(c) (d)

(e)

-0.5 0 0.5

-1

-0.5

0

0.5

1

(f)

Figure 6. (a–f) Visualizations based on numerical simulations of the given equation with parameters
assumed to be λ1 = 0.01, λ2 = −2, λ3 = 1, ζ1 = 1, ζ2 = 1, ζ3 = 0.4, ϱ = 0.7, M = 1, and u = 1. with
various initial values.

In summary, the phase diagrams in Figure 6 highlight the presence and evolution of
strange attractors in the W −Z plane, characterized by their fractal patterns and sensitivity
to initial conditions. These strange attractors signify the chaotic dynamics of the system,
where small variations in initial values can lead to significantly different trajectories. The
dense and complex patterns observed in the phase diagrams underscore the system’s
unpredictable behavior, making long-term predictions challenging despite the deterministic
nature of the governing equations. Understanding these attractors is crucial for analyzing
chaotic systems and exploring methods to control or stabilize their behavior.

3.4. Novel Dynamical Analysis of the Proposed System

This section offers a comprehensive investigation of the chaotic dynamics of the
system defined by the state variables Z and W . The visualizations presented here include
return maps, power spectra, strange attractors, recurrence plots, and fractal dimensions.
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Figure 7 shows the dynamics of the Lyapunov spectrum. For the demonstration, we solved
the system of ODEs with the ode45 solver in time span [0, 100] with initial conditions
[0.01, 0.01] for state variables and an identity matrix for the variational matrix. The solution
is computed at N time points, and at each iteration, the Lyapunov exponents are calculated
with the application of QR decomposition of the variational matrix. Finally, the two largest
Lyapunov exponents are plotted against time to visualize the system’s chaotic behavior.
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Figure 7. Visualizations of the Lyapunov spectrum for λ1 = 0.1, λ2 = −0.1, λ3 = 0.1, ζ1 = 2, ζ2 = 1,
ζ3 = 0.4, ϱ = 0.1,M = 1, and u = 1 with various initial values.

The other figures are generated by solving the proposed system using the ‘ode45’
solver in MATLAB, with initial conditions [Z ,W ] = [0.01, 0.01] and a time span of [0, 200].
The evolution of the system is iterated over time, producing variables W1 and x2. The return
map is created by plotting Z1(n) and W1(n) against Z1(n+ 1) and W1(n+ 1), showing the
system’s recurrence and stability, with time [0, 200] and dt = 0.01. For the power spectrum,
time is considered to be [0, 200] with dt = 0.01. Similarly, for the recurrence plot, the
values of Z1(t) and Z1(t′) and W1(t) and W1(t′) are simulated with the threshold ϵ = 0.4
determining recurrence. Similar is the case for the fractal dimension where dt = 0.001. For
the simulation of the strange attractor, the delay conditions are used with dt = 0.01.

Figure 8 illustrates the return maps and power spectra. Figure 5a,b show the return
maps for Z(n) and W(n), respectively. These subplots provide insights into the iterative
behavior of the system by plotting the state variable at a given time step against its value
at the next time step. The return maps show scattered points forming dense, diagonal
structures, suggesting a complex chaotic system. The dense and spread-out nature of the
points, particularly away from a simple linear relationship, indicates that the system is not
following simple periodic or quasi-periodic dynamics but exhibits chaos instead.

Furthermore, Figure 5c,d present the power spectra for Z and W . The power spectrum
displays the frequency components of the time series data for the state variables. The
presence of multiple peaks in the power spectrum diagrams indicates that the system’s
dynamics are influenced by several frequencies, a characteristic of chaotic systems. The
broad dispersion of power across frequencies in these plots suggests a lack of dominant
periodicity, further supporting the presence of chaos in the system.

Figure 9a,b portray the recurrence plots of the state variables, which show when the
system’s state returns to a previously encountered value. The recurrence plots exhibit a
complex, lattice-like structure comprising repeated patterns, suggesting the recurrence of
similar states over time. This structure is consistent with the dynamics of chaotic systems,
where the state variables revisit similar regions but in a non-regular, intricate manner. The
recurrence plots reinforce the notion that the dynamics of the system are governed by
underlying chaos.
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Figure 8. (a–d) Visualizations of the return maps and power spectra for λ1 = 0.1, λ2 = −0.1, λ3 = 0.1,
ζ1 = 2, ζ2 = 1, ζ3 = 0.4, ϱ = 0.1,M = 1, and u = 1.8 with various initial values.

The fractal dimensions visualized in Figure 6c,d provide a quantitative measure of
the complexity of the attractors. The fractal dimensions reveal how the state space of the
system is filled in detail. High peaks in the simulated plots indicate regions with significant
structure and detail, characteristic of fractal geometries. The varying counts across different
box indices show the non-uniform distribution of state space occupation, typical of chaotic
attractors. These simulations further emphasize the fractal nature and complexity of the
system’s evolutionary behavior.

Moreover, Figures 10 and 11 showcase the strange attractors in the Z −W plane.
Figure 7a–c present the dynamics of the state variable Z using delay coordinates, visualiz-
ing how the state evolves over time with different delays. Notably, the delay is considered to
be eight. The complex looping patterns observed in these plots do not repeat, indicating the
presence of strange attractors. These attractors are characterized by their fractal structure,
exhibiting self-similar patterns at different scales. The three-dimensional representation in
Figure 7c particularly highlights the non-repeating nature of the trajectories.

Similarly, Figure 8a–c show the dynamics of the state variable W using delay coordi-
nates. The patterns obtained here mirror those in the Z plots, reinforcing the presence of
chaos in the system. The attractors presented here are also strange attractors, evident from
their complex and densely packed trajectories. The use of delay coordinates is advanta-
geous as it allows us to visualize the multi-dimensional aspects of the chaotic attractors,
revealing the system’s complexity.

The figures collectively present the chaotic dynamics of the governed system through
different visualizations. The return maps and power spectra reveal the non-periodic, multi-
frequency nature of the system’s behavior. The recurrence plots and fractal dimensions
provide a more profound analysis of the complexity and fractal nature of the system. Finally,
the strange attractors emphasize the complex, non-repeating trajectories indicative of chaos.
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These findings enhance the present study and highlight the underlying chaotic processes
that govern the system’s dynamics.
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Figure 9. (a–d) Visualizations of the return map and fractal dimensions for λ1 = 0.1, λ2 = −0.1,
λ3 = 0.1, ζ1 = 2, ζ2 = 1, ζ3 = 0.4, ϱ = 0.1,M = 1, and u = 1.8 with various initial values.
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Figure 10. (a–c) Visualizations of the behavior of strange attractors for λ1 = 0.1, λ2 = −0.1, λ3 = 0.1,
ζ1 = 2, ζ2 = 1, ζ3 = 0.4, ϱ = 0.1,M = 1, and u = 1.8 with various initial values.
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Figure 11. (a–c) Visualizations of the behavior of strange attractors for λ1 = 0.1, λ2 = −0.1, λ3 = 0.1,
ζ1 = 2, ζ2 = 1, ζ3 = 0.4, ϱ = 0.1,M = 1, and u = 1.8 with various initial values.

4. Soliton Solutions for the Suggested Model

In this section, we study the kink, bright, and dark soliton solutions of the proposed
equation using the planar dynamical system approach. Here, we reconsider the dynamical
system (6) as {

dZ(δ)
dδ = W ,

dW(δ)
dδ = −F1Z3(δ) +F2Z(δ).

(9)

We can write the Hamiltonian function for the dynamical system (9) as

H(W ,Z) =
W2

2
+

F1Z4

4
− F2Z2

2
= h, (10)

where h is a Hamiltonian constant. To find the kink, bright, and dark solitons solution, we
only discuss the following two cases:

Case 1: F1 > 0 and F2 > 0.

When k lies in
(
− F2

2
4F1

, 0
)

, we have two periodic orbits. Therefore, the Hamiltonian

function can be written as

W2 =
F1

2

(
−Z4 +

2F2

F1
Z2 +

4k
F1

)
=

F1

2

(
Z2 − υ1k2

)(
υ2k2 −Z2

)
, (11)

where

υ1k =
F2

F1
−

√
F 2

2 + 4kF1

F1
, υ2k =

F2

F1
+

√
F 2

2 + 4kF1

F1
.
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Considering the first equation of Equation (6) and using Equation (11), we obtain

∫ Z

−υ2k

dη√
(η2 − υ1k2)(υ2k2 − η2)

= ±
√

F1

2
(δ − δ0),

∫ υ2k

Z

dη√
(η2 − υ1k2)(υ2k2 − η2)

= ∓
√

F1

2
(δ − δ0).

The resulting Jacobi function solutions are as follows:

Z1,2 = ±υ2kdn

υ2k

√
F1

2
(−ϱt + ζ1x + ζ2y + ζ3z − δ0),

√
υ2

2k − υ2
1k

υ2k

,

where F1 = λ1
3(λ3(ζ2

2+ζ2
3)+ζ2

1λ2)
, F2 = ϱ

ζ1(λ3(ζ2
2+ζ2

3)+ζ2
1λ2)

.

The 3D behavior of Z2 is simulated in Figure 12a, while the 2D cross-sectional dynam-
ics are simulated in Figure 12b. From the simulations, we observe an anti-kink soliton
wave that starts at a higher z-axis value on the left side and smoothly transitions to a lower
z-value on the right side. When k = 0, we have υ2

1k = 0 and υ2
2k = 2F2

F1 . Therefore, we can
express the following bright soliton solution:

Z3,4(x, t) = ±

√
2F2

F1
sech

(√
F2(−ϱt + ζ1x + ζ2y + ζ3z − δ0)

)
.

(a)
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(b)

Figure 12. (a,b) Numerical demonstration of the obtained solution Z2 with λ1 = 0.1, λ2 = −2, λ3 = 1,
ζ1 = 1, ζ2 = 1, ζ3 = 1, and ϱ = −1; green t = −4, blue t = 0, and red t = 4.

The 3D behavior of Z4 is simulated in subplot Figure 13a, while the 2D cross-sectional
dynamics are simulated in Figure 13b. From the simulations, we observe a dark soliton
wave, where the amplitude of the wave is less than the surrounding values.

(a)

-20 -10 0 10 20

x

-1

-0.8
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-0.2

0

(b)

Figure 13. (a,b) Graphical behavior of Z4 for λ1 = 0.1, λ2 = −2, λ3 = 1, ζ1 = 1, ζ2 = 1, ζ3 = 1, and
ϱ = −1; green t = −5, blue t = 0, and red t = 5.
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Case 2: F1 < 0 and F2 < 0
For this, the Hamiltonian function is given by

W2 = −F1

2

(
Z4 − 2F2

F1
Z2 − 4k

F1

)
(12)

= −F1

2

(
υ3k2 −Z2

)(
υ4k2 −Z2

)
, (13)

where

υ1k =
F2

F1
−

√
F 2

2 + 4kF1

F1
, υ2k =

F2

F1
+

√
F 2

2 + 4kF1

F1
.

From Equation (13) and the first equation of (6), we obtain∫ Z

0

dη√(
υ2

3k − η2
)(

υ2
4k − η2

) = ±
√

−F1

2
(δ − δ0).

The Jacobi function solutions are expressed as

Z5,6(x, t) = ±υ3ksn

(
υ4k

√
−F1

2
(−ϱt + ζ1x + ζ2y + ζ3z − δ0),

υ3k
υ4k

)
,

where F1 = λ1
3(λ3(ζ2

2+ζ2
3)+ζ2

1λ2)
and F2 = ϱ

ζ1(λ3(ζ2
2+ζ2

3)+ζ2
1λ2)

.

Considering k = − F2
2

4F1
leads to υ2

3k = υ2
4k = F2

F1
. Therefore, we obtain the following

dark solitons for the governing equation as

Z7,8(x, t) = ±

√
F2

F1
tanh

(√
−F1

2
(−ϱt + ζ1x + ζ2y + ζ3z − δ0)

)
.

The 3D behavior of Z7 is simulated in Figure 14a, while the 2D cross-sectional dynam-
ics are simulated in Figure 14b. From the simulations, we observe a kink soliton wave that
starts at a lower z-axis value on the left side and smoothly transitions to a higher z-value
on the right side.

(a)

-20 -10 0 10 20

x

-1

-0.5

0

0.5

1

(b)

Figure 14. (a,b) Numerical demonstration of the obtained solution Z7 with parameters used as z = 1,
λ1 = −0.01, λ2 = 2, λ3 = 1, ζ1 = 1, ζ2 = 1, ζ3 = 0.4, and ϱ = −1; green t = −10, blue t = 0, and
red t = 10.

5. Conclusions

This research provides a detailed investigation of the complexities associated with
the (3+1)-dimensional generalized KdV-ZK equation. We revealed these complexities
by systematically proposing a related dynamical system with the aid of the Galilean
transformation and studied bifurcation diagrams. We thoroughly investigated a sensitivity
analysis and chaotic behaviors, which are displayed via phase portraits by incorporating
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perturbations. Furthermore, we examined novel dynamical properties, including the return
map, fractal dimension, power spectrum, recurrence plot, and strange attractors, revealing
a variety of characteristics. We also constructed diverse solution structures, including
anti-kink, dark soliton, and kink soliton solutions, using the planar dynamical system
approach. This study highlights the effectiveness of analytical techniques for dynamical
systems, paving the way for future applications in the dynamics of nonlinear systems and
mathematical physics. In the future, neural networks, stochastic noise, and synchronization
will be used for the proposed model [23–25].
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