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Abstract: Delay partial differential equations have significant applications in numerous fields, such as
population dynamics, control systems, neuroscience, and epidemiology, where they are required to ef-
ficiently model the effects of past states on current system behavior. This work presents an RBF-based
localized meshless method for the numerical solution of delay partial differential equations. In the
suggested numerical scheme, the localized meshless method is combined with the Laplace transform.
The main attractive features of the localized meshless method are its simplicity, adaptability, and
ease of implementation for complex problems defined on complex shaped domains. In a localized
meshless scheme, a linear system of equations is solved. The Laplace transform, which is one of the
most powerful techniques for solving integer- and non-integer-order problems, is used to represent
the desired solution as a contour integral in the complex plane, known as the Bromwich integral.
However, the analytic inversion of contour integral becomes very laborious in many situations. There-
fore, a contour integration method is utilized to numerically approximate the Bromwich integral. The
aim of utilizing the Laplace transform is to handle the costly convolution integral associated with the
Caputo derivative and to avoid the effects of time-stepping techniques on the stability and accuracy
of the numerical solution. We also discuss the convergence and stability of the suggested scheme.
Furthermore, the existence and uniqueness of the solution for the considered model are studied. The
efficiency, efficacy, and accuracy of the proposed numerical scheme have been demonstrated through
numerical experiments on various problems.

Keywords: Caputo derivative; delay partial differential equation; Laplace transform; local RBF
method; contour integration method; existence and uniqueness

1. Introduction

Fractional calculus (FC) is an extension of classical calculus, which involves the study
of non-integer-order integral and differential operators. In comparison with integer-order
integration and differentiation, the non-local quality of FC is a major attraction for nu-
merous scholars in diverse fields interested in delving into its definitions, properties,
and applications [1]. Recent years have witnessed a remarkable increase in FC due to
its multiple uses in various fields, such as viscoelasticity [2], continuum mechanics [3],
fluid mechanics [4], thermoelasticity [5], biomedicine and biology [6], and many other
applications [7–11].

Fractional-order time delay partial differential equations (FDPDEs) have grown into a
handy mathematical tool in various engineering and other scientific fields. These equations
provide a more precise illustration of complicated dynamical systems by incorporating
fractional-order derivatives and time delays to the conventional integer-order models.
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When modeling phenomena with memory effects and inherent features that frequently oc-
cur in fields like viscoelasticity, diffusion processes, and biological systems, FDPDEs prove
especially valuable. For example, the stress–strain relationship in viscoelastic materials can
be more accurately expressed using the FDPDEs as compared to the conventional models,
as they consider the materials’ prior deformations [12]. These equations are also used to
model anomalous diffusion in the framework diffusion processes, which is described by a
diffusion rate that differs from the conventional Brownian motion. This makes it possible
for the description of super-diffusive or sub-diffusive behavior that is seen in numerous
natural and artificial systems [13,14]. Furthermore, FDPDEs are utilized in biological sys-
tems to simulate the dynamics of populations with delays and time-dependent growth
rates, giving knowledge regarding how the disease spreads and how various species in-
teract in an ecosystem [15]. FDPDEs have the ability to describe complex dynamics with
higher accuracy, which makes them indispensable for theoretical study and real-world
applications, accelerating scientific and technological developments.

The analytical solutions to FDPDEs provide a comprehensive understanding of the
underlying dynamics of complex systems. Researchers have examined these solutions
extensively to gain insight into a range of memory-related and inherited phenomena. Pod-
lubny [13] used the Laplace transform and Mittag-Leffler functions to solve differential
equations including fractional derivatives analytically. The authors of [14] presented a
comprehensive and organized method for the theory and applications of fractional-order
differential equations. They carefully studied numerous analytical methods, which are
useful for solving these complex fractional-order DEs, including the integral transforms,
Green’s functions, and the Mittag-Leffler functions. The author of [12] showed how frac-
tional calculus may be employed to efficiently explain the stress–strain relationship by
modeling linear viscoelasticity via analytical techniques. Agarwal [16] utilized Green’s
functions to obtain analytical solutions to FPDEs, providing an organized method for
various boundary value problems. Moreover, the authors of [17] illustrated the use of the
integral transform method by studying the analytical solutions of the time-fractional delay
diffusion equation. These works demonstrate the worth of analytical solutions in offering
precise expressions and a solid theoretical knowledge of FDPDEs.

Despite the strength of analytical techniques, numerical techniques are still required
for many real-world problems modeled by FDPDEs since they are excessively complicated
for exact solutions. Numerical solutions are required due to high dimensional systems,
nonlinearity, and the complexity of real-world problems. The numerical solution of FDPDEs
has been studied extensively by numerous researchers. Various numerical techniques have
been proposed, such as in [18]; the authors used the Chebyshev spectral collocation method
for the numerical solution of FDPDEs. Hosseinpour et al. [19] have developed a numerical
scheme based on the Muntz–Legendre polynomials with the operational matrix of fractional
differentiation to approximate DPDEs. The Adams–Bashforth–Moulton method combined
with linear interpolation has been utilized by the authors of [20] to approximate DPDEs.
The authors of [21] proposed radial basis functions (RBFs) for direct RBF collocation to
approximate the solution to DPDEs. Singh [22] proposed efficient Chebyshev polynomials
and robust iterative solvers to obtain the numerical solution to DPDEs. Khana et al. [23]
developed a perturbation iteration algorithm for FDPDEs; they provided some numerical
examples to validate their method. The authors of [24] developed a robust spectral method
for solving the FDPDEs. Farhood and Mohammed [25] used the homotopy perturbation
method to solve variable-order nonlinear FDPDEs. Further, they discussed the convergence
of the method.

Recently, meshless methods have received considerable attention as a strong alterna-
tive to other numerical techniques such as finite difference/volume/element methods for
solving PDEs. The finite difference/element method depends on structure meshes and they
often struggle with irregular geometries. However, meshless methods use scattered node
distribution. Due to this feature, meshless methods can easily handle large deformations,
moving boundaries, and irregular geometries [26]. The radial basis function (RBF) method,
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which is constructed using radial kernels, is one of the most effective meshless techniques.
In the literature, RBF techniques have been widely applied for solving PDEs [27,28]. This
article aims to use the local RBF method for spatial derivative approximation in conjunc-
tion with the Laplace transform method for time derivative approximation. In the local
RBF method, any derivative at a point is approximated using a weighted linear sum of
functional values at its neighboring points [29]. Unlike the global RBF method, the local
RBF method can be employed in many small overlapping sub-domains. Furthermore,
the local RBF method has less sensitivity to the shape parameters’ selection in contrast to
the global RBF method. The local RBF method has been applied to many problems such
as compressible flows [30], diffusion [31], Darcy flows [32], etc. The Laplace transform
(LT) is employed to eliminate the stability problems associated with the finite difference
time-stepping technique. The benefit of the LT method is that it develops the solution at
one specific time value. The solution is produced at specified times without requiring the
intermediate values if the time history is required. However, the main disadvantage of
this method is that it requires a numerical inversion technique for the LT. The inversion
formula for the LT is a complex integral and many inversion techniques involve complex
expressions. In this work, we used the improved Talbots method, which is simple to use
and provides accurate and stable results [33].

2. Preliminaries

This section describes the basic concepts of fractional operators, lemmas, and theorems
that were used in our study.

Definition 1 ([34]). The Gamma function is an extension of the fractional function to real numbers
and is defined as

Γ(α) =
∫ ∞

0
τα−1e−τdτ, α > 0,

and
Γ(α + 1) = αΓ(α).

Definition 2 ([34]). A real function Y(t), t > 0, is said to be in the space Cγ; if γ ∈ R, there
exists a real number ν > γ, such that Y(t) = tνY1(t), where Y1(t) ∈ C[0, ∞) and it is said to be
in the space Cµ

γ if Yµ ∈ Cγ, µ ∈ N∪ {0}.

Definition 3 ([34]). The fractional integral in Riemann–Liouville sense of order α ≥ 0 of a function
Y ∈ Cγ, γ ≥ −1, is defined as

J α
t Y(t) =

1
Γ(α)

∫ t

0
(t − ζ)α−1Y(ζ)dζ, α > 0, t > 0,

Definition 4 ([34]). The fractional derivative in the Caputo sense is defined as

Dα
t Y(ȳ, t) =

1
Γ(m − α)

∫ t

0

∂mY(ȳ,s)
∂sm

(t − s)ν−m ds, m − 1 < α < m,

Definition 5 ([35]). An operator that is continuous and maps bounded sets into bounded sets is
called completely continuous.

Theorem 1 (Schaefer’s theorem, [35]). Let T : S → S be a completely continuous operator. If
the set P(T) = {ν ∈ S : ν = c∗T(ν) for some ν ∈ [0, 1]} is bounded, then T has a fixed point
in T.

Theorem 2 (Arzelà-Ascoli theorem, [35]). Let S be a compact metric space. Let C(S ,R) be
given the sup norm metric. Then, a set T ⊂ C(S) is compact if and only if T is closed, bounded,
and equicontinuous.
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Definition 6 ([13]). The LT of Y(ȳ, t) is defined as

L {Y(t)} =
∫ ∞

0
e−ztY(t)dt = Ỹ(z),

Definition 7 ([13]). The LT of the Caputo fractional derivative is defined as

L {Dα
t Y(ȳ, t)} = zαỸ(ȳ, z)−

n−1

∑
i=0

zp−i−1Yi(ȳ, 0), n − 1 < p ≤ n.

The LT of Y(t − a)(assuminga ≥ 0) is given by the shifting property of the LT:

L {Y(ȳ, t − ϱ)H(t − ϱ)} = e−ϱzỸ(ȳ, z),

where H(t − a) is the unit step function. Therefore, the LT of Dα
t Y(ȳ, t − ϱ) is given as

L {Dα
t Y(ȳ, t − ϱ)} = e−ϱz

{
zαỸ(ȳ, z)−

n−1

∑
i=0

zp−i−1Yi(ȳ, 0)

}
, n − 1 < p ≤ n.

3. Existence Theory

The section addresses the existence and uniqueness of the solution for the problem
under consideration. Let C(Ω,R) be the Banach space of all continuous functions with the
norm defined as ∥Y∥∞ = sup{|Y(ȳ, t)|; (ȳ, t) ∈ Ω}. We consider the following FDPDE:

Dα
t Y(ȳ, t) + σ1Dα

t Y(ȳ, t − ϱ) + σ2∆Y(ȳ, t) + σ3∆Y(ȳ, t − ϱ) + σ4Y(ȳ, t − ϱ) = f (ȳ, t), ȳ ∈ Ω, t > 0, (1)

subject to
Y(ȳ, 0) = ϕ1(ȳ), (2)

and boundary conditions
LbY(ȳ, t) = ψ1(ȳ, t), ȳ ∈ ∂Ω. (3)

where 0 < t ≤ 1 and 0 < α ≤ 1, while σ1, σ2, σ3, σ4, ϱ are given constants Ω ⊂ R2, Y(ȳ, t) ∈
C2(Ω × [0, 1]) is an unknown function to be determined, ∆ is the Laplace operator, Lb is
the boundary operator, and Ω ⊂ R2 is the spatial domain with a smooth boundary ∂Ω. The
functions ϕ1(ȳ) and ψ1(ȳ, t) are continuous and f (ȳ, t) is sufficiently smooth.

Lemma 1. We suppose that f (ȳ, t) : C(Ω) → C(Ω) and Y(ȳ, t) : C(Ω,R) → C(Ω,R) are
continuous functions. Then, Y ∈ C(Ω,R) is a solution of the integral equation

Y(ȳ, t) = ϕ1 +
1

Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Y(ȳ, θ − ϱ)− σ2∆Y(ȳ, θ)− σ3∆Y(ȳ, θ − ϱ)− σ4Y(ȳ, θ − ϱ) + f (ȳ, θ)

)
dθ, (4)

iff Y(ȳ, t) is a solution to the problem (1)–(3).

We consider the following assumptions to prove our results:

H1: For any (ȳ, t) ∈ C(Ω), there exist constants x1, x2, x3 > 0 such that

|Dα
t Y1(ȳ, t − ϱ)− Dα

t Y2(ȳ, t − ϱ)| ≤ x1|Y1(ȳ, t − ϱ)− Y2(ȳ, t − ϱ)|,
|∆Y1(ȳ, t)− ∆Y2(ȳ, t)| ≤ x2|Y1(ȳ, t)− Y2(ȳ, t)|,
|∆Y1(ȳ, t − ϱ)− ∆Y2(ȳ, t − ϱ)| ≤ x3|Y1(ȳ, t − ϱ)− Y2(ȳ, t − ϱ)|.

H2: For all ȳ ∈ Ω, there exist M1, M > 0 such that

|ϕ1(ȳ)| ≤ M1 and | f (ȳ, t)| ≤ M.
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H3: For c1, c2, c3 > 0 and (ȳ, t) ∈ C(Ω), we have

|Dα
t Y(ȳ, t − ϱ)| ≤ c1|Y(ȳ, t − ϱ)|,

|∆Y(ȳ, t)| ≤ c2|Y(ȳ, t)|,
|∆Y(ȳ, t − ϱ)| ≤ c3|Y(ȳ, t − ϱ)|.

Theorem 3. The considered problem (1)–(3) has at least one solution if H1 holds.

Proof. This proof involves several stages.
To begin, we formulate the problem given in (1)–(3) as a fixed-point problem. Let us define
the operator M : C(Ω,R) → C(Ω,R) as

MY(ȳ, t) = ϕ1 +
1

Γ(α)

∫ t

0
(t− θ)α−1

(
− σ1Dα

θ Y(ȳ, θ − ϱ)− σ2∆Y(ȳ, θ)− σ3∆Y(ȳ, θ − ϱ)− σ4Y(ȳ, θ − ϱ)+ f (ȳ, θ)

)
dθ, (5)

Stage 1: We are going to prove that the operator M is continuous.
Let Yn → Y ∈ C(Ω,R) be a sequence. For any (ȳ, t) ∈ Ω, we have

∥MYn(ȳ, t)−MY(ȳ, t)∥∞ = sup |MYn(ȳ, t)−MY(ȳ, t)|

= sup
∣∣∣∣ 1
Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Yn(ȳ, θ − ϱ)− σ2∆Yn(ȳ, θ)− σ3∆Yn(ȳ, θ − ϱ)

− σ4Yn(ȳ, θ − ϱ)

)
dθ − 1

Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Y(ȳ, θ − ϱ)− σ2∆Y(ȳ, θ)

− σ3∆Y(ȳ, θ − ϱ)− σ4Y(ȳ, θ − ϱ)

)
dθ

∣∣∣∣
≤ sup

1
Γ(α)

∫ t

0
(t − θ)α−1

(
|σ1||Dα

θ Yn(ȳ, θ − ϱ)− Dα
θ Y(ȳ, θ − ϱ)|+ |σ2||∆Yn(ȳ, θ)− ∆Y(ȳ, θ)|

+ |σ3||∆Yn(ȳ, θ − ϱ)− ∆Y(ȳ, θ − ϱ)|+ |σ4||Yn(ȳ, θ − ϱ)− Y(ȳ, θ − ϱ)|
)

dθ

≤ sup
1

Γ(α)

∫ t

0
(t − θ)α−1

(
x1|σ1||Yn(ȳ, θ − ϱ)− Y(ȳ, θ − ϱ)|+ x2|σ2||Yn(ȳ, θ)− Y(ȳ, θ)|

+ x3|σ3||Yn(ȳ, θ − ϱ)− Y(ȳ, θ − ϱ)|+ |σ4||Yn(ȳ, θ − ϱ)− Y(ȳ, θ − ϱ)|
)

dθ

≤ tα

Γ(1 + α)
(x1|σ1|+ x2|σ2|+ x3|σ3|+ |σ4|)∥Yn − Y∥∞

≤ Tα

Γ(1 + α)
(x1|σ1|+ x2|σ2|+ x3|σ3|+ |σ4|)∥Yn − Y∥∞

Since Y is continuous, so we obtain

∥MYn(ȳ, t)−MY(ȳ, t)∥∞ → 0 as n → ∞.

Thus, the operator M is continuous.
Stage 2: We are going to prove that the operator M is bounded.
For every a > 0 there exists a constant b > 0 such that for every Y ∈ Aa = {Y ∈ C(Ω,R) :
∥Y∥∞ ≤ a}, one has ∥MY∥∞ ≤ b; for each t ∈ I, we have
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|MY(ȳ, t)| =
∣∣∣∣ϕ1 +

1
Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Y(ȳ, θ − ϱ)− σ2∆Y(ȳ, θ)− σ3∆Y(ȳ, θ − ϱ)− σ4Y(ȳ, θ − ϱ)

+ f (ȳ, θ)

)
dθ

∣∣∣∣
≤ |ϕ1|+

1
Γ(α)

∫ t

0
(t − θ)α−1

(
| − σ1Dα

θ Y(ȳ, θ − ϱ)|+ | − σ2∆Y(ȳ, θ)|+ | − σ3∆Y(ȳ, θ − ϱ)|

+ | − σ4Y(ȳ, θ − ϱ)|+ | f (ȳ, θ)|
)

dθ

≤ M1 +
1

Γ(α)

∫ t

0
(t − θ)α−1

(
c1|σ1||Y(ȳ, θ − ϱ)|+ c2|σ2||Y(ȳ, θ)|+ c3|σ3||Y(ȳ, θ − ϱ)|+ |σ4||Y(ȳ, θ − ϱ)|

+ | f (ȳ, θ)|
)

dθ

which implies

∥MY(ȳ, t)∥∞ ≤ M1 +
1

Γ(α)

∫ t

0
(t − θ)α−1

(
c1|σ1|∥Y∥∞ + c2|σ2|∥Y∥∞ + c3|σ3|∥Y∥∞ + |σ4|∥Y∥∞ + M

)
dθ

= M1 +
tα

Γ(1 + α)

(
(c1|σ1|+ c2|σ2|+ c3|σ3|+ |σ4|)∥Y∥∞ + M

)
which yields for t ∈ [0, T]

∥MY(ȳ, t)∥∞ ≤ M1 +
Tα

Γ(1 + α)

(
(c1|σ1|+ c2|σ2|+ c3|σ3|+ |σ4|)a + M

)
:= b.

Thus, M is bounded.
Stage 3: We are going to prove that the operator M is equicontinuous.
Let Aa represent bounded subset of C(Ω,R) as in step 2, and let Aa ⊆ C(Ω,R); then, for
Y ∈ Aa and ȳ1, ȳ2, t1, t2 ∈ Ω with ȳ1 < ȳ2, t1 < t2, we obtain

|MY(ȳ1, t1)−MY(ȳ2, t2)| =
∣∣∣∣ 1
Γ(α)

∫ t1

0
(t1 − θ1)

α−1
(
− σ1Dα

θ1
Y(ȳ1, θ1 − ϱ)− σ2∆Y(ȳ1, θ1)− σ3∆Y(ȳ1, θ1 − ϱ)

− σ4Y(ȳ1, θ1 − ϱ) + f (ȳ1, θ1)

)
dθ1 −

1
Γ(α)

∫ t2

0
(t2 − θ2)

α−1
(
− σ1Dα

θ2
Y(ȳ2, θ2 − ϱ)

− σ2∆Y(ȳ2, θ2)− σ3∆Y(ȳ2, θ2 − ϱ)− σ4Y(ȳ2, θ2 − ϱ) + f (ȳ2, θ2)

)
dθ2

∣∣∣∣
≤

∣∣∣∣ 1
Γ(α)

∫ t1

0
(t1 − θ1)

α−1
(
− σ1Dα

θ1
Y(ȳ1, θ1 − ϱ)− σ2∆Y(ȳ1, θ1)− σ3∆Y(ȳ1, θ1 − ϱ)

− σ4Y(ȳ1, θ1 − ϱ)

)
dθ1 −

1
Γ(α)

∫ t2

0
(t2 − θ2)

α−1
(
− σ1Dα

θ2
Y(ȳ2, θ2 − ϱ)

− σ2∆Y(ȳ2, θ2)− σ3∆Y(ȳ2, θ2 − ϱ)− σ4Y(ȳ2, θ2 − ϱ)

)
dθ2

∣∣∣∣
+

1
Γ(α)

∫ t1

0
(t1 − θ1)

α−1| f (ȳ1, θ1)|dθ1 −
1

Γ(α)

∫ t2

0
(t2 − θ2)

α−1| f (ȳ2, θ2)|dθ2

which implies
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|MY(ȳ1, t1)−MY(ȳ2, t2)| ≤
1

Γ(α)

∫ t1

0
(t1 − θ1)

α−1
(
|σ1||Dα

θ1
Y(ȳ1, θ1 − ϱ)|+ |σ2||∆Y(ȳ1, θ1)|+ |σ3||∆Y(ȳ1, θ1 − ϱ)|

+ |σ4||Y(ȳ1, θ1 − ϱ)|
)

dθ1 −
1

Γ(α)

∫ t2

0
(t2 − θ2)

α−1
(
|σ1||Dα

θ2
Y(ȳ2, θ2 − ϱ)| − |σ2||∆Y(ȳ2, θ2)|

− |σ3||∆Y(ȳ2, θ2 − ϱ)| − |σ4||Y(ȳ2, θ2 − ϱ)|
)

dθ2 +
1

Γ(α)

∫ t1

0
(t1 − θ1)

α−1| f (ȳ1, θ1)|dθ1

− 1
Γ(α)

∫ t2

0
(t2 − θ2)

α−1| f (ȳ2, θ2)|dθ2

≤ 1
Γ(α)

∫ t1

0
(t1 − θ1)

α−1
(

c1|σ1||Y(ȳ1, θ1 − ϱ)|+ c2|σ2||Y(ȳ1, θ1)|+ c3|σ3||Y(ȳ1, θ1 − ϱ)|

+ |σ4||Y(ȳ1, θ1)|
)

dθ1 −
1

Γ(α)

∫ t2

0
(t2 − θ2)

α−1
(

c1|σ1||Y(ȳ2, θ2 − ϱ)|+ c2|σ2||Y(ȳ2, θ2)|

+ c3|σ3||Y(ȳ2, θ2 − ϱ)|+ |σ4||Y(ȳ2, θ2)|
)

dθ2 +
1

Γ(α)

∫ t1

0
(t1 − θ1)

α−1Mdθ1

− 1
Γ(α)

∫ t2

0
(t2 − θ2)

α−1Mdθ2

≤ 1
Γ(α)

∫ t1

0
(t1 − θ1)

α−1
(

c1|σ1|∥Y∥∞ + c2|σ2|∥Y∥∞ + c3|σ3|∥Y∥∞ + |σ4|∥Y∥∞

)
dθ1

− 1
Γ(α)

∫ t2

0
(t2 − θ2)

α−1
(

c1|σ1|∥Y∥∞ + c2|σ2|∥Y∥∞ + c3|σ3|∥Y∥∞ + |σ4|∥Y∥∞

)
dθ2

+
1

Γ(α)

∫ t1

0
(t1 − θ1)

α−1Mdθ1 −
1

Γ(α)

∫ t2

0
(t2 − θ2)

α−1Mdθ2

=

[
1

Γ(α)

∫ t1

0
(t1 − θ1)

α−1dθ1 −
1

Γ(α)

∫ t2

0
(t2 − θ2)

α−1dθ2

](
c1|σ1|∥Y∥∞ + c2|σ2|∥Y∥∞

+ c3|σ3|∥Y∥∞ + |σ4|∥Y∥∞

)
+

[
1

Γ(α)

∫ t1

0
(t1 − θ1)

α−1dθ1 −
1

Γ(α)

∫ t2

0
(t2 − θ2)

α−1dθ2

]
M

Thus,

∥MY(ȳ1, t1)−MY(ȳ2, t2)∥∞ ≤ 1
Γ(α + 1)

(
tα
1 − tα

2

)[
c1|σ1|∥Y∥∞ + c2|σ2|∥Y∥∞ + c3|σ3|∥Y∥∞ + |σ4|∥Y∥∞ + M

]
Hence,

∥MY(ȳ1, t1)−MY(ȳ2, t2)∥∞ → 0 as t1 → t2

Therefore, by the Arzelà–Ascoli Theorem [35], M is completely continuous.
Stage 4: A priori estimate.
Let us define a set η = {Y ∈ C(Ω,R) : Y = qMY, 0 < q < 1}. We need to show that the
set η is bounded. If Y ∈ η, then, by definition, Y = qMY with 0 < q < 1. Therefore, for
any t ∈ I, we have

|Y| = |qMY|

=

∣∣∣∣q ×{
ϕ1 +

1
Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Y(ȳ, θ − ϱ)− σ2∆Y(ȳ, θ)− σ3∆Y(ȳ, θ − ϱ)− σ4Y(ȳ, θ − ϱ)

+ f (ȳ, θ)

)
dθ

}∣∣∣∣
which, by using the inequality in stage 2, we have

|Y| ≤ q ×
(

M1 +
Tα

Γ(1 + α)

(
(c1|σ1|+ c2|σ2|+ c3|σ3|+ |σ4|)a + M

))
. (6)
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which gives

∥Y∥∞ ≤ q ×
(

M1 +
Tα

Γ(1 + α)

(
(c1|σ1|+ c2|σ2|+ c3|σ3|+ |σ4|)a + M

))
:= C1. (7)

Hence, η is bounded. Thus, by Schaefer’s fixed-point theorem, M has at least one fixed
point. Thus, the problem (1)–(3) has at least one solution.

Theorem 4. The solution to the problem defined in Equations (1)–(3) is unique under the hypothesis
(H1) if the inequality

Tα

Γ(1 + α)
(x1|σ1|+ x2|σ2|+ x3|σ3|+ |σ4|) < 1,

holds.

Proof. Let Y1, Y2 ∈ C(Ω,R); then, for each t ∈ I, we have

∥MY1(ȳ, t)−MY2(ȳ, t)∥∞ = sup |MY1(ȳ, t)−MY2(ȳ, t)|

= sup
∣∣∣∣ 1
Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Y1(ȳ, θ − ϱ)− σ2∆Y1(ȳ, θ)− σ3∆Y1(ȳ, θ − ϱ)

− σ4Y1(ȳ, θ − ϱ)

)
dθ − 1

Γ(α)

∫ t

0
(t − θ)α−1

(
− σ1Dα

θ Y2(ȳ, θ − ϱ)− σ2∆Y2(ȳ, θ)

− σ3∆Y2(ȳ, θ − ϱ)− σ4Y2(ȳ, θ − ϱ)

)
dθ

∣∣∣∣
≤ sup

1
Γ(α)

∫ t

0
(t − θ)α−1

(
|σ1||Dα

θ Y1(ȳ, θ − ϱ)− Dα
θ Y2(ȳ, θ − ϱ)|+ |σ2||∆Y1(ȳ, θ)− ∆Y2(ȳ, θ)|

+ |σ3||∆Y1(ȳ, θ − ϱ)− ∆Y2(ȳ, θ − ϱ)|+ |σ4||Y1(ȳ, θ − ϱ)− Y2(ȳ, θ − ϱ)|
)

dθ

≤ sup
1

Γ(α)

∫ t

0
(t − θ)α−1

(
x1|σ1||Y1(ȳ, θ − ϱ)− Y2(ȳ, θ − ϱ)|+ x2|σ2||Y1(ȳ, θ)− Y2(ȳ, θ)|

+ x3|σ3||Y1(ȳ, θ − ϱ)− Y2(ȳ, θ − ϱ)|+ |σ4||Y1(ȳ, θ − ϱ)− Y2(ȳ, θ − ϱ)|
)

dθ

≤ tα

Γ(1 + α)
(x1|σ1|+ x2|σ2|+ x3|σ3|+ |σ4|)∥Y1 − Y2∥∞

≤ Tα

Γ(1 + α)
(x1|σ1|+ x2|σ2|+ x3|σ3|+ |σ4|)∥Y1 − Y2∥∞.

Hence, M is a contraction; thus, by Banach’s fixed-point theorem, M has a unique fixed
point, and, therefore, the problem defined in Equations (1)–(3) has a unique solution.

4. Methodology

This section presents our suggested numerical approach for FDPDEs including the
Caputo derivative. Our approach relies on the following primary steps: (i) we consider an
FDPDE and reduce it to a time-independent PDE in LT space ; (ii) we solve the reduced
problem via the local RBF method; (iii) we use the inverse LT method to obtain the solution
of the considered FDPDE. All the steps are described as follows:

4.1. Laplace Transform Method

We consider the initial-boundary value problem (1)–(3). The Laplace transform of
(1)–(3) implies
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L {Dα
t Y(ȳ, t) + σ1Dα

t Y(ȳ, t − ϱ) + σ2∆Y(ȳ, t) + σ3∆Y(ȳ, t − ϱ) + σ4Y(ȳ, t − ϱ) = f (ȳ, t)},

and
L {LbY(ȳ, t)} = L {ψ1(ȳ, t)},

which implies

zαỸ(ȳ, z)− zα−1Y(ȳ, 0) + σ1

{
e−ϱz

(
zαỸ(ȳ, z)− zα−1Y(ȳ, 0)

)}
+ σ2∆Ỹ(ȳ, z)

σ3e−ϱz∆Ỹ(ȳ, z) + σ4e−ϱzỸ(ȳ, z) = f̃ (ȳ, z)

and
LbỸ(ȳ, z) = ψ̃1(ȳ, z), ȳ ∈ ∂Ω.

Simplifying the above system, we obtain{
zα I + σ1e−ϱzzα I + σ2L+ σ3e−ϱzL+ σ4e−ϱz}Ỹ(ȳ, z) = F̃(ȳ, z), (8)

and
LbỸ(ȳ, z) = ψ̃1(ȳ, z), (9)

where L = ∆ and F̃(ȳ, z) = zα−1ϕ1(ȳ) + σ1e−ϱzzα−1ϕ1(ȳ) + f̃ (ȳ, z). We need to solve the
system (8) and (9) for each node z in parallel for Ỹ(ȳ, z) in LT domain [36]. Then, we need to
invert the obtained solution. However, numerous circumstances give rise to the challenge
of numerically inverting the LT Ỹ(ȳ, z) of Y(ȳ, t).

4.2. Local RBF Method

This section extends the application of the local RBF method to the transformed
problem defined in Equations (8) and (9). The local RBF method converts the transformed
problem (8) and (9) into a well-conditioned and linear sparse system. In the local RBF
method, we consider a set of nodes Θ = {ȳj}

Ng
j=1 in the domain Ω̄ = Ω ∪ ∂Ω. For each

node ȳj, we select ȳ[j]
i , i = 1, 2, . . . , Nl points in its neighborhood. The index [j] denotes the

points that belong to the local domain Ωi. To develop the local RBF method, the collocation
technique is applied on the local domain Ωj = {ȳ[j]

i }Nl
i=1, j = 1, 2, . . . , Ng. The function

Ỹ(ȳj, z) is approximated via the local RBF method as

Ỹ(ȳj, z) =
Nl

∑
i=1

χ
[j]
i ϕ(∥ȳj − ȳ[j]

i ∥),

utilizing the collocation technique in Ωi, we have

Ỹ(ȳ[j]
1 , z)

Ỹ(ȳ[j]
2 , z)
.
.
.

Ỹ(ȳ[j]
Nl

, z)


=



ϕ(∥ȳ[j]
1 − ȳ[j]

1 ∥) ϕ(∥ȳ[j]
1 − ȳ[j]

2 ∥) . . . ϕ(∥ȳ[j]
1 − ȳ[j]

Nl
∥)

ϕ(∥ȳ[j]
2 − ȳ[j]

1 ∥) ϕ(∥ȳ[j]
2 − ȳ[j]

2 ∥) . . . ϕ(∥ȳ[j]
2 − ȳ[j]

Nl
∥)

. . . . . .

. . . . . .

. . . . . .
ϕ(∥ȳ[j]

Nl
− ȳ[j]

1 ∥) ϕ(∥ȳ[j]
Nl

− ȳ[j]
2 ∥) . . . ϕ(∥ȳ[j]

Nl
− ȳ[j]

Nl
∥)





χ
[j]
1

χ
[j]
2
.
.
.

χ
[j]
Nl


. (10)

We denote the matrix in Equation (10) by Q[j], where ϕ(∥ȳj − ȳ[j]
i ∥) is a radial basis function,

∥.∥ represents the 2-norm, and {χ
[j]
i }Ng

i=1 is the vector containing the unknown coefficients.
The unknown coefficients can be obtained as

χ[j] = (Q[j])−1Ỹ [j], f or j = 1, 2, . . . , Ng.



Fractal Fract. 2024, 8, 683 10 of 22

where Ỹ [j] = [Ỹ(ȳ[j]
1 ), Ỹ(ȳ[j]

2 ), . . . , Ỹ(ȳ[j]
Nl
)]T , and χ[j] = [χ

[j]
1 , χ

[j]
2 , . . . , χ

[j]
Nl
]T . The next step in

the local RBF method is as follows:

LỸ(ȳj) =
Nl

∑
i=1

χ
[j]
i Lϕ(∥ȳj − ȳ[j]

i ∥),

which implies
LỸ(ȳi) =χ[j] · N[j]

=N[j] · χ[j]

=N[j](Q[j])−1Ỹ [j].

Hence, we have
LỸ(ȳj) = M[j]Ỹ[j] (11)

where M[j] = N[j](Q[j])−1 and N[j] = Lϕ(∥ȳj − ȳ[j]i ∥) is a vector of order 1× Nl. Equation (11)
is the local form; by adding a zero to the appropriate position in each row of the matrix
M[j], we can obtain the global matrix M [37]. Hence, the operator L can be approximated
at each node ȳi as

LỸ ≡ MỸ , (12)

where MNg×Ng is a sparse system matrix with Ng − Nl zero and Nl non-zero elements.
Similarly, Lb can be approximated as

LbỸ ≡ ΠỸ ; (13)

using (12) and (13) in (8) and (9), we obtain(
zα I + σ1e−ϱzzα I + σ2M + σ3e−ϱzM + σ4e−ϱz)Ỹ(ȳ, z) = F̂(ȳ, z) (14)

ΠỸ(ȳ, z) = ψ̃(ȳ, z). (15)

The approximate solution Ỹ(ȳ, z) can be obtained by solving the system (14) and (15)
for each z in parallel.

Optimal Shape Parameter

The RBF defined as ϕ(ϵ, r) =
√

1 + ϵ2r2, where r = ∥ȳj − ȳ[j]
i ∥ was used in all the

numerical experiments. For optimal accuracy, one needs to use an optimal value of the
shape parameter ϵ. The optimal value parameter ϵ can be obtained via the work of [38].
Algorithm 1 outlines the key steps as follows.

Algorithm 1 : Optimal value of ϵ

1: Input: ξmin, ξmax, ϵIncrement
2: Step i: ξ = 1

3: Step ii: choose 10+12 < ξ < 10+16

4: Step iii: while ξ > ξmax and ξ < ξmin

5: Step iv: obtain the system matrix Q[j]

6: Step v: S, V, D = svd(Q[j])

7: Step vi: ξ = Mmax
Mmin

8: Step vii: if ξ < ξmin, ϵ = ϵ − ϵIncrement

9: Step viii: if ξ > ξmax, ϵ = ϵ + ϵIncrement

10: Output: ϵ(Best) = ϵ.
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The inverse (Q[j])−1 can be obtained via svd as (Q[j])−1 = (SVDT)
−1

= DV−1ST

(see [39]). Hence, we can compute M[j] in (11).

4.3. Inverse Laplace Transform

The numerical inversion of the LT is a very important topic in many fields of applied
mathematics. In many applications, the table of transforms can be used to obtain the
inversion, or using the partial fraction decomposition method in the case of rational
transform functions. If none of these strategies work, the inversion integral formula may
be used; it might result in infinite series or an intractable integral. Obtaining an accurate
numerical value of the inverse for a given argument demands considerable effort. To obtain
the desired numerical solution, first, we need to solve the system (14) and (15) for each
point z in the LT domain and, then, apply the inverse LT to Ỹ(ȳ, z) as

Y(ȳ, t) =
1

2πi

∫ ρ+i∞

ρ−i∞
ezθỸ(ȳ, z)dz =

1
2πi

∫
Y

ezθỸ(ȳ, z)dz, ρ > ρ0, (16)

where ρ is chosen so that, for each singularity of Ỹ(ȳ, z), the contour Y is placed on the
right side. Approximating the Bromwich integral (16) can be challenging when the function
Ỹ(ȳ, z) is complex. Equation (16) is an integral equation for the unknown Y(ȳ, t) given
Ỹ(ȳ, z); its numerical solution can be categorized into two groups. Numerical inverse LT
methods are either functional expansion with analytically invertible basis functions or
quadrature-based. In this article, the improved version of Talbot’s approach was used,
which is quadrature-based, directly approximating (16).

4.3.1. Improved Talbot Approach

In the improved Talbot method, the integral (16) is approximated via the numerical
quadrature. In the literature, the trapezoidal and midpoint rules are two widely used and
efficient methods used in combination with the technique of contour deformation [40].
The objective of the contour deformation is to effectively manage the exponential factor,
ensuring that the integrand decays rapidly along the selected contour. The numerical
accuracy and efficiency depend on this rapid decay. Specifically, the contour is deformed to
a contour whose real part begins in the third quadrant and ends in the second quadrant at
−∞, moving around all the singularities of Ỹ(ȳ, z) going again to −∞ in the 2nd quadrant.
When the integrand is smooth and rapidly decaying, the trapezoidal and mid-point rules
perform better and provide accurate and stable results with fewer discretization points.
Such deformation is permitted by Cauchy’s theorem, as long as the contour stays inside a
region where Ỹ(ȳ, z) is analytic. Moreover, there must be some constraints on the decay of
Ỹ(ȳ, z) in the left half-plane [33]. Here, a Hankel contour suggested by the authors of [33]
is considered:

Y : z = z(χ), −π ≤ χ ≤ π, Res(±π) = −∞ (17)

we have
z(χ) =

n
t

ζ(χ), ζ(χ) = −κ1 + σ1χcot(µ1χ) + ν1iχ, (18)

where µ1, ν1, κ1, and σ1 are up to the user to select. From (18) and (16), we have

Y(ȳ, t) =
1

2πi

∫ π

−π
ez(χ)tỸ(ȳ, z)(z(χ))z′(χ)dχ. (19)

The midpoint rule with uniform step h = 2π
n is utilized to approximate Equation (19)

as

Yn(ȳ, t) ≈ 1
ni

n

∑
k=1

ez(χk)tỸ(z(χk))z′(χk), χk = −π + (k − 1
2
)h. (20)
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4.3.2. Error Analysis

The the error analysis of the approach is discussed as follows.

Theorem 5 ([33]). Let us select χk as given in (20) and suppose F : Σ → C is analytic in

Σ = {χ ∈ C : −π < Re(χ) < π, and − a2 < Imχ < a1},

where a1, a2 are positive constants; then, we have

∫ π

−π
F (χ)dχ − 2π

n

n

∑
k=1

F (χk) = Q+(σ) + Q−(ς),

here,

Q+(σ) =
1
2

(∫ −π+iσ

−π
+

∫ π+iσ

−π+iσ
+

∫ π

π+iσ

)(
1 + itan

(nχ

2

))
F (χ)dχ,

and

Q−(ς) =
1
2

(∫ −π−iς

−π
+

∫ π−iς

−π−iς
+

∫ π

π−iς

)(
1 − itan

(nχ

2

))
F (χ)dχ,

∀ 0 < σ < a1, and 0 < ς < a2 and n is even; if n is an odd number, then tan( nχ
2 ) can be replaced

with −cot( nχ
2 ), if F (χ) is real valued, i.e., F (χ̄) = F (χ), and, if a1 = a2, then

Q(ς) = Q+(ς) + Q−(ς) = Re
∫ π+iς

−π+iς

(
1 + itan

(nχ

2

))
F (χ)dχ,

By investigating the behavior of the tangent function, we obtain the bound:

|Q(ς)| ≤ 4πC
exp(cn)− 1

,

the aforementioned bound is obtained for even n, C, c ∈ R+. Similar results can be achieved for
odd n.

The parameters in (18) can be optimized to find the best contour, ensuring accurate
results. In [33], some values are suggested, which are listed as follows:

κ1 = 0.61220, ν1 = 0.26450, µ1 = 0.64070, and σ1 = 0.50170,

with error estimate O(e−1.3580n).
The basic steps of the suggested technique are provided in Algorithm 2

Algorithm 2 : Numerical scheme

1: Input: The FDPDE, the computational domain, the fractional order α, the initial bound-
ary conditions, the initial shape parameter, the nonhomogeneous function, the optimal
parameters used in modified Talbot’s method.

2: Step i: Employ the Laplace transform in (1)–(3) and obtain the transformed problem in
(8) and (9).

3: Step ii: Discretize the operators L and Lb using (12) and (13), respectively.

4: Step iii: Solve (14) and (15) for every point z in parallel along Talbot’s contour in (18)
and obtain Ỹ(ȳ, z) in the LT domain.

5: Step iv: Obtain the approximate of (1)–(3)’s solution using (20).

6: Output: The desired solution is Yn(ȳ, t).
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5. Stability

Here, we talk about the fully discrete system’s stability. The system (14) and (15) is
written as follows:

TỸ = R, (21)

here, T is the interpolation matrix obtained via the LMM. The constant of stability for the
system (21) has the form

βc = sup
Ỹ ̸=0

∥Ỹ∥
∥TỸ∥

, (22)

further, the constant βc is finite for any choice of norm ∥.∥ defined onRNglob. Equation (22) gives

∥T∥−1 ≤ ∥Ỹ∥
∥TỸ∥

≤ βc. (23)

We may also write

∥T†∥ = sup
L ̸=0

∥T†L∥
∥L∥ . (24)

where the pseudoinverse of T is T†. As a result, we obtain

∥T†∥ ≥ sup
L=TỸ ̸=0

∥T†TỸ∥
∥TỸ∥

= sup
Ỹ ̸=0

∥Ỹ∥
∥TỸ∥

= βc. (25)

The constraints for the constant βc are given in Equations (23) and (24). Although the
pseudoinverse for system (21) may be challenging to compute, stability is ensured when
employing it. The MATLAB command condest is used to compute ∥T−1∥∞ as

βc =
condest(T′)

∥T∥∞
. (26)

This works successfully for our sparse matrix T in a very reduced computational time.

6. Numerical Results

In this section, we present numerical results of the local RBF method on different
examples. The multiquadric kernel was utilized in all numerical examples. The accuracy of
the proposed local RBF method was measured via the following four error norms:

Erab =

∣∣∣∣Y(ȳj, t)− Yn(ȳj, t)
∣∣∣∣,

Er2 =

√√√√√√√∑
Ng
j=1

(
Y(ȳj, t)− Yn(ȳj, t)

)2

∑
Ng
j=1(Y(ȳj, t))2

,

Er∞ = max
1≤j≤Ng

∣∣∣∣Y(ȳj, t)− Yn(ȳj, t)
∣∣∣∣,

Err =

√√√√√√∑
Ng
j=1

(
Y(ȳj, t)− Yn(ȳj, t)

)2

Ng
,

where Y(ȳj, t) and Yn(ȳj, t) are the exact and numerical solutions, respectively. The col-
location points in the global and local domains are denoted by Ng and Nl , respectively,
whereas n denotes the quadrature nodes. The numerical result was performed using the
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multiquadric RBF. The initial boundary conditions and the source terms for each problem
were selected using the exact solution.

Example 1

We considered the FDPDE

Dα
t Y(y1, t) =

∂2Y(y1, t)
∂y2

1
+ Y(y1, t − 1) + f (y1, t).

The exact solution for Example 1 is given by Y(y1, t) = y2
1(t

5
3 + t

4
3 ). Table 1 presents

the error norms Er2, Er∞, and Err for various values of the parameters n, Nl , and Ng. In
Figure 1a, we plot the approximate and exact solutions, while Figure 1b illustrates the
comparison of Er2, Er∞, and Err as a function of n. The results demonstrate the convergence
of our method as the parameter n increases, enhancing the accuracy in approximations.
Moreover, we compared our results with two established methods: a spectral method and
a numerical method using Müntz–Legendre polynomials. Our method’s results show a
high level of agreement with these approaches, confirming the reliability and effectiveness
of the proposed method in solving the problem accurately.

Table 1. Numerical results obtained using the proposed method.

n Nl Ng Er2 Er∞ Err C.Time (s)

10 5 150 1.0806 × 10−2 1.9230 × 10−3 8.8231 × 10−4 0.23683
12 3.2171 × 10−3 3.6957 × 10−4 2.6268 × 10−4 0.23956
14 3.2628 × 10−3 3.7139 × 10−4 2.6641 × 10−4 0.23173
16 2.7582 × 10−3 3.0427 × 10−4 2.2521 × 10−4 0.27219

20 5 140 5.7530 × 10−3 8.3405 × 10−4 4.8622 × 10−4 0.19051
145 5.6031 × 10−3 8.0681 × 10−4 4.6531 × 10−4 0.22626
150 6.1576 × 10−3 8.5326 × 10−4 5.0277 × 10−4 0.18352
155 5.8388 × 10−3 8.1210 × 10−4 4.6898 × 10−4 0.23380

20 5 140 5.7530 × 10−3 8.3405 × 10−4 4.8622 × 10−4 0.19051
6 5.1961 × 10−3 7.6542 × 10−4 4.3915 × 10−4 0.18985
7 5.7623 × 10−3 8.3601 × 10−4 4.8701 × 10−4 0.16391
8 5.6188 × 10−3 8.1878 × 10−4 4.7487 × 10−4 0.16209

[19] 1.1907 × 10−4

[24] 1.0408 × 10−4
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Figure 1. (a) The approximate and analytical solutions of Example 1 provide a comparative view of
the method’s accuracy. (b) The plots of the error norms Er2, Er∞, and Err for Example 1.
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Example 2

We considered the FDPDE

Dα
t Y(y1, t) =

∂2Y(y1, t)
∂y2

1
− Y(y1, t − 1) + f (y1, t).

The analytical solution for Example 2 is given by Y(y1, t) = t2(2y1 − y2
1). Table 2

summarizes the error values Er2, Er∞, and Err for various parameters n, Nl , and Ng.
Additionally, Table 2 shows that varying the quadrature nodes (n) and spatial nodes in
both local and global domains (Nl , Ng) consistently yields accurate and stable results. In
Figure 2a, the approximate solution is plotted alongside the exact solution, offering a visual
comparison, while Figure 2b provides a detailed look at the error measures Er2, Er∞, and
Err, which vary with increasing n. The results demonstrate a clear reduction in error as n
grows, highlighting the improved accuracy of the method with higher n values.

Table 2. Numerical results obtained using the proposed method.

n Nl Ng Er2 Er∞ Err C.Time (s)

12 5 150 3.4520 × 10−3 3.9102 × 10−4 2.8185 × 10−4 0.27943
14 8.2937 × 10−4 9.7704 × 10−5 6.7718 × 10−5 0.15189
16 5.9220 × 10−4 7.1160 × 10−5 4.8353 × 10−5 0.20869
18 5.7159 × 10−4 6.8855 × 10−5 4.6670 × 10−5 0.23269

20 5 140 3.1465 × 10−4 4.1967 × 10−5 2.6592 × 10−5 0.19989
145 1.0719 × 10−4 1.9084 × 10−5 8.9020 × 10−6 0.23217
150 5.6985 × 10−4 6.8661 × 10−5 4.6528 × 10−5 0.19689
155 1.3517 × 10−4 3.8157 × 10−5 1.0857 × 10−5 0.25788

20 5 140 3.1465 × 10−4 4.1967 × 10−5 2.6592 × 10−5 0.15638
6 7.8911 × 10−4 9.0297 × 10−5 6.6692 × 10−5 0.17613
7 4.1565 × 10−4 4.4918 × 10−5 3.5128 × 10−5 0.17158
8 2.7142 × 10−4 3.1109 × 10−5 2.2940 × 10−5 0.20939
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Figure 2. (a) The approximate and analytical solutions of Example 2 offer a clear comparison,
highlighting the accuracy of the proposed method. (b) The plots of the error norms Er2, Er∞, and Err

for Example 2.

Example 3

We considered the FDPDE

Dα
t Y(y1, t) + Dα

t Y(y1, t − 0.1) =
1
2

∂2Y(y1, t)
∂y2

1
+

1
2

∂2Y(y1, t − 0.1)
∂y2

1
+ f (y1, t).
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The analytical solution for Example 3 is given by Y(y1, t) = t2 cos(πy1). Table 3 provides
error values Er2, Er∞, and Err corresponding to different values of parameters n, Nl , and
Ng. In Figure 3a, the approximate and analytical solutions are plotted, while Figure 3b
shows the comparison of errors Er2, Er∞, and Err versus n. These results demonstrate a
consistent decrease in error as n grows, highlighting the improved accuracy of the method
with higher values of n.

Table 3. Numerical results obtained using the proposed method.

n Nl Ng Er2 Er∞ Err C.Time (s)

10 5 150 2.9904 × 10−2 3.4539 × 10−3 2.4417 × 10−3 0.213153
12 3.2903 × 10−3 3.9096 × 10−4 2.6865 × 10−4 0.264186
14 7.4328 × 10−4 9.7642 × 10−5 6.0688 × 10−5 0.268919
16 5.1361 × 10−4 7.1098 × 10−5 4.1936 × 10−5 0.201902

20 5 140 2.8549 × 10−4 4.1927 × 10−5 2.4128 × 10−5 0.248968
145 8.1001 × 10−5 1.9058 × 10−5 6.7267 × 10−6 0.220040
150 4.9204 × 10−4 6.8599 × 10−5 4.0175 × 10−5 0.218618
155 2.4802 × 10−4 3.8131 × 10−5 1.9921 × 10−5 0.225091

20 4 140 2.7496 × 10−4 3.0935 × 10−5 2.3238 × 10−5 0.211381
5 2.8549 × 10−4 4.1927 × 10−5 2.4128 × 10−5 0.197186
6 2.8003 × 10−4 3.7854 × 10−5 2.3667 × 10−5 0.197116
7 2.0725 × 10−4 2.8481 × 10−5 1.7516 × 10−5 0.197540
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Figure 3. The approximate and analytical solutions of Example 3 offer a distinct comparison, the
close match between the two solutions showcases the method’s accuracy and robustness. (b) The
plots of the error norms Er2, Er∞, and Err for Example 3.

Example 4

We considered the FDPDE

Dα
t Y(y1, y2, t) =

∂2Y(y1, y2, t)
∂y2

1
+

∂2Y(y1, y2, t)
∂y2

2
+ Y(y1, y2, t − 1) + f (y1, y2, t).

The exact solution for Example 4 is given as Y(y1, y2, t) = (y2
1 + y2

2)(t
5
3 + t

4
3 ). Tables 4 and 5

present the error norms Er2, Er∞, and Err for computation on square and star-shaped
domains, respectively, using various values of n, Nl , and Ng. Figure 4a,b illustrate the
numerical solutions on these domains, while Figure 5a,b provide plots of the absolute error
Erab. Moreover, Figure 6a,b show the comparison of errors Er2, Er∞, and Err as a function
of n on the square and star-shaped domains, respectively. The results demonstrate that
errors consistently decrease as n increases, highlighting the effectiveness of the proposed
method for solving such problems. This approach is both stable and efficient, offering
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accurate results with minimal computational cost. The method’s robustness in managing
complex PDEs is demonstrated by its ability to maintain accuracy across different domains.

Table 4. Numerical results obtained using the proposed method on the square domain.

n Nl Ng Er2 Er∞ Err C.Time (s)

12 16 2025 3.3998 × 10−02 7.6448 × 10−03 7.5551 × 10−04 6.24823
14 3.2019 × 10−02 7.3868 × 10−03 7.1154 × 10−04 7.14549
16 6.5277 × 10−02 1.7359 × 10−02 1.6319 × 10−03 4.49721

26 19 625 1.2347 × 10−01 3.5720 × 10−02 4.9389 × 10−03 0.94834
900 3.7476 × 10−02 1.1739 × 10−02 1.2492 × 10−03 1.66831
1225 2.7553 × 10−02 6.9510 × 10−03 7.8723 × 10−04 3.47059
1600 1.1526 × 10−02 3.4463 × 10−03 2.8815 × 10−04 6.99581
2025 8.8557 × 10−03 2.6084 × 10−03 1.9679 × 10−04 12.62023

26 18 1225 1.7728 × 10−02 5.3470 × 10−03 5.0653 × 10−04 3.24201
19 2.7553 × 10−02 6.9510 × 10−03 7.8723 × 10−04 3.30529
20 4.5751 × 10−03 7.9876 × 10−04 1.3854 × 10−04 3.36371
21 4.8488 × 10−03 2.3260 × 10−03 1.3072 × 10−04 3.38244

Table 5. Numerical results obtained using the proposed method on the star-shaped domain.

n Nl Ng Er2 Er∞ Err C.Time (s)

28 60 3532 6.8815 × 10−2 1.4622 × 10−2 1.1579 × 10−3 39.0371
3537 3.3214 × 10−2 7.3353 × 10−3 5.5847 × 10−4 42.6241
3644 2.2331 × 10−2 6.0228 × 10−3 3.6993 × 10−4 50.1169
4040 2.2694 × 10−2 1.1366 × 10−3 3.5704 × 10−4 66.5245

10 50 4457 9.3718 × 10−2 7.9441 × 10−3 1.4038 × 10−3 28.8898
12 4457 2.2756 × 10−2 6.5871 × 10−3 3.4087 × 10−4 33.1369
14 4457 1.8559 × 10−2 6.4666 × 10−3 2.7799 × 10−4 36.6103
16 4457 1.8273 × 10−2 6.4564 × 10−3 2.7371 × 10−4 40.9781

(a) (b)

Figure 4. (a) Approximate solution of Example 4 on square domain. (b) Approximate solution of
Example 4 on star-shaped domain.
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(a) (b)

Figure 5. (a) Erab of the proposed numerical method applied to Example 4 on a square domain with
Ng = 6400, Nl = 50, and n = 28. (b) Erab of the proposed numerical method applied to Example 4
on a star-shaped domain with Ng = 3947, Nl = 50, and n = 28.
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Figure 6. (a) Error norms Er2, Er∞, and Err of the proposed numerical method applied to Example 4
on a square domain with Ng = 2500, Nl = 30, and α = 0.5. (b) Error norms Er2, Er∞, and Err of the
proposed numerical method applied to Example 4 on a star-shaped domain with Ng = 3079, Nl = 50,
and α = 0.5.

Example 5

We considered the FDPDE

Dα
t Y(y1, y2, t) =

∂2Y(y1, y2, t)
∂y2

1
+

∂2Y(y1, y2, t)
∂y2

2
− Y(y1, y2, t − 1) + f (y1, y2, t).

The exact solution for Example 5 is given by Y(y1, y2, t) = t2(2(y1 + y2) − −(y2
1 + y2

2)).
Tables 6 and 7 display the error matrices Er2, Er∞, and Err on square and nut-shaped
domains, respectively, for various values of n, Nl , and Ng. As the number of spatial and
quadrature nodes increases, the method’s accuracy correspondingly improves. Figure 7a,b
illustrate the numerical solutions on square and nut-shaped domains, while Figure 8a,b
depict the absolute error Erab for these domains. Additionally, Figure 9a,b compare Er2,
Er∞, and Err a function of n on the square and nut-shaped domains, respectively. The results
confirm this method’s strong suitability for FDPDEs, with high accuracy and flexibility
across various domains.
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Table 6. Numerical results obtained using the proposed method on square domain.

n Nl Ng Er2 Er∞ Err C.Time (s)

12 16 2025 8.0728 × 10−02 4.9320 × 10−03 1.7940 × 10−03 6.21129
14 3.8373 × 10−02 4.4200 × 10−03 8.5274 × 10−04 7.18309
16 2.8381 × 10−02 4.3738 × 10−03 6.3069 × 10−04 8.01589
18 2.7921 × 10−02 4.3697 × 10−03 6.2047 × 10−04 9.08431
20 2.8580 × 10−02 4.3694 × 10−03 6.3512 × 10−04 9.73357

26 19 625 7.9847 × 10−02 2.0370 × 10−02 3.1939 × 10−03 0.95755
900 2.4581 × 10−02 6.4531 × 10−03 8.1937 × 10−04 1.74576

1225 2.2435 × 10−02 4.4067 × 10−03 6.4099 × 10−04 3.43286
1600 1.0175 × 10−02 1.9675 × 10−03 2.5437 × 10−04 6.918169
2025 1.1537 × 10−02 1.6446 × 10−03 2.5637 × 10−04 12.65923

26 18 1225 1.5194 × 10−02 3.6216 × 10−03 4.3411 × 10−04 3.25149
19 2.2435 × 10−02 4.4067 × 10−03 6.4099 × 10−04 3.41734
20 8.3794 × 10−03 5.4477 × 10−04 2.3941 × 10−04 3.32513
21 8.4121 × 10−03 1.2926 × 10−03 2.4035 × 10−04 3.47378

Table 7. Numerical results obtained using the proposed method on the nut-shaped domain.

n Nl Ng Er2 Er∞ Err C.Time (s)

26 60 2637 6.5626 × 10−2 2.2578 × 10−2 1.2780 × 10−3 23.9553
3124 3.9210 × 10−2 3.0689 × 10−3 7.0153 × 10−4 39.0850
3134 3.6764 × 10−2 3.0949 × 10−3 6.5672 × 10−4 33.7535
3667 3.3639 × 10−2 3.9441 × 10−3 5.5551 × 10−4 47.5117

24 65 3473 4.6859 × 10−2 4.6491 × 10−3 7.9514 × 10−4 40.1300
26 4.6679 × 10−2 4.6497 × 10−3 7.9209 × 10−4 45.3024
28 4.6047 × 10−2 4.6570 × 10−3 7.8136 × 10−4 46.3791
30 4.4117 × 10−2 4.6692 × 10−3 7.4861 × 10−4 49.5957

(a) (b)

Figure 7. (a) Approximate solution of Example 5 on square domain. (b) Approximate solution of
Example 5 on nut-shaped domain.
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(a) (b)

Figure 8. (a) Erab of the proposed numerical method applied to Example 5 on a square domain with
Ng = 7225, Nl = 60, and n = 26. (b) Erab of the proposed numerical method applied to Example 5
on a nut-shaped domain with Ng = 3697, Nl = 55, and n = 24.
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Figure 9. (a) Error norms Er2, Er∞, and Err of the proposed numerical method applied to Example 5
on a square domain with Ng = 2025, Nl = 16, and α = 0.5. (b) Error norms Er2, Er∞, and Err of the
proposed numerical method applied to Example 5 on a nut-shaped domain with Ng = 3134, Nl = 60,
and α = 0.5.

7. Conclusions

A robust numerical method based on LT and local RBF methods for the solution of
FDPDEs was successfully developed in this paper. This work demonstrates that the hybrid
method not only solves the challenges posed by the FDPDEs but also provides an accurate
and adaptable framework for obtaining solutions in both 1D and 2D domains. Furthermore,
we employed the techniques from functional analysis to establish the existence and unique-
ness of solutions to the considered problem. To demonstrate the efficiency of the proposed
LT-based local RBF method, we solved three 1D problems and two 2D problems. The 2D
problems were solved on both regular and irregular domains, with the first 2D problem
solved on square and star-shaped domains, and the second 2D problem solved on square
and nut-shaped domains. These examples highlight the adaptability and flexibility of the
local RBF method coupled with the LT method for problems defined on irregular domains.
In particular, the solutions obtained on star-shaped and nut-shaped domains demonstrate
that our method can handle complex domains with acceptable accuracy. Additionally,
we compared our 1D results with those of other methods, and the outcome shows close
agreement, further validating the robustness of the proposed numerical method. As a
future direction, we plan to extend this method to 3D problems, incorporating multiple
delay terms to explore its effectiveness in more complex scenarios.
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