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Abstract: In this work, we present various novelty methods by employing the fractional differential
quadrature technique to solve the time and space fractional nonlinear Benjamin–Bona–Mahony
equation and the Benjamin–Bona–Mahony–Burger equation. The novelty of these methods is based
on the generalized Caputo sense, classical differential quadrature method, and discrete singular con-
volution methods based on two different kernels. Also, the solution strategy is to apply perturbation
analysis or an iterative method to reduce the problem to a series of linear initial boundary value
problems. Consequently, we apply these suggested techniques to reduce the nonlinear fractional
PDEs into ordinary differential equations. Hence, to validate the suggested techniques, a solution
to this problem was obtained by designing a MATLAB code for each method. Also, we compare
this solution with the exact ones. Furthermore, more figures and tables have been investigated to
illustrate the high accuracy and rapid convergence of these novel techniques. From the obtained
solutions, it was found that the suggested techniques are easily applicable and effective, which can
help in the study of the other higher-D nonlinear fractional PDEs emerging in mathematical physics.

Keywords: generalized Caputo; quadrature approach; discrete singular convolution; perturbation
method; fractional nonlinear PDEs; Benjamin–Bona–Mahony–Burger equation

1. Introduction

Numerous problems in the world can be determined via physical and mathemati-
cal models. It has been found that these models are basically connected to linear and
non-linear PDEs, which can be utilized to represent numerous real-life phenomena, for
instance, plasma physics, optical fiber, solid state physics, fluid mechanics, geochemistry,
and chemical physics.

Nonlinear fractional partial differential equations have garnered significant attention
due to their ability to model complex phenomena across various fields, including mathe-
matical physics, plasma physics, population dynamics, electromagnetism, neutron point
kinetics, acoustics, control and vibration, viscoelasticity, and fluid dynamics [1–12].

The Benjamin–Bona–Mahony–Burger (BBM-Burger) equation, a prominent model
in ocean engineering, provides valuable insights into various wave phenomena. Its ap-
plications extend to acoustic waves in precious stones, hydromagnetic waves in plasma,
thermodynamics, and acoustic-gravity waves in fluids. The BBM-Burger equation is partic-
ularly useful in the field of fluid dynamics, especially for modeling tsunami propagation
from the ocean [1–5,13].
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Benjamin et al. [13] presented Benjamin–Bona–Mahony equation (BBME) for the first
time to model long waves of short amplitude in some nonlinear dispersive media. This
equation can also express acoustic waves in inharmonic crystals, hydromagnetic waves in
cold plasma, and acoustic–gravity waves in compressible fluids [13,14].

Nonlinear fractional PDEs do not have exact solutions in most problems. Thus, it
is essential to advance efficient and accurate analytical and numerical techniques. Sev-
eral techniques have been used to obtain analytical and numerical solutions for the frac-
tional BBM equation, including the meshfree technique [15], Adomian decomposition
technique [16], and finite element techniques in [17–20]. Ali Barati [21] analyzed a Sinc
collocation technique for solving the time-fractional (BBME) equation. Yaro et al. [22]
explained the solution of the space–time-fractional Zakhorov Kuznetsov BBME (ZKBBME)
and the space–time-fractional symmetric regularized long wave (SRLWE) via the improved
F-expansion technique. Kumar [23] used Lie symmetry and modified (G’/G)-expansion
methods to examine the traveling wave solutions of a coupled BBM-KdV equation. Liu [24]
demonstrated the approximate solution of the fractional nonlinear equations via a ho-
motopy perturbation transformation technique (HPTM). Ray and Das [25] examined the
BBM-Burger equation numerically and analytically using a reproducing kernel Hilbert
space method. Dehghan et al. [26] explained the Legendre spectral element method (LSEM)
for solving a nonlinear generalized (GBBMB) equation. Elmandouh and Fadhal [27] ex-
plored the effect of space-fractional and multiplicative noise on the analytic solutions of the
space-fractional stochastic dispersive modified BBME. Javeed et al. [28] established a first
integral technique to obtain analytic solutions for a space–time-fractional modified BBME
and the coupled time-fractional Boussinesq–Burgers equation. Dehghan et al. [29] used
forward-type finite difference and Kansa’s method to obtain the solutions of the GBBM–
Burger equation (GBBMBE). Oruç [30] solved the 1D and 2D versions of the GBBMBE via
an algorithm depending on Lucas polynomials. Dehghan et al. [31] applied an element-free
Galerkin approach to solve the 2D GBBMB equation. Hajiketabi et al. [32] concentrated on
the high dimensional GBBMBE via a Lie-group technique depending on RBFs. Bayaras-
sou [33] offered the 1D GBBMBE numerically through two high-order implicit difference
approaches. Arora et al. [34] introduced a collocation technique depending on Hermit
splines and a weighted finite difference scheme to solve the BBM-Burger equation. Is-
lam et al. [35] examined the space–time-fractional modified BBME via the extended tanh
technique, fractional generalized (Dξ

α G’/G)-expansion technique, and the Exp-function
technique. Ege and Misirli [36] applied the modified Kudryashov technique to solve the
space–time-fractional modified BBME and the space–time-fractional potential Kadomtsev–
Petviashvili equation. Guner and Bekir [37] proposed an ansatz technique to compute
the solutions of the space–time-fractional modified BBME, the time-fractional mKdVE,
and the nonlinear fractional Zoomeron equation. Barati [21] analyzed a Sinc collocation
technique to solve the time-fractional BBME, and the time variables were discretized via
the finite forward difference procedure. Kapoor and Joshi [38] presented the numerical
solution for the 1D nonlinear Burger’s equation using a differential quadrature method
based on a cubic uniform algebraic trigonometric tension B-spline. Also, Joshi et al. [39]
proposed a novel numerical solution for 1D and 2D coupled nonlinear Schrödinger equa-
tions based on DQM. Castro López et al. [40] presented analytical solutions to a generalized
Gross–Pitaevskii equation. Also, Gaussian solitary wave solutions were proposed for a
nonlinear Schrödinger equation in [41–45].

In this paper, differential quadrature methods (DQM) based on polynomial (PDQM)
and discrete singular convolution (DSCDQM) with Caputo and generalized Caputo types
are used to construct a numerical solution of the space–time-fractional modified BBME
and BBMBE.

The discrete sine collocation discrete differential quadrature method (DSCDQM) is a
highly efficient numerical technique that offers several advantages over traditional meth-
ods [46–49]. By utilizing a minimal number of grid points and requiring less computational
time, the DSCDQM can produce accurate and efficient solutions to complex problems.
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Furthermore, its flexibility in choosing shape functions enhances its applicability to a wide
range of equations.

To the best of the authors’ knowledge, this research represents the first application
of DSCDQM based on two specific shape functions, namely the regularized Shannon
kernel (RSK) and the regularized Dirichlet kernel (RDK), to solve time-fractional modi-
fied Benjamin–Bona–Mahony (BBM) and Benjamin–Bona–Mahony–Burger (BBM-Burger)
equations. Perturbation and iterative techniques were employed to linearize the nonlin-
ear fractional PDEs. Subsequently, the discrete differential quadrature method (DDQM),
DSCDQM-RSK, and DSCDQM-DK were applied using both Caputo and generalized Caputo
fractional derivatives to transform the governing equations into linear algebraic equations.

A MATLAB code was developed to implement these methods and solve the equations
for each approach, as illustrated in Figure 1. The accuracy and effectiveness of the proposed
methods were validated by comparing their results with existing analytical and numerical
solutions. Additionally, a parametric analysis was conducted to investigate the impact of
the techniques on soliton solutions.
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Figure 1. Numerical algorithm procedure solution.

2. Model Formulation of the Problem

In this investigation, we concentrate on the following two nonlinear equations, known
as the space–time-fractional modified BBME and BBMBE, which are very important in the
field of physics and natural sciences [35,36]:

2.1. Space–Time-Fractional Modified BBME [35,36]

c ∂γ,δU(x,t)
∂tγ,δ = −k ∂γ,δU(x,t)

∂xγ,δ + vkU2(x, t) ∂γ,δU(x,t)
∂xγ,δ − k3 ∂γ,δ

∂xγ,δ (
∂γ,δ

∂xγ,δ (
∂γ,δ

∂xγ,δ U(x, t)))

inℑ × (0, H], 0 < γ ≤ 1
(1)

where ℑ is the computational domain ℑ = [x1, x2] ⊂ ℜ, (0, H] is the time interval. k, v and c
are constants, where v > 0. U is function of x and t that describes acoustic gravitational
waves in compressible fluids, hydromagnetic waves in cold plasma, and surface long waves
in nonlinear dispersive media. γ and δ represent fractional order derivatives.

The boundary conditions can be shown for this problem as follows [35,36]:

P1 U + G1
∂U
∂x

= Q1(t), at (x1, t) (2)
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P2 U + G2
∂U
∂x

= Q2(t), at (x2, t) (3)

Furthermore, the initial condition of this problem can be demonstrated as follows [35,36]:

U(x, 0) = Θ(x), (4)

where Pi, Gi, Qi, (i = 1, 2), and Θ(x) are known functions.

2.2. Time-Fractional BBMBE [35,36]

∂γ,δU(x,t)
∂tγ,δ = ∂γ,δUxx(x,t)

∂tγ,δ − Ux(x, t)− U(x, t)Ux(x, t)

inℑ × (0, H], 0 < γ ≤ 1
(5)

The boundary and initial conditions subjected to this problem can be written as in the
previous Equations (2)–(4).

3. Methods of Solution

This section describes a differential quadrature depending on three base functions
(Lagrange, RSK, and RDK), as well as Caputo and generalized Caputo sense to solve the
space–time-fractional modified BBME and BBMBE. Also, it gives the main steps of these
methods. Furthermore, we discuss the perturbation and Iterative methods for treating
the nonlinearity.

Now, we present a brief review of the DQM. The DQM involves estimating a derivative
of a specific function Φ(x) via the linear summation of its components at various nodes
of the problem domain [a, b]. This field can be simply divided into uniformly distributed
finite nodes xi (i = 1 : n) with distance ∆, such that a = x1 < x2 < · · · < xn−1 < xn = b.
The DQ discretization of the first and second derivatives at a node xi is determined by the
following Equation (6) [49]:

∂Φ
∂x

∣∣∣∣
x=xi

=
n

∑
j=1
ψ1

ij Φ(xj) ,
∂2Φ
∂x2

∣∣∣∣
x=xi

=
n

∑
j=1

Ψ2
ij Φ(xj) , i, j = 1 : n (6)

where Ψ1
ij and Ψ2

ij are the first and second weighting coefficients [49]. Since these weighting
coefficients depend on the spatial grid spacing n and the choice of test functions, many
researchers have used different test functions to create various kinds of DQMs [49–59].

3.1. Polynomial Differential Quadrature (PDQ) Technique

In this section, we introduce the polynomial differential quadrature (PDQ) technique.
This technique is based on a Lagrange interpolation polynomial, which serves as a test
function. The following reference provides further details on the PDQ technique [49].

Φ(xi) =
n

∑
j=1

n
∏

k=1
(xi − xk)

(xi − xj)
n
∏

j=1,j ̸=k
(xj − xk)

Φ(xj) , (i = 1 : n), (7)

Hence, the weighting coefficients of the first derivative Ψ1
ij can be given as follows [49]:

Ψ1
ij =


1

(xi − xj)

n
∏

k=1,k ̸=i,j

(xi − xk)

(xj − xk)
i ̸= j

−
n
∑

j=1,j ̸=i
Ψ1

ij i = j
(8)
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Consequently, the weighting coefficients of the mth derivatives can be given by matrix
multiplication, as follows [49]:[

Φm
ij

]
=
[
Φ1

ij

] [
Φm−1

ij

]
, (m = 2, 3, 4) (9)

3.2. Description of Discrete Singular Convolution DQM (DSCDQM)

In the DSC method, a function Φ(x) and its mth-order derivative can be approximated
via discretized singular kernels of the delta type [54–57], as follows:

Φm(xi) =
M

∑
j=−M

δm
α,∆ (xi − xj)Φ(xj) =

M

∑
j=−M

Ψm
j Φ(xj), (i = −n, n), n > M (10)

where δm
α,∆ (xi − xj) is a DSC kernel and M is the bandwidths for estimating the function. ∆

is the spacing between two adjacent points, while α is a parameter used in regularization.
Although many kernels may be used in the DSC method [56–59], the DL, RS, and RD

kernels are used in this work [54–57].

1. Regularized Shannon kernel (RSK)

Here, we use regularized Shannon as the test function. Therefore, depending on the
DQM (Equation (11)), the weighting coefficients of the mth-order derivatives at point xi are
determined as follows [54–57]:

Φ(xi) =
M

∑
j=−M

〈 sin
[

π(xi − xj)

∆

]
π(xi − xj)

∆

exp(
−(xi − xj)

2

2α2 )

〉
Φ(xj), (i = −n : n), α = (f × ∆ ) > 0 (11)

The weighting coefficients Ψ1
ij and Ψ2

ij based on the differentiation Equation (11) are
explained using DSCDQM-RSK as follows [54–57]:

Ψ1
ij =


(−1)i−j

∆(i−j) exp(−∆2(
(i−j)2

2α2 )), i ̸= j

0 i = j

, Ψ2
ij =


( 2(−1)i−j+1

∆2(i−j)2 + 1
α2 ) exp(−∆2(

(i−j)2

2α2 )), i ̸= j

− 1
α2 − π2

3∆2 i = j

(12)

2. Regularized Dirichlet kernel (RDK)

Here, we use regularized Dirichlet as the test function. Therefore, depending on the
DQM (Equation (13)), the weighting coefficients of the mth-order derivatives at point xi are
defined as follows [54–57]:

Φ(xi) =
M
∑

j=−M

〈 sin
[

π(xi − xj)

∆

]
(2T + 1) tan

[
π(xi − xj)

∆(2T + 1)

] exp(
−(xi − xj)

2

2α2 )

〉
Φ(xj), (i = −n : n), α = (f × ∆ ) > 0

(13)

The weighting coefficients Ψ1
ij and Ψ2

ij based on the differentiation Equation (13) are
explained using DSCDQM-RDK as follows [54–57]:

Ψ1
ij =


π(−1)i−j

∆(2T+1) tan
[

π(i−j)
∆(2T+1)

] exp(−∆2(
(i−j)2

2α2 )), i ̸= j

0 i = j

, (14)
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Ψ2
ij =


(

2π2(−1)i−j+1

∆2(2T+1)2 sin2
[

π(i−j)
(2T+1)

] + 2π(i−j)(−1)i−j+1

α2(2T+1) tan
[

π(i−j)
(2T+1)

]
)

exp(−∆2(
(i−j)2

2α2 )), i ̸= j

− 1
α2 − π2

3∆2 i = j

(15)

where T is a parameter, if T → ∞ RDK was converted to RSK.
Next, we employed the numerical techniques PDQM, DSCDQM-RSK, and DSCDQM-

RDK with a fractional derivative; we discuss Caputo and generalized Caputo definitions,
which are the most novel definitions.

3.3. Generalized Caputo-Kind Fractional Derivative

Fractional-order DEs extend more accurate models of real-world problems and are
suitable for describing many events in porous media or on unsmooth boundaries. Therefore,
it is found that fractional calculus has developed greatly in the literature over the past few
decades due to its wide use in different disciplines of science and engineering. Several
fractional derivative (FD) types exist, including Riemann–Liouville, Caputo, Hadamard,
Weyl, Grunwald–Letnikov, and Marchaud. Now, we provide some definitions of the
Caputo FD that will be used in the sequel to the work, as follows [57–66]:

• Caputo’s Fractional Derivative

This section briefly summarizes Caputo’s FD, which is based on the Riemann–Liouville
FD [51–55].

Assume that γ ∈ R+. If m is a positive integer, then m−1 < γ ≤ m. The Riemann–Liouville
FD of a function Φ(x) of order γ is written as follows:

Dγ
a Φ(x) =

1
Γ(m−γ)

dm

dxm

x∫
a

(x − t)m−γ−1 Θm(t) dt, (16)

where Dγ
a Φ(x) is the fractional derivative of Φ(x) and a is the integration lower limit.

Then Caputo’s FD of order γ is explained as follows:

Dγ
a Φ(x) =


1

Γ(m−γ)

x∫
a
(x − t)m−γ−1 Φm(t) dt, m − 1 < γ < m

dmΦ
dxm m = γ

(17)

We define some properties of the Caputo derivative as follows:

Dγ
a (c f (x) + dg(x)) = c Dγ

a f (x) + d Dγ
a g(x) (18)

Dγ
a c = 0, (19)

Dγ
a xp =


0 p < γ

Γ(p+1)
Γ(p−γ+1) xp−γ otherwise

, p = (0, 1, 2 . . .) (20)

where f (x) and g(x) : R+ → R represent arbitrary functions, such as transcendental and
polynomials functions, while c and d are constant.

Also, the generalized Caputo’s fractional derivative is written as follows:
Fractional differential operators, due to their non-local nature, are particularly well-

suited for modeling systems with memory effects [62–65]. Various forms of non-locality
exist, prompting researchers to explore fractional operators as a means to capture the
hidden complexities of real-world non-local phenomena.
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We provide the following definition of the generalized Caputo fractional derivative of
any order, as presented in the referenced literature [62–65]:

Dγ,δ
a+ Φ(x) =

δγ−m+1

Γ(m − γ)

x∫
a

tδ−1(xδ − tδ)
m−γ−1

(
t1−δ d

dt

)m
Φ(t) dt,

m − 1 < γ < m, δ > 0, a ≥ 0

(21)

Consequently, the solution of Equation (21) can be taken as follows [56–60]:

Dγ,δ
a+ (xδ − tδ)

m
= δγ Γ(m + 1)

Γ(m − γ + 1)

(
xδ − aδ

)m−γ
(22)

Now, we demonstrate the novel numerical technique by combining the Caputo’s FD
and generalized Caputo’s FD in Equation (22) with Equation (6) of PDQM, DSCDQM-RSK,
and DSCDQM-RDK to compute the weighting coefficients Ψγ

ij, ψ
γ,δ
ij for γ ∈ (0, 1] and δ > 0,

as follows [49,52]:

DγΦ(x) =


1

Γ(1−γ)

x∫
a
(x − t)−γ Φ′(t) dt =

n
∑

j=1
Ψγ

ij Φ(xj, t), 0 < γ < 1

n
∑

j=1
Ψ1

ij Φ(xj, t) γ = 1

i = 1 : n (23)

Dγ,δ
a Φ(x) =


δγ

Γ(1 − γ)

x∫
a

tδ−1[xδ − tδ]
−γ
(

t1−δ d
dt

)′
Φ(t) dt =

n
∑

j=1
Ψγ,δ

ij Φ(xj, t), 0 < γ ≤ 1 , δ > 0

n
∑

j=1
Ψ1

ij Φ(xj, t) γ = δ = 1

i = 1 : n (24)

Then, the weighting coefficients Ψγ
ij, ψ

γ,δ
ij are computed as follows [49,52]:

Ψγ
ij = A1−γ Ψ1

ij −
Ψ1

1,j

Γ(2 − γ)
(x − a)1−γ, Aij = Ψ1

ij − Ψ1
1j (25)

Ψγ,δ
ij = A1−γδγ Ψ1

ij +
δγΨ1

1,j

Γ(2 − γ)
(xδ − aδ)

1−γ
, Aij = Ψ1

ij − Ψ1
1j (26)

Equations (25) and (26) can be explained as follows [57,60]:

Dγ
x Φ(x) = J1−γ

a (
∂Φ(x)

∂x
) = J1−γ

a (Φ(x)) = J1−γ
a (Φ′(x)− Φ′(a)), (27)

Dγ
x Φ(x) = J1−γ

a (
∂Φ(x)

∂x
) =

n

∑
j=1

Ψγ
ijΦ(xj, t) = (A1−γΨ1

ij −
d

Γ(2 − γ)
(x − a)1−γ)Φ (28)

Then Ψγ
ij = A1−γΨ1

ij −
d

Γ(2 − γ)
(x − a)1−γ (29)

Equations (27) and (28) can be proved as follows:
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Φ′(a) = d Φ(a), d = Ψ1
1j, JγΦ′(a) = d JγΦ(a) = d

Φ(a)
Γ(γ)

x∫
a
(x − t)γ−1 dt =

Φ(a)
Γ(γ + 1)

d (x − a)γ,
(30)

Consequently, Equation (31) is as follows:

J1−γ
a Φ′(a) =

Φ(a)
Γ(2 − γ)

d (x − a)1−γ, (31)

Also, Equation (32) is as follows:

x∫
a

Φ(t) dt =
n

∑
j=1

(Ψ1
ij − Ψ1

1j)Φ(xj, t), Aij = Ψ1
ij − Ψ1

1j, i = 1 : n (32)

Then, Equation (33) is as follows:

J1Φ(x) =
x∫

a

Φ(t) dt = A Φ(x) ⇒ J2Φ(x) =
x∫

a

x∫
a

Φ(t) dt =
x∫

a

(x − t)Φ(t) dt = A2Φ(x) (33)

Furthermore, Equation (34) is as follows:

JγΦ(x) = AγΦ(x) ⇒ J1−γΦ′(x) = A1−γΨ1
ijΦ(x) (34)

Due to the nonlinearity of these problems, we can apply perturbation and iterative
techniques as follows.

3.4. Perturbation Technique [65]

We can solve the modified BBM Equation (1) via the perturbation technique by assum-
ing that Equation (35) is as follows:

U = Uo + ηU1 + η2U2 + · · · ηnUn (35)

where Uo, U1 and U2 are unknown functions. η is a perturbation parameter.
The MBBM Equation (1) can be transformed into the following series of linear problems

after substituting from Equation (35), as follows:

c ∂γ,δ(Uo+ηU1+η2U2+···ηnUn)
∂tγ,δ = −k ∂γ,δ(Uo+ηU1+η2U2+···ηnUn)

∂xγ,δ + vkη (Uo + ηU1 + η2U2 + · · · ηnUn)
2

∂γ,δ(Uo+ηU1+η2U2+···ηnUn)
∂xγ,δ − k3 ∂γ,δ

∂xγ,δ (
∂γ,δ

∂xγ,δδ (
∂γ,δ

∂xγ,δ (Uo + ηU1 + η2U2 + · · · ηnUn)))

(36)

Also, the boundary and initial conditions can be exhibited after the substituting from
Equations (2)–(4), as follows:[

P1U0(x1, t) + G1
∂U0
∂x

∣∣ (x1, t)
]
+ η

[
P1U1(x1, t) + G1

∂U1
∂x

∣∣ (x1, t)
]

+η2
[
P1U2(x1, t) + G1

∂U2
∂x

∣∣ (x1, t)
]
+ . . . ηn

[
P1Un(x1, t) + G1

∂Un
∂x

∣∣ (x1, t)
]
= Q1(t)

(37)

[
P1U0(x1, t) + G1

∂U0
∂x

∣∣ (x2, t)
]
+ η

[
P1U1(x2, t) + G1

∂U1
∂x

∣∣ (x2, t)
]

+η2
[
P1U2(x2, t) + G1

∂U2
∂x

∣∣ (x2, t)
]
+ . . . ηn

[
P1Un(x2, t) + G1

∂Un
∂x

∣∣ (x2, t)
]
= Q2(t)

(38)
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U0(x, 0) + ηU1(x, 0) + η2U2(x, 0) + . . . ηnUn(x, 0) = Θ(x) (39)

Then, by equating the coefficient of η0, η1, η2, . . . ηn to obtain the final value of U,
Equation (40) can be written as follows:

Unumerical = lim
η→1

[Uo + ηU1 + η2U2 + · · · ηnUn] (40)

Hence, to ensure the convergence of the results [67], we applied the condition test to
the previous series in Equation (36) as follows to produce Equation (41):∣∣∣∣Ui+1

Ui

∣∣∣∣ < 1 where i = 0, 1, . . . n − 1 (41)

3.5. Iterative Quadrature [68]

We solved the following iterative system as follows:

c ∂γ,δUi+1(x,t)
∂tγ,δ = −k ∂γ,δUi+1(x,t)

∂xγ,δ + vk Ui
2
(x,t)

∂γ,δUi+1(x,t)
∂xγ,δ −

k3 ∂γ,δ

∂xγ,δ (
∂γ,δ

∂xγ,δ (
∂γ,δ

∂xγ,δ Ui+1(x, t))) , i = 0, 1, 2, . . .
(42)

Equation (42) was subject to previous boundary and initial conditions.
Consequently, BBMB equations can be solved via perturbation and iterative techniques,

as with the MBBM Equation (5).

4. Numerical Results

In this section, we show the novelty of the suggested techniques by solving two nonlinear
fractional problems. The suggested techniques are polynomial (PDQM) [51], DSCDQM—RSK,
and DSCDQM—RDK [54–57] with the generalized Caputo’s and Caputo type. Also, pertur-
bation and iterative quadrature strategies are used to overcome the nonlinearity problems.

To validate the obtained results, first we compare these results with the exact re-
sults [35,36] to ensure the efficiency and accuracy of the suggested techniques. Second, we
evaluate the stability and convergence of the obtained solutions by calculating the L∞, root
mean square (RMS), and L2 errors as follows [57]:

L∞ Error = max
1≤i≤Nx

∣∣Unumerical(xi, tj)− Uexact(xi, tj)
∣∣ (43)

RMS Error =

√√√√ [
nx ,nt

∑
i,j=1

(Unumerical(xi, tj)− Uexact(xi, tj))
2

]/
(nxx nt) (44)

L2 Error =

√√√√∆x ∆t
nx ,nt

∑
i,j=1

(Unumerical(xi, tj)− Uexact(xi, tj))
2 (45)

4.1. Consider a 1D Problem of MBBME Along the x-Direction as Follows

We applied the novel numerical technique on a fractional modified BBME by sub-
stituting the Equation (21) into Equation (1). However, the modified BBM equations are
converted into nonlinear algebraic equations as follows:

c
nt
∑

j=1
Ψγ,δ

tij U(x, tj) = −k
nx
∑

i=1
Ψγ,δ

xij U(xi, t) + vkU2
(xi,tj)

nx
∑

i=1
Ψγ,δ

xij U(xi, t)−

k3
nx
∑

i=1
Ψx

γ,δ
ij (

nx
∑

i=1
Ψx

γ,δ
ij (

nx
∑

i=1
Ψx

γ,δ
ij U(xi,t))), i = (1, nx) , j = (1, nt)

(46)



Fractal Fract. 2024, 8, 685 10 of 22

Then, by subsituting Equation (21) into Equations (2)–(4), the boundary conditions
and initial condition can be illustrated as follows:

P1 U (x1, t) + G1

nx

∑
i=1

Ψ1
1jU (x1, t) = Q1(t) (47)

P2 U(x2, t) + G2

nx

∑
i=1

Ψ1
2jU (x2, t) = Q2(t) , (48)

U(xi, 0) = Θ(xi), (49)

where the values of G1 = G2 = 0, P1 = P2 = 1 and δ = 1. Equations (50)–(52) are
as follows:

Q1(t) =

√
3

2kv
k3/2tanh[

kx1
γ

2Γ(1 + γ)
+

ctγ

2Γ(1 + γ)
+

ε

2
], (50)

Q2(t) =

√
3

2kv
k3/2tanh[

kx2
γ

2Γ(1 + γ)
+

ctγ

2Γ(1 + γ)
+

ε

2
], 0 ≤ t ≤ H (51)

Θ(x) =

√
3

2kv
k3/2tanh[

kx1
γ

2Γ(1 + γ)
+

ε

2
], x1 ≤ x ≤ x2, c = 0.5k(−2 + k2) (52)

In addition, the exact solution for the modified BBME can be given as follows [35]:

Uexact(x, t) =

√
3

2kv
k3/2tanh[

kxγ

2Γ(1 + γ)
+

ctγ

2Γ(1 + γ)
+

ε

2
], t > 0, x1 ≤ x ≤ x2 (53)

Table 1 displays the accuracy of PDQM at various values of γ and different grid
sizes from (4 × 10) to (25 × 10) compared with exact values using perturbation and
iterative quadrature techniques. PDQM with iterative quadrature is more accurate than the
perturbation method at grid size (10 × 10). Iterative quadrature is more efficient than the
perturbation method in terms of the calculating CPU time, which is equal 0.096258 s.

Table 1. Numerical solutions using PDQM via two strategies with various grid sizes of nx × 6 and
different values of γ at t = 0.2, x = 0.333, δ = 1.

nx
PDQM + Perturbation PDQM + Iterative

γ=1 γ=0.97 γ=0.95 γ=1 γ=0.97 γ=0.95

4 0.33410 0.33480 0.33525 0.32034 0.33251 0.33283

7 0.33452 0.33502 0.33582 0.33124 0.33502 0.33612

10 0.33541 0.33571 0.33601 0.33254 0.33752 0.33798

13 0.33554 0.33612 0.33675 0.33401 0.33791 0.33851

16 0.33587 0.33695 0.33725 0.33491 0.33810 0.33881

19 0.33588 0.33702 0.33790 0.33551 0.33817 0.33925

22 0.33601 0.33751 0.33851 0.33607 0.33831 0.33934

25 0.33608 0.33801 0.33908 0.33615 0.33897 0.33955

Exact [35] 0.33610 0.33803 0.33936 0.33610 0.33803 0.33936

CPU time 0.183610 s at 10 × 10 0.096258 s at 10 × 10

Table 2 presents the influence of different parameters and grid sizes from size (9 × 6)
to size (11 × 6) on the obtained results by DSCDQ-RSK and RDK methods combined with
perturbation and iterative quadrature schemes. Thus, it is found that the obtained results
from the DSCDQ-RSK method closely match the exact solutions at the parameters M = 2,
α = 1 × ∆ at nx = 10, nt = 6. The RDK results are also in good agreement with the exact
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solutions and have high accuracy solutions at M = 1, α = 1 × ∆ at nx = 10, nt = 6 and the
parameter T = 10. When calculating the CPU time for RSK and RDK to prove the efficiency
of these methods, it is remarkable the computation time for RSK is moderately less than
that of RDK.

Table 2. Numerical solutions using the DSCDQM-RSK and RDK methods with various grid sizes,
bandwidths (2M+ 1), and regularization parameter α at γ = 1, δ = 1, t = 1, v = k = ε = 1, x = 0.44.

Grid Size
Bandwidth

DSC-RSK + Perturbation DSC-RDK + Iterative

α α

2M+1 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

9

3 - - - - 0.26846 0.26871 0.26877 0.26985

5 0.26808 0.26811 0.26821 0.26821 0.26846 0.26871 0.26877 0.26985

7 0.26808 0.26811 0.26821 0.26821 0.26846 0.26871 0.26877 0.26985

9 0.26808 0.26811 0.26821 0.26821 0.26846 0.26871 0.26877 0.26985

11 0.26808 0.26811 0.26821 0.26821 0.26846 0.26871 0.26877 0.26985

15 0.26808 0.26811 0.26821 0.26821 0.26846 0.26871 0.26877 0.26985

19 0.26808 0.26811 0.26821 0.26821 0.26846 0.26871 0.26877 0.26985

10

3 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

5 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

7 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

9 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

11 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

15 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

19 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

11

3 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

5 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

7 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

9 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

11 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

15 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

19 0.26709 0.26813 0.26829 0.26849 0.26814 0.26819 0.26822 0.26838

CPU Time 0.095582 s. at nx = 10, M = 2 0.096531 s. at nx = 10, M = 1

Exact [35] 0.26834

Table 3 demonstrates the effect of T on the accuracy of the results for the DSC-RDK
method. It is noted that the obtained results are characterized by rapid convergence and
accurate results when the values parameter T ≥ 10.

Table 3. Numerical solutions by the DSC-RDK method with various parameters (T) at M = 1,
α = (1 × ∆ ) and γ = 1, δ = 1, t = 1, v = k = ε = 1, x = 0.44.

Grid Points
nx

T

1 5 10 15 20 30 40

10 0.26820 0.26821 0.26823 0.26823 0.26823 0.26823 0.26823

11 0.26820 0.26821 0.26823 0.26823 0.26823 0.26823 0.26823

12 0.26820 0.26821 0.26823 0.26823 0.26823 0.26823 0.26823
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Table 3. Cont.

Grid Points
nx

T

1 5 10 15 20 30 40

13 0.26820 0.26821 0.26823 0.26823 0.26823 0.26823 0.26823

14 0.26820 0.26821 0.26823 0.26823 0.26823 0.26823 0.26823

15 0.26820 0.26821 0.26823 0.26823 0.26823 0.26823 0.26823

Exact [35] 0.26834

CPU Time 0.072366 s at nx = 10

Table 4 measures L∞ error norms for three kernels, namely PDQM, DSC-RSK, and DSC-
RDK, at different times and different values of γ to determine the reliability and stability of
these methods. The RDK has L∞ ≤ 2.99 × 10−4 at grid size 10 × 10 and time = 10 s. RSK
achieves accurate results with L∞ ≤ 3.62 × 10−4 at size (10 × 10) and time = 10 s. Also,
PDQM achieves accurate results with L∞ ≤ 7.8 × 10−3 at size (10 × 10) and time = 10 s.

Table 4. L∞ error norms in [0, 1] at different times when nx × nt = 10 × 6 and δ = 1 ,α = (1 × ∆) .

Time

γ=1 γ=0.97

PDQM DSC-RSK
M = 2

DSC-RDK
M = 1 PDQM DSC-RSK

M = 2
DSC-RDK

M = 1

0.3 5.1778 × 10−4 3.5078 × 10−4 2.9011 × 10−4 5.7120 × 10−4 3.6210 × 10−4 2.9801 × 10−4

0.5 8.0243 × 10−4 3.5241 × 10−4 2.9021 × 10−4 9.1042 × 10−4 3.6201 × 10−4 2.9811 × 10−4

1 1.5487 × 10−3 3.5277 × 10−4 2.9021 × 10−4 2.4017 × 10−3 3.6251 × 10−4 2.9724 × 10−4

2 3.5518 × 10−3 3.5188 × 10−4 2.9005 × 10−4 3.9118 × 10−3 3.6280 × 10−4 2.9880 × 10−4

5 5.5001 × 10−3 3.5001 × 10−4 2.9011 × 10−4 5.5289 × 10−3 3.6291 × 10−4 2.9818 × 10−4

7 6.1901 × 10−3 3.5002 × 10−4 2.9003 × 10−4 7.0991 × 10−3 3.6292 × 10−4 2.9921 × 10−4

10 7.15410 × 10−3 3.5012 × 10−4 2.9015 × 10−4 7.80662 × 10−3 3.6294 × 10−4 2.9912 × 10−4

Table 5 shows the effect of generalized Caputo fractional derivatives γ, δ with the
suggested techniques for the results obtained at δ = 1, 0.9, γ = 0.9, 0.8, 0.7, 0 ≤ t ≤ 1 and
x = 0.55. The very good agreement among the obtained solutions with the exact ones [35]
verifies the capability of these techniques to deal with the modified BBM problem. Also,
the numerical solution U increases with increasing time and decreases with γ.

Table 5. Numerical solution (U) in [0, 1] at different times and derivative orders γ, δ when nx × nt =
10 × 6 and x = 0.5556, M = 2, α = (1 × ∆) .

δ γ Method Time = 0.2 Time = 0.4 Time = 0.6 Time = 0.8 Time = 1

1

0.9

PDQM 0.389721295 0.3680463518 0.3378722832 0.3346095 0.3056576

RSK 0.3876536321 0.3640845129 0.34574756900 0.326278013 0.3056760

RDK 0.3870390159 0.3619246792 0.34522989232 0.326552839 0.3056886

Exact [35] 0.3872035353 0.36711214584 0.34683211164 0.326103456 0.3048345

0.8

PDQM 0.3910653065 0.3753397944 0.35308995183 0.335620599 0.3180235

RSK 0.3901965632 0.37030983171 0.35153027266 0.330488302 0.3138299

RDK 0.3909431115 0.37069452570 0.35823577077 0.336317366 0.3199452

Exact [35] 0.3930743748 0.37260909741 0.35297863310 0.333601339 0.3142535
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Table 5. Cont.

δ γ Method Time = 0.2 Time = 0.4 Time = 0.6 Time = 0.8 Time = 1

1 0.7

PDQM 0.3906530165 0.37012073090 0.37684786559 0.352215195 0.3128846

RSK 0.3986530659 0.37702073090 0.35269978635 0.341211190 0.3286423

RDK 0.3986530659 0.37702073090 0.35699786359 0.341211190 0.3286423

Exact [35] 0.3981059865 0.37769699000 0.35912585548 0.341445249 0.3242833

0.9

0.9

PDQM 0.3663380120 0.34596421740 0.3176178900 0.314533214 0.2873180

RSK 0.3643942101 0.34220197239 0.32501543003 0.301806701 0.2587335

RDK 0.3638174100 0.34021507209 0.3221424516 0.302578696 0.2847347

0.8

PDQM 0.3675134601 0.35198762819 0.33018761905 0.314872483 0.2928942

RSK 0.3664874785 0.34547018091 0.33015780438 0.311870659 0.2871195

RDK 0.3672891487 0.34741258453 0.33005416742 0.307816138 0.3007148

0.7

PDQM 0.3671068214 0.34792114513 0.35267014237 0.330101082 0.2910412

RSK 0.3741014734 0.35432142199 0.33015871538 0.321540739 0.3008924

RDK 0.3661240338 0.34591012564 0.30547823176 0.310784533 0.2187318

In addition to Tables 4 and 5, we have introduced more numerical solutions to con-
firm the reliability and accuracy of the suggested techniques in studying the effect of the
generalized Caputo fractional derivatives γ, δ with various values of t on the obtained
results, as shown in Figures 2 and 3. These figures also demonstrate that the numerical
solutions provided by RDK and RSK agree well with the exact solutions at different values
of α and x = 0.33. Figures 2 and 3 show that the obtained solutions increase with increasing
time at v = 1, k = 2 and v = 2, k = 2, but they are inversely proportional to time at
v = k = 1 and v = 2, k = 1 and the value of γ. This refers to the fact that the value of
v does not affect the type of relation between the solution and time and vice versa when
changing value of k.
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Furthermore, Figures 4 and 5 explain the influence of parameters ε, v on the obtained
solution by RDK at various values of γ, δ in intervals of 1 ≤ ε, v ≤ 15, 0 ≤ α ≤ 1. These
figures indicate that the obtained solution U is directly proportional to the value of ε, but
inversely proportional to v and γ. In Table 6, RMS error is calculated for four schemes
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based on different shape functions and combined with the perturbation method at different
times (1 ≤ t ≤ 6) s. Thus, the results in this table explain that the value of the RMS error is
lowest in the DSCDQ-RDK at all times. Also, this method achieved the lowest computation
time. Moreover, in this table, Chebyshev–Gauss–Lobatto nodal points are used to obtain
the stable and accurate solution more than uniform PDQM as follows [49]:

Xr = a +
b − a

2

[
1 − cos

(r − 1)π
nx − 1

]
, r = 1, 2, · · · , nx, a ≤ X ≤ b (54)

where nx represents the number of nodal points.
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Figure 4. Numerical solution by RDK with the parameter ε at various values of γ (a) δ = 1 (b) δ = 0.9.

Moreover, Figures 6 and 7 show the physical attitude of the obtained numerical
solutions for U by RSK and RDK at different values of γ and k by plotting surface graphs of
the numerical solutions U. It is remarkable that the obtained numerical solutions decrease
with the increasing value of γ and that they are directly proportional to k.
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4.2. Consider a Problem Time-Fractional BBM-Burger Equation as Follows

In this problem, we substitute Equation (21) into Equation (5) to transform BBM-Burger
equations into nonlinear algebraic equations as follows:

nt
∑

j=1
Ψγ,δ

tij U(x, tj) =
nt
∑

i=1
Ψγ,δ

tij U(x, tj)
nx
∑

i=1
Ψxx

γ,δ
ij U(xi ,t) +

nx
∑

i=1
Ψx

γ,δ
ij U(xi, t)− U(xi ,tj)

nx
∑

i=1
Ψx

γ,δ
ij U(xi, t)

i = (1, nx) , j = (1, nt)

(55)

The initial and boundary equation for the nonlinear BBM-Burger equation can be
taken as follows:

U(x, 0) = sec h2(x/4) (56)

U(0, t) = sec h2(
−tγ

3Γ(1 + γ)
), U(1, t) = sec h2(

1
4
− −tγ

3Γ(1 + γ)
) (57)

Also, the exact solution to the BBM-Burger equation can be defined as follows [36]:

Uexact(x, t) = sec h2[
x
4
− tγ

3Γ(1 + γ)
], t > 0, x1 ≤ x ≤ x2 (58)

To demonstrate the efficiency and accuracy of the suggested techniques, we calculate
L∞ errors at different values of t and γ, as presented in Table 7. The acquired numerical
results show that the DSCRDK method is more accurate than RKHSM [36].
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Table 7. Error norms in [0, 1] at different times when nx × nt = 6 × 6 and δ = 1, α = (1 × ∆) .

Time
γ=0.5 γ=0.75 γ=0.95

RKHSM [36] DSC-RDK
M = 1 RKHSM [36] DSC-RDK

M = 1 RKHSM [36] DSC-RDK
M = 1

0.1 5.93 × 10−3 1.11 × 10−4 4.42 × 10−3 1.01 × 10−4 5.67 × 10−3 1.10 × 10−4

0.2 4.23 × 10−3 2.21 × 10−4 2.97× 10−3 2.11 × 10−4 4.57 × 10−3 2.01 × 10−4

0.3 2.66 × 10−3 2.21 × 10−4 1.65 × 10−3 2.20 × 10−4 3.58 × 10−3 2.11 × 10−4

0.4 1.14 × 10−3 2.35 × 10−4 4.93 × 10−4 2.30 × 10−4 2.68 × 10−3 2.27 × 10−4

0.5 4.91 × 10−4 2.01 × 10−4 7.94 × 10−4 2.01 × 10−4 1.88 × 10−3 2.00 × 10−4

0.6 1.96 × 10−3 2.93 × 10−4 1.87 × 10−3 2.21 × 10−4 1.20 × 10−3 2.18 × 10−4

0.7 3.46 × 10−3 2.15 × 10−4 2.89 × 10−3 2.12 × 10−4 7.23 × 10−3 2.11 × 10−4

0.8 4.98 × 10−3 2.98 × 10−4 3.87 × 10−3 2.54 × 10−4 4.35 × 10−4 2.43 × 10−4

0.9 6.50 × 10−3 2.98 × 10−4 4.81 × 10−3 2.55 × 10−4 5.17 × 10−4 2.45 × 10−4

In addition, Figures 8 and 9 establish the 3D surface solutions of the exact and nu-
merical solutions using DSCRSK and PDQM. The obtained results using DSCRSK and
PDQM are in good accord with the analytical solutions. Figure 10 shows a comparison
between the proposed techniques and the exact solution at t = 0.6. The results are directly
proportional to space. DSC-RSK and DSC-RDK methods are more accurate than PDQM.
Also, the results are slightly decreased with decreasing δ. Table 8 displays the comparison
between the DSC-RSK and DSC-RDK methods. This table shows that the results produced
via DSC-RDK are more stable and convergence than DSC-RSK. Also, the presented results
are in good agreement with the exact solutions at grid size (5 × 5). Furthermore, the values
of statistical analysis as L2 errors = 2.7 × 10−5, while the values for L∞ errors = 3.2 × 10−7

at (5 × 5) for the DSC-RSK technique. L2 errors = 1 × 10−5, while L∞ errors =1.2 × 10−7 at
(5 × 5) for the DSC-RDK technique.
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Table 8. L∞ error norms via DSC-RSK and DSC-RDK at T = 5 s. For the exact solution,
γ = 1, δ = 1, v = k = ε = 1, α = (1 × ∆) .

DSC-RSK DSC-RDK

nxx nt L2 Error L∞ Error L2 Error L∞ Error

5 × 5 2.7987 × 10−5 3.2532 × 10−7 1.0557 × 10−5 1.2922 × 10−7

5 × 7 3.2589 × 10−5 6.3011 × 10−7 1.4282 × 10−5 3.2888 × 10−7

5 × 8 3.4497 × 10−5 9.3029 × 10−7 1.8859 × 10−5 6.2035 × 10−7

7 × 5 3.5214 × 10−5 9.5135 × 10−7 1.9551 × 10−5 6.3141 × 10−7

7 × 7 3.7213 × 10−5 9.7s141 × 10−7 1.9851 × 10−5 6.5198 × 10−7

5. Conclusions

Soliton wave solutions for the space–time-fractional modified BBME and BBMBE
have been discussed in this paper via novel numerical techniques. These techniques are
PDQM, DSCDQM-RSK, and DSCDQM-RDK combined with Caputo type and generalized
Caputo’s FD. Also, the perturbation and iterative quadrature techniques were used to
treat the nonlinearity of this problem. In addition, all results are computed by designing
MATLAB code. It is perceived that the obtained numerical solutions are new, more general,
and not reported before in the literature. Then, we estimated the study’s originality and
relevance by comparing its results with those of similar studies. From all the tables and
figures presented, it is found that the numerical obtained solutions increase with the
increasing parameters v and decreasing ε in problem 1. Also, the results decrease with
increasing γ, δ, time, and space.

Accordingly, the obtained numerical solutions show that the suggested techniques are
reliable and efficient schemes which yield many complex results for the other fractional
NLPDEs. These methods are efficient, powerful, and can be utilized as an alternative
method to determine new numerical solutions of several types of fractional DEs applied in
mathematical physics.
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