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W N

Abstract: This paper introduces a novel approach for solving multi-term time-fractional convection—
diffusion equations with the fractional derivatives in the Caputo sense. The proposed highly accurate
numerical algorithm is based on the barycentric rational interpolation collocation method (BRICM)
in conjunction with the Gauss-Legendre quadrature rule. The discrete scheme constructed in this
paper can achieve high computational accuracy with very few interval partitioning points. To verify
the effectiveness of the present discrete scheme, some numerical examples are presented and are
compared with the other existing method. Numerical results demonstrate the effectiveness of the
method and the correctness of the theoretical analysis.

Keywords: Caputo derivative; barycentric rational interpolation; multi-term time-fractional convection—
diffusion equation; Gauss-Legendre quadrature rule

1. Introduction

In this study, we investigate the following multi-term time-fractional convection—
diffusion equations with the fractional derivatives in the Caputo sense,

J .
(§f + Angff)u(x,t) = P(x, )it (%, £) — Q(x, )1t (x,£) + f(x, 1),
j=1

(x,1) € Q, 1)
u(x,0) = p(x), x € (0,L),
u(0,t) =u(L,t) =0, te (0,T],

where 0 < s < -+ < By < By < B < 1 are the fractional orders, )tj >0(1<j<]J) and
P(x,t) and Q(x,t) are the diffusion coefficient and the convection coefficient, respectively.
Q=10,L] x[0,T], f(x,t) is the forcing function, ¢(x) is given sufficiently smooth function,
and u(x, t) is the unknown function.

If Q(x,t) = 0, then Equation (1) will become the multi-term time-fractional diffusion
equation (TFDE). And if | = 0, then Equation (1) will become the time-fractional convection—
diffusion equation, which has been studied by many scholars using various numerical
methods, including the finite difference method [1-4], the finite element method [5-7], the
finite volume method [8-10] and the spectral method [11,12], etc.

Multi-term fractional order differential equations provide a higher degree of flexibility
in modelling complex real-world phenomena. They can be used to capture a wider range
of memory effects by combining multiple fractional orders, which makes them more
effective in modelling complex systems. Therefore, it is necessary to explore the numerical
method of multi-term fractional order differential equations. A number of studies on multi-term
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fractional order differential equations have been conducted recently, in particular, studies such
as those of the Hermite wavelets approach [13], the Pseudospectral method [14], Chebyshev
polynomials [15,16], the generalized squared remainder minimization method [17], the Haar
wavelet collocation method [18], and so on.

The main purpose of this paper is to solve a class of multi-term fractional convection—
diffusion equations using the BRICM, where the fractional order derivatives are in turn
given by the Caputo definition:

ngu(x,t) r(l 5 fo ﬁau( ) ds, ()

which is one of the common derivatives of fractional order and has been applied in many
areas. Properties and more details about Caputo’s fractional derivative can be found
in [19-21]. The BRICM is a high-order interpolation algorithm, which can effectively avoid
the Runge’s phenomenon and has good robustness to irregular data. In recent years, the
BRICM has been applied in solving various differential equations. Additional studies can
be found in [22-27], among others.

The rest of this paper is organized as follows: In Section 2, the discrete scheme is
constructed by using the combination of the BRICM and the Gauss-Legendre quadrature
rule, the theoretical analysis is given in Section 3, and the numerical results in Section 4
support the theoretical analysis. Finally, we conclude our results in Section 5.

2. Highly Accurate Numerical Algorithm for Equation (1)
2.1. Background Knowledge of the BRICM

For classical rational interpolation, the existence of poles has a significant negative
impact on it. Therefore, Berrut and Mittelmann [28] proposed an interpolation technique
to avoid poles and improved the result by using higher-order rational functions. The
interpolation can be written in the following barycentric rational form:

~ ! w; : Wp
u(x) & ¥ ot / e 3)
0 p=0

where x; (i € [I], [I] = {0,1,---,I}) are I + 1 different interpolation nodes, the value of
u(x) at point x; is denoted by u; = u(x;). In [29], Berrut used

w; = (=1)}, i€ [l] 4)

to denote the interpolation weights of barycentric rational interpolation. Let d, (0 < dyx < I)
be an arbitrary integer; in [30], Floater and Hormann used the interpolation weights as

Wi = Yeejog (1 T 5, (0] ={ze[:i—dc <z <1}, 5)

and if dy = 0, we can get that w; = (—1)’ (i € [I]) which is the same as that in [29]. Thus,
in the followmg, we ]ust focus on the case of d, > 1.

Let ¢;(x) /Zp -0 xw’; , then ¢;(x) — 1as x — x;, and ¢;(x) = 0 as x # x;. By
Equation (3), we can obtain the barycentrlc rational interpolation function (BRIF) of u(x),
denoted by up, (x) as

_xx,

u(x) = (1) = L i) ©

Similarly, by Equation (6), the transcription in the time domain implies that
K
u(t) ~ up, (t) = k;O O (t)ug, (7)

where u; = u(t;) and 9 (t) = = tk/zp =0 t



Fractal Fract. 2024, 8, 687

30f15

Let u;(t) = u(x;,t) and uy = u(x;, t). By Equation (7), the BRIF of u;(t) is denoted by
ug, (x;,t), then we have

ui(t) = up, (x;,t) = éo O (#)ujg. (8)

Next, we will consider the BRIF of u(x, t) at interpolation nodes (x;, f;) (i € [I], k €
[K]). Similar to Equation (6), we can get the following BRIF of u(x, t) denoted by up, (x,t),

I K

¢i(x)up, (xi,t) = ¥ ¥ ¢i(x) O (H)uj = up,(x,t).  (9)

i=0k=0

u(x,t) ~

¢i(x)u;(t) ~

It
It

1 1

In this paper, the second class of Chebyshev nodes (x; = cos iT”,i =0,1,---,I) will be
used for analysis and calculation.

2.2. The Differential Matrices

In this subsection, we will consider the differential matrix of barycentric rational
interpolation. As in [31], we can obtain the BRIF for the p-order (x € NT) derivative of
u(x,t) onnodes (xp, ty) (n € [I], m € [K])

FICOM I K I K
avaZ = 'Z D 4’,‘(H)(xn)l9k(tm)”ik = .): r A,(ﬁ)ﬂk(thik,
i=0k=0 i=0k=0 (10)
S = L L ¢i(xn) k (tm)uix = L ¥ ¢ixn) mk Wiks
i=0k=0 i=0k=0

where Aff; ) and B'E:k) are the p-order differential matrices for the corresponding variables,

respectively. As in [31], the form of Ayl' ) and B;ka) can be obtained as follows,

(p=1)

i : 1) 4(r=1) Ay :
(1) T nEL W ) (A”" Am ) nA

, n ) _
Am _ Z A(ll)/ n=i Am 3 ) o
1=0]#n Y. AN n=i,

o 1=0,1#n

o T m# k BRI B ) g
(1) Wim tmgtk’ 4 B(]/l) H mk PZmm tm—tx )’ ’

B/ = —

mk =Y~ ¥ BG, m=k mk ) _ Ko _
q=0,47#m ! )y qu/ m=k.
’ q=0,g7m

2.3. Approximate Scheme of the Caputo Derivative

We consider the approximate scheme of the Caputo derivative in this subsection. By
Equation (2), we can infer that

1 ou(x,0),1— 1 t _gd%u(x,
FDPu(xt) = g G+ gy ot — o) P an
In Equation (11), by using Equation (10) and discretizing the domainby I +1 (0 = xp < x1 <
-+ < x7 = 1) nodes in space and K+1 (0 = fp < t; < --- < tx = 1) nodes in time, a
preliminary discrete scheme for the Caputo derivative can be obtained as

CpPy(x,t
| ttl‘(ﬁ )I K / 1 t 1-B [ K " (12)
= TP EOIEO ¢i(x) 8y (fo)uix + w25y Jo(t—s) i§0k§0¢Z(X)l9k (s)ujd
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For the second term at the right -hand side of Equation (12), by using the Gauss-Legendre
quadrature rule, that is fo s)ds =~ YR | W, f(s,) (see [32] for more details), we can get the
discrete scheme of it. Denote

g@fu(x, £)

I K R 13
Ly L L (PPt o+ ¥ (-5 Pl (som).

Then, we can obtain the fully discrete scheme of the Caputo derivative as thﬁ u(x, t), that
is ngu(x, t) ~ g@’tgu(x, t).

2.4. Discrete Scheme of Equation (1)

In this subsection, the fully discrete scheme of Equation (1) will be given based on the
BRICM. Applying Equations (10) and (13), we get

ﬁ(fk’s Y X ¢i(x)0(to)ug + Z Z Z(f—sr) 7ﬁ¢i(x)l9;/</(5r)wruik>

i=0k=0 i=0k=0r=

] I K R
+ X Ny & L (Pt ou+ X (= s)' P8 (s W) 14)

j=1 17 i=0k=0
I K

= ¥ % (P(x )9/ (x) = QUx, ) (x) ) Bu(Buge + £ (x,1)
i=0k=0

Let Li(tn) = T8y (tw — 5,) PO (s, )Wy and Lig(tn) = TR (tw — 5)' 7 Pi0] (s,)W,, com-
bining these results, (8, (t) = B&), ¢i(xn) = Oin, Pi(xn) = AS) and ¢! (x,) = Ag)), and
by Equation (14), we can get

1-B 1),
(2 ) (t Z kZO 5mB0k ik + Z Z 5mLk(tm) )

i=0

] I —-B; ( )
+E Jr(z B Zo kZO ( "6in By ik + 5inij(tm)Mik) (15)

I
= 'ZO kZO (P(xn/ tm)Aij) - Q(xn/tm)Agli))(skmuik +f(xﬂrtm)'
i=0k=

Taking all values of n € [I] and m € [K], the fully discrete scheme of Equation (1) can be
expressed as

[(2 5)<IN®B()+1N®L)+Z/\ et ﬁ)(IN@@B](”HN@Lj) )

—P(AP g 1y) - QAN & IM)} u=Fr,

where U = [ug - - - uy]' with u; = [uj - - wix]', F = [fo - -~ fi]/ with f; = [f(x;, to) - - - f(xi, tx)]',

to PBY t(l)iﬁB(g}K) Lo(to) --- Lk(to)
B(l) — N : , L — : : ,
0 PBY) ... FBY Lo(tk) -+ Lk(tk)
1-; 1-B;
tO ﬁ]B(%) s tO ﬁ]B(()}g LjO(tO) cee L]‘K(i’o)
B}(l) _ : : L= . . ) ,

b B i B Lio(tc) -+ Lik(tx)
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(1 (1)
Aog Ao}ll
Al = withpy =1,2,
(1 (1)
AIS‘ AI?
P = diag{Py,Py,--- , P} with P; = [P(x;,to) - - - P(x;, tg)]', and Q = diag{Qo, Q1,--- ,Qr}

with Q; = [Q(x;,to) - - - Q(x;, tk)]". In and Iy are the identity matrices of order K 4+ 1 and
I + 1, respectively, and the discrete formats of the initial value conditions are

I K
up, (x,0) = ,EO kgo ¢i (%) (0)uje = P(x),
I K I K
ug, (0, t) = ';0 kgo cpi(O)ﬁk(t)uik = 0 and LlBZ(L, t) = ';()kgo ¢i(L)19k(t)uik =0.

3. Convergence Analysis

Set h = max{h;} and h; = |x;,1 — x;| with i € [I — 1], and set T = max{7} and
Te = |tgy1 — tx| withk € [K—1]. Letu; = u(x;), up = u(ty) and u = u(x;, ). Let Jp be the
function space consisting of the interpolated basis functions {¢; }Z'I:o defined by Equation (6),

and 7, be the function space consisting of {8 }+_, defined by Equation (7). We first give
the following definitions and lemmas, which will be used in the following discussion.

Definition 1. Suppose u(x) € C[0,1] and u(t) € C[0,1]. Let Ry ;: C[0,1] — J1 and Ry k:
C[0,1] — J, be the interpolation operators for x and t, respectively. They still satisfy the require-

ment that
K

I
Ry ju(x) = ;()(Pi(x)uz‘/ Rexu(t) = L O(t)uy.

Similarly, let 7 = J1 U Jo; we can define Ry 1R x: C([0,1] x [0,1]) — J, and it satisfies

1K
Ry 1Rp xu(x, t) = ;Okgo@(x)ﬂk(t)“ik-

It is obvious that up, := M, Ry ku, and R, 1, Ry k, Ry, 1R k are linear operators.
Definition 2 ([33]). (Lebesgue constant) Ajz. = ||Ry1

R 0 = IMax K 190()].
|9 ]| te[o,l}zkfo‘ ke (1)]

o = max Yi_o|¢i(x)], Akg, =
x€[0,1]

Lemma 1 ([34]). For any set of well-spaced interpolation nodes, any pq with 0 < py < dy, and
u(x) € CH+2+10,1], then

) () — uf"” (x)] < Cptet1mm

and more specifically, |u(t) (x) — ugil)(xﬂ < Clh?"H*M, where Cy is a constant, ug, is the
BRIF of u(x), x € [x;,xj41] and i € [[ —1].

Lemma 2 ([35]). When the BRICM at quasi-equidistant nodes (xg,- - - ,x1) € RUIAY) with the
basis function of Equation (6), its Lebesgue constant Ay 4 satisfies

SHy, if dy =0,

A < 2+ HyInI) *
1dy < (2 Heln) {ZdX‘lHif”, ifdy > 1,

where Hy > h/hy, hy = min{|x; 1 — x;| }and i € [[ —1].
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Lemma 3 ([32]). Let u®R)(t) € C[0, T]; there exists v € (0,T), and the error estimate of the
Gauss—Legendre quadrature rule can be presented as follows

T R B T2R+1(R!)4
/0 u(s)ds — Y Wru(s,) = R+ 1)[(2R)!]3u(2R>(7)’

r=1

where s, and W, are the integral points and integral weights of the Gauss—Legendre quadrature rule,
respectively, and R is the number of points.

By a similar analysis, the following theorems can be obtained, as performed in [34,35].

Theorem 1. Let u = u(x,t) be the exact solution of Equation (1) and ug, = up,(x,t) be the

numerical solution of Equation (16), and let uj(c ﬁz)(x, £), ugd’Jrz)(x, t) € C(Q) withdy > 1 and

dy > 1, then
[t — up, || < Crh%™ T 4+ Cy(2 + Hyln 1)2% 1%t

where Cy, Cy are all constants.
Proof. Applying triangle inequality, we can assert that

[lu — up,|leo = || — R 1Re k|0 = || — Ry 11t + Ry 11t — Ry 1Rt k1|0
< [l =Ry 1] oo + [[R, 11 — R 1R k1 |oo-

From Lemma 1, it follows that
|t — Ry 11| oo < Crh% L and ||u — Ry k1|0 < CoThHL (17)
Since R, ; and R, k are linear operators, Definition 2 and Equation (17) show that

198511 — R Rkt oo < 1R, (0 = Rear) oo < |Rtloo] 4 = Rt oo < CoApa, T,

According to the above remark and Lemma 2, we have

Ry kit — Ry (Rt kit oo < Co(2 4 Hyln 1)2% 1 HIx 41, (18)
By Equation (17) and Equation (18), we conclude that

[t — up, || < CLA™ T 4 Cy(2 + Hyln 1)29x -1 H%x g1,

This completes the proof. [

Theorem 2. Let C”Dﬁ u(x,t) be the fully discrete scheme o cph u(x,t) as in Equation (13) and let
0~t Y ot q

ug(dﬁz)(x,t), ugd'+2)(x, t) € C([0,1] x [0,1]) with dx > 1 and d; > 1. Then, the following holds:

1§D u(x, t) — SO u(x, 1)
(R1)*
(2R +1)[(2R)!]3’

< Gt 4 Cy(2 4 Hyln 1)2% T HE %71 4 C5

where C3, C4 and Cs are constants.
Proof. Applying triangle inequality, we deduce that

1§D u(x, t) — SO ulx, 1)

(19)
< |1SDPu(x, t) — §DPu(x, t)[Joo + IS DPu(x, £) — §DPu(x, £)]]oo-
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By Theorem 1, subtracting Equation (12) from Equation (11) yields

1§ Df u(x, £) =§ Dfu(x, )]]eo
<8u x,0) aiﬁx,lmt,K’fl(x/O))tl—ﬁ

- r=pl

ds
—l—/()t(t_s)l_ﬁ(a Lg(sﬁé,s) B aZ%X'IE);;fu(x’S))dSH
ou(x, 0) OR, R ku(x,0)
B F(2 B) (H 0s Hoo
+/0t(t—s)1 5”8 Lg(;; ) azmxli);;d/l X,5) H ds)

Similarly to Theorem 1, by Lemma 1 and R, xu(x,0) = u(x,0), we can deduce that

Hau(x ,0)  9RyRyku(x,0) H
0s o0

Hau x,0) E)%x,lu(x,O) H n Hamx,lu(x, 0) B Ry 1R xu(x,0) H
- d d o
_ Hau x,0) aiﬁx,ju(x,o) H ° °
S Clhdx+1
and
H 0%u(x,s) B %Ry 1Ry u(x,s) H
852 052 0
< (x,9) Ry u(x,s) *R, 1u(x,s) a2mx,1mt,1<u(x,s)
H 9s2 952 H H 952 952 Hoo
2 2
<Wi?~%ﬂ§ikw%¢W§W—”ﬁﬁﬂL

< CihB 4 Cy(2 + Hyln 1)2% T HEx %1,

Combining Equation (20) and Equation (21), we have

ISDPu(x, t) =5 DPu(x, £)]]wo
1 1_}3 dx+1 tz_ﬁ dx+1 dx—l dx df—l
STte=p) [le W 4 g (Ch* 4 Co 2+ Haln 12" HE T )}

< Cah™+1 4 Cu(2 + Hyln )24~ 1Hbx =1,

By Lemma 3, if we subtract Equation (13) from Equation (12), then it holds that

ISP u(x, ) — §DFu(x, )0

(20)

(21)

gy B ([ =" Peftopmass = Lt =)' P o) |

i=0k=0 r=1
4 I
= r(zl— B) (2R +(f)![)(212)1]3 i:m;)ﬁbi(x)uikﬂ [(1 =) Foy ()] 2R,

c (R1)*
2R+ D)[(2R)1]’
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where Cs is a constantand [(1— )1~/ (s)](2R) is the 2p-order derivative of (1 —s)' A8/ (s)
with respect to s. According to the above remark and Equation (19), we have

||6:Dfu(x,t) — g@fu(x,t)ﬂoo
(R1)*
(2R +1)[(2R)!]?"

< o™ 4 Cy(2 4 Hyln I)2% 1 HE L 4 C5

This proves the theorem. [

4. Numerical Examples

This section demonstrates the effectiveness of the BRICM in solving multi-term time-
fractional diffusion problems through four examples. All numerical results are imple-
mented on a AMD Ryzen 5 5600H Windows 10 system by using MATLAB R2022b. The
absolute errors E; and relative errors E, in all Tables are defined as

max{ |up, (x;, t) — u(x;, t)| }
max{]|u(x;, t) |}

Ea = max{|u32(xi, tk) — u(xi,tk)|}, Er =

7

and the absolute errors in all Figures are denoted by

lup, (x, tx) — u(x;, )],

where u(x;, t;) is the exact solution and up, (;, f;) is the numerical solution, respectively.
The convergence order is defined by log(E;/E;)/ (log( Ei% )), where E, is the current
error and Ej is the previous error, I; and K, are the numbers of current nodes, [; and K;

are the numbers of previous nodes.

Example 1. Consider the following one-term time-fractional convection—diffusion equation:

(():D?.lu('x/ t) - P(X, i’) azgi;(,t) _ Q(x, t) ou(x,t

(x,1), (x,y) € [0,1] x [0,1],

it (50) =0, (50 = 57,005 = 25502 g

flx,t) = sl )> (1F2(1 [0.95 1.45); — 52 ) 109 4 1287t2t0251r1(7tt))
10-

cosz(rcx) sin(7tt),

where 1F(1;0.95 1.45]; — ) represents the generalized hypergeometric function. The exact
solution of this example is u(x t) = sin(7tt) sin(7tx).

Table 1 shows the E, and convergence order with dy = d; = [ = K, in which
1000 Gaussian nodes are used. Table 2 shows the comparison of results for Example 1
at different nodes (the second class of Chebyshev nodes and the equidistant nodes), in
which dy = d; = I = K and the number of Gaussian nodes is 1000. We perceive from these
tables that the present scheme maintains the high-order accuracy, which fits well with the
theoretical analysis.

Example 2. Consider the following two-term time-fractional diffusion equation [36]:
(§DF + §Df ux,t) = T4 + f(x 1), (x,y) € [0,1] x [0,1],
with u(x,0) = 0 and

2- . 2—-p . .
flx,t) = rz(gfﬁ) sin(27x) + Fz(éfﬁll) sin(27tx) + 470t sin(27tx).
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The exact solution of this example is u(x,t) = t? sin(27x).
Table 1. E; and convergence order for Example 1 with dy =d; = I = K.
I XK E, Order CPU Time (s)
4x4 45310 x 1073 - 0.1089
6 X6 2.0196 x 107> 6.6753 0.1445
8 x8 1.0301 x 107 9.1740 0.2182
10 x 10 6.4164 x 10710 11.3796 0.2408

Table 2. Comparison of results for Example 1 at different nodes withdy =d; = = K.

E, E,
IxK
Chebyshev Nodes Equidistant Nodes Chebyshev Nodes Equidistant Nodes
5x5 4.7064 x 10~* 4.0635 x 1073 6.0160 x 10~4 44925 x 1073
77 3.9313 x 107 1.0369 x 10~* 44536 x 107° 1.0910 x 104
9x9 2.1562 x 108 1.6026 x 10° 2.3250 x 10~8 1.6524 x 10~
11 x 11 6.2475 x 10710 1.6719 x 108 6.5704 x 10~10 1.7065 x 108

In the second example, 1100 Gaussian nodes are used for numerical calculations.
Table 3 shows the absolute errors for Example 2 and compares the present results with the
results obtained by the method in [36]. We perceive from Table 3 that the results obtained
by the proposed method are more accurate than the results in [36]. Table 4 shows that the
second class of Chebyshev nodes is more suitable for this study than the equidistant nodes.
Absolute errors and corresponding convergence orders with different fractional orders
are listed in Table 5 for Example 2 with d;, = d; = I = K. For the given p, Table 6 shows
the relative errors for Example 2 at various time levels withdy = d; = = K = 14 and
B1 =0.1.

Table 3. Comparison of absolute errors for Example 2 with dy = d; = 4 and K = 10.

B =06 =04 B =098 =01
I
Present Method Method in [36] Present Method Method in [36]
25 1.6819 x 10~° 3.5338 x 1073 1.6817 x 107° 3.5334 x 1073
50 6.0084 x 108 8.8537 x 104 5.9549 x 108 8.8528 x 10~*
100 8.6425 x 10~10 2.2146 x 10~* 1.4588 x 10~? 2.2144 x 10~4

200 2.0880 x 10710 55372 x 10~° 9.5881 x 10710 5.5365 x 107>

Table 4. Comparison of absolute error of Example 2 at different nodes withdy, = d; = I = K.

B =06,p =04 B=109p8 =01
IxK
Chebyshev Nodes Equidistant Nodes Chebyshev Nodes Equidistant Nodes
6 %6 43316 x 1073 45049 x 1072 43319 x 1073 4.4997 x 1072
8x8 1.2194 x 104 42148 x 1073 1.2193 x 104 42113 x 1073
10 x 10 2.3307 x 10~° 2.3521 x 10~4 2.3305 x 10~° 2.3506 x 10~*

12 x 12 3.2037 x 1078 8.8581 x 10° 3.2093 x 108 8.8541 x 10~°




Fractal Fract. 2024, 8, 687 10 of 15

Table 5. E; and convergence order for Example 2 with dy = d; = I = K.

B=102p1 =01 B =055 =025 B=108pB =04

IxK
E, Order E, Order E, Order
6x6 43384 x 1073 - 4.3340 x 1073 - 43298 x 1073 -
8§x8 12217 x107%* 62045 12202 x107* 62049 12187 x 107*  6.2053
10x10 23337 x107® 88686 23318 x 107®  8.8677 23298 x 107°  8.8669
12x12 32065 x 1078 117579 32047 x 1078 11.7572  3.2050 x 1078  11.7546
Table 6. E, for Example 2 at various time levels with f; = 0.1.
t = 0.0125 t = 0.2831 t=105 t = 0.7169 t=1
B=03 34117 x 10710 34003 x 10710 3.3950 x 10710 33972 x 10710 3.3953 x 10~ 1°
B=04 34392 x 10710 33966 x 10710 3.3948 x 10710 33950 x 10710 3.3955 x 10~ 10
B=06 62334 x10710 33713 x 10710 3.3797 x 10710 3.3795 x 10710 3.3803 x 1010
B=07 68880 x 10710 32667 x 10710 3.3074 x 10710 33288 x 10710 3.3408 x 10~ 1°

In Figures 1-3, we solve Example 2 by the present method withdy =d; =1 =K = 14
and p = 1100. The exact solution, numerical solution, absolute error, and the contour plot
of absolute error for § = 0.2, 1 = 0.1 and = 0.8, B1; = 0.4 are displayed in Figure 1 and
Figure 2, respectively. For § = 0.9 and 1 = 0.5, the numerical solution and the situation
of solutions at various time levels are shown in Figure 3. We perceive from Figures 1-3
that the numerical solution agrees with the exact solution. Numerical results of the second
example show the efficiency and applicability of the present method.

upg,

0.8

t 11 T t 11 r

(a) Exact solution (b) Numerical solution

1.350E-10

3,505’010 1.181E-10

3 005—010 1.013E-10

2_50E*]10 1 8.438E-11

0
z.OOEm 6.750E-11

0
1500 5.063E-11

10
10060 3.3756-11

S0t

1688E-11

o 0.000

0.0 0.2 0.4 0.6 0.8 10
xr

(c) Absolute error

(d) Contour plot of absolute error

Figure 1. Results of Example 2 with = 0.2 and 1 = 0.1.
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Bl &
t 1 = t [ 5
(a) Exact solution (b) Numerical solution
Eq
H 1.500E-10
H 3 1314E-10
010 ° °
300 P 1.128E-10
450600 o 0 e°
° 9.412E-11
Z'OOEOIO t 7.550E-11
Ea 15080 5.688E-11
1_005010 3.825E-11
5»0054)11 1963E-11
gvoOE*oOO 1.000E-12
00 02 0.4 06 08 1.0
- x
(c) Absolute error (d) Contour plot of absolute error

Figure 2. Results of Example 2 with = 0.8 and 1 = 0.4.

0.8

0.6

0.4

02r

oV

up,

wand g,

-02

-04

-06

-08

. |
0 01 02 03 04 05 06 07 08 08 1

(b)
Figure 3. Results of Example 2 with § = 0.9 and B; = 0.5. (a) Numerical solution; (b) Numerical
solution (special symbols) and exact solution (solid line) at various time levels.

Example 3. Consider the following three-term time-fractional convection—diffusion equation with-
out an exact solution:

j 23 (x u(x,
(SDF + 523 ;5D Jux, 1) = Pl ) 2452 — Q(, ) 2420 4 F(x, 1),

with (x,t) € [0,1] x [0,1], u(x,0) = sin(7x), Ay = Ay = 1, P(x,t) = rlg‘izg) sin(7x),

Qx,t) = 1_5(;;”-_12) cos(7tx), and f(x,t) is a given function.

In the third example, 900 Gaussian nodes and the equidistant nodes are used for numeri-
cal calculations. This example is used to test the case where the exact solution is unknown.
We will use the solution on the fine grid (I = K = 16) as the exact solution. The solutions on
coarse grids are used as numerical solutions. For different 8, Tables 7 and 8 show the errors
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for Example 3 with dy =dy = [ = K, 1 = 0.2, and B, = 0.1. The calculation results show
that the numerical method in our paper has high numerical calculation accuracy.

Table 7. E; and convergence order for Example 3 with 81 = 0.2 and B, = 0.1.

p=03 B=105 g=07

I XK

E, Order E, Order E, Order
4x4 16758 x 1072 - 1.6752 x 1072 - 1.6778 x 1072 -
6x6 40572 x107* 45885  4.0565 x 107* 45883  4.0809 x 10~*  4.5828
8x8 64739 x107° 71918 64784 x 107° 71903  6.5555 x 107¢  7.1801
10x10 65814 x 1078 102819  6.6072 x 1078 102747 67627 x 1078 10.2491

Table 8. E, for Example 3 with 81 = 0.2 and B, = 0.1 at different 8.
IxK 4x4 6 X6 8x8 10 X 10

B=03 83788 x 1073 2.0286 x 10~* 3.2370 x 107 3.2907 x 10~8
B=05 8.3758 x 1073 2.0282 x 10~* 3.2392 x 10~° 3.3036 x 1078
B=07 83890 x 103 2.0404 x 10~* 3.2777 x 10~° 3.3813 x 108
=09 8.4041 x 1073 2.0540 x 10~* 3.3215 x 107° 3.2910 x 1078

Example 4. Consider the following four-term time-fractional convection—diffusion equation under
the hexagonal region:

Bj Pu(xt)  du(xt
(SDf + Ty A §DY Jul, t) = Z5l3t) — 2ux) o g ),
with u(x,0) =0, Ay = 1, Ay = 2, A3 = 0.5. The exact solution of this example is u(x,t) = (> +

t2) sin(7tx) and the corresponding forcing term f(x,t) can be obtained by the given conditions.

In the fourth example, 1330 Gaussian nodes and the second class of Chebyshev nodes
are used for numerical calculations. The region where the nodes are located is as follows
(see Figure 4):

I,
09F // : . . \
08 f /- . : : © N\
ottt/ .
06 / \
\\
= 05f - : : . : : _—
K /

\ /
04+ \ /]
03 \ /
02F \ : : : -/

0.1f . . . /

ob— N e /]
0 0.2 04 0.6 038 1
T

Figure 4. Distribution of solution area and solution nodes.

The results of the fourth example are displayed in Tables 9 and 10 and Figure 5.
For different I, K, and p values, Table 9 shows the absolute errors and corresponding
convergence orders for Example 4 with 8; = 0.3, B2 = 0.2, and B3 = 0.1. Table 10 shows
the relative errors at various time levels. We perceive from these tables that the present
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method has high computational accuracy and a fast convergence speed. For different
values, the contour plots of absolute error with I = K = 10, 81 = 0.3, 2 = 0.2,and 3 = 0.1
are displayed in Figure 5. Numerical results of this example also show the efficiency and

applicability of the present method.

Table 9. E; and convergence order for Example 4 with ; = 0.3, B = 0.2 and 3 = 0.1.

=04 B=0.6 B=08
IxXK
E, Order E, Order E, Order
4x4 8.0841 x 102 - 9.0868 x 1072 - 1.1011 x 101 -
6Xx6 25106 x 1074 4.1655 24138 x 107% 42782  2.1358 x 1074 7.7013
8x8 2.2096 x 10~° 8.2259 2.1925 x 10~° 8.1711 2.1735 x 10~° 7.9735
10x10 89602 x 1072  12.3413 86162 x 107° 124116  1.1141 x 1078  11.8163
Table 10. E, for Example 4 at various time levels with f; = 0.3, f = 0.2 and B3 = 0.1.
t = 0.0245 t = 0.2061 t=05 t = 0.7939 t=1
B=035 21999 x 1078 52842 x 1079  4.2828 x 1077  4.4389 x 1077  4.4982 x 10~
B=055 39612 x 1078 64776 x 1077  4.6389 x 1077 42809 x 1077  4.3786 x 10~
B=075 12493 x 1077 1.2395x 1078 65162 x 107° 52498 x 1077  4.9184 x 10~°
B=095 15758 x 107® 1.0574 x 1077  3.1175 x 1078  1.7277 x 1078  1.3319 x 1078
Contour plot of absolute error at 5 = 0.4 %107 Contour plot of absolute error at 5 = 0.6 %107

0.9
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0.7
0.6
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0.4
0.3
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Contour plot of absolute error at 5 = 0.7 X107
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Contour plot of absolute error at 5 = 0.9 %107
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Figure 5. Contour plots of absolute error for Example 4 at different .
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5. Conclusions

In this paper, we give a fully discrete scheme for multi-term time-fractional convection—
diffusion equations. The fully discrete scheme is constructed based on the BRICM and the
Gauss-Legendre quadrature rule. We prove the convergence of the proposed scheme. The
method proposed in this paper can achieve high computational accuracy with very few
nodes. We present some numerical examples to illustrate the effectiveness of the method. A
comparison of the obtained results with exact solutions and other existing methods reveals
that our method is more accurate and efficient for multi-term time-fractional convection—
diffusion equations.
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