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Abstract: In the real world, the competition and cooperation relationship exists in numerous systems.
For instance, the competition–cooperation structure of a biological neural network is determined
by the excitatory and inhibitory effects of neurons. The dynamic behaviors of a neural network
model with a competition–cooperation structure are studied in this article, focusing particularly on
the bifurcation and control problems. By selecting time delay as the parameter, a new sufficient
condition for Hopf bifurcation is given and the impact of the fractional order on bifurcation behavior
is determined for the network. Furthermore, a time-delay feedback controller is introduced to manage
Hopf bifurcation behaviors, and, meanwhile, the stability domain is expanded. Our findings indicate
that both fractional order and time delay play a crucial role in controlling the stability and Hopf
bifurcation of the given model. Lastly, the accuracy of our theoretical results is verified through
several numerical simulations, and the impact of control parameters on the bifurcation behavior of
the network model is discussed in detail.

Keywords: stability; Hopf bifurcation; competition–cooperation; time-delay feedback controller;
fractional order

1. Introduction

Neural networks, mathematical models inspired by biological neural networks, con-
sist of numerous interconnected neurons forming a highly nonlinear dynamic system.
They are extensively utilized in diverse fields, such as pattern recognition, data mining,
image processing, and natural language processing, to address complex problems [1–7].
The functionality of these networks largely depends on their system dynamics properties.
For instance, the associative memory and optimization computing power of famous net-
works directly rely on the global stability of network dynamics. Consequently, the dynamic
behaviors of neural networks have attracted considerable interest from scholars across vari-
ous fields and have yielded a wealth of research findings. He et al. [8] introduced a novel
full-dimensional nonlinear state feedback control strategy to optimize neural dynamics,
then established conditions for local stability and Hopf bifurcation in binary-tree-structure
and multi-delay diffusion neural network models. Lu et al. [9] constructed a new delayed
neural network with a radial ring structure and bidirectional coupling, and they studied
its stability and Hopf bifurcation dynamic behavior. Nie et al. [10] addressed the problem
of coexistence and the dynamical behaviors of multiple equilibria for competitive neural
networks.

Despite the significant interest in neural network dynamics in recent years, most
research has focused only on the cooperation aspect of neuron relationships, neglecting
the competition aspect present in neurons with negative connection weights. Competition
is a ubiquitous phenomenon in daily life, manifesting in social networks as hostile or
friendly relationships between individuals. Cooperation–competition topology networks
have a wide range of specific applications, such as financial market prediction, intelligent
optimization, and social network analysis [11–13]. Similarly, in neural networks, neurons
can regulate information transmission through both promotion and inhibition, making it
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unrealistic to consider only cooperative scenarios. Therefore, studying neural networks
with a cooperation–competition relationship [14–17] provides a more accurate reflection
of real-world conditions. Exploring how to use the cooperation–competition structure of
neural networks to study system dynamics is a worthwhile endeavor.

Fractional calculus, as an extension of classical integer-order differential and integral
calculus, has sparked great interest, due to its potential applications in various fields, such
as bioengineering, robotics, control, and medical problems. The memory and inheritance
characteristics of different materials and processes in fractional-order differential equations
make them more accurate than integer-order models when modeling real-world phenom-
ena. Therefore, fractional calculus has been integrated into neural networks. Over the past
few years, stability analysis, bifurcation and chaos, synchronization, and other properties
of fractional-order dynamic systems have received increasing attention, leading to many
significant achievements. Xu et al. [18] studied the problem of exponential bipartite syn-
chronization of fractional-order multilayer signed networks via hybrid impulsive control.
Siami [19] provided the classical secant condition for the stability analysis of cyclic inter-
connected commensurate fractional-order systems. Li et al. [20] investigated the stability
control of fractional-order memory resistive neural networks with reaction–diffusion terms.
Yin et al. [21] analyzed the discrete fractional-order LIF model and found that by adjusting
the fractional order, neurons and neural network primitives can independently respond to
weak signals at a certain frequency, enabling network primitives to achieve ordered cluster
discharge. Huang et al. [22] investigated the bifurcation problem in a class of two delayed
fractional-order neural networks with three neurons.

Among these efforts, the aim of bifurcation control is to design a controller capable
of modifying bifurcation characteristics to achieve desirable dynamic behaviors. And the
design and application of fractional-order control systems have always been highly con-
cerned [23,24]. Reference [25–28] studied the fractional-calculus observer of the Lipschitz
system and used the obtained state estimation for the final feedback control, providing
insights for the control method of fractional-order systems with time delay and laying
the foundation for fractional calculus and its application in neural networks. There have
also been several studies on the application of bifurcation control controllers in differ-
ent fields [29–33]. Cheng et al. [34] proposed a hybrid control strategy and considered
the problem of Hopf bifurcation control for a complex network model with time delays.
Lin et al. [35] studied a four-dimensional fractional-order two-gene regulatory network
with multiple delays, and they introduced a fractional-order PD controller to maintain the
stability of the network. Lu et al. [36] developed a fractional-order proportional–derivative
controller to manage the bifurcation of a delayed fractional-order predator–prey system,
effectively postponing the occurrence of Hopf bifurcation through the appropriate setting
of control parameters. Wang et al. [37] designed a new hybrid controller, applying nega-
tive feedback control and time-delay feedback control, to regulate a dual-delay internet
congestion control system accessed by a single resource. Based on the above research, it
has proven necessary to introduce topological structures into neural networks for research,
especially in the field of competition and cooperation.

Motivated by this framework, we incorporated graph theory into a multi-delay net-
work model featuring cooperation–competition interactions, as a signed graph has both
positive and negative interactions. Then, a bifurcation analysis was conducted on a delayed
fractional-order neural network with a generalized cooperation–competition topology. This
work offers several key contributions:

(1) The Caputo fractional derivative was employed, to expand the delayed neural
network model with a generalized cooperation–competition topology into a fractional
order model.

(2) The introduction of directed graphs concretizes the competitive–cooperation rela-
tionships. Unlike previous studies, we used graph connectivity to describe the relationships
between neurons where the connectivity matrix plays a crucial role.
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(3) Based on the connection relationship of the directed graph, the ranges of α and β
were determined, to provide sufficient conditions for the stability and Hopf bifurcation of
the cooperative competitive network, with time delay as the bifurcation parameter.

(4) To postpone the occurrence of Hopf bifurcation, a nonlinear delay feedback con-
troller was designed for a delayed fractional-order neural network model with a generalized
cooperation–competition topology.

The rest of the paper is organized as follows. Section II introduces Caputo fractional-
order derivatives and some fundamental theoretical concepts. A delayed fractional-order
neural network model with a generalized cooperation–competition topology is established
in Section III. In Section IV, the stability of uncontrolled systems and the existence con-
ditions of Hopf bifurcation are investigated. The dynamic behavior of the system after
implementing a time-delay feedback controller are also discussed. In Section V, several
numerical simulations are conducted to validate the previously obtained theoretical results.
The effects of fractional-order and controller parameters on system dynamics are analyzed.
Our conclusions are summarized in Section VI.

2. Preliminaries

Definition 1 ([38]). The Caputo fractional-order derivative operator is defined as follows:

c
0Dϕ

x f (x) =
1

Γ(n − ϕ)

∫ x

0
(x − s)n−ϕ−1 f (n)(s)ds

where n − 1 < ϕ < n, when k ∈ Z+. In particular, when 0 < ϕ < 1,

c
0Dϕ

x f (x) =
1

Γ(1 − ϕ)

∫ x

0
(x − s)−ϕ f ′(s)ds

Definition 2 ([38]). We give the Laplace transform of the Caputo fractional derivative, which is
defined as

L{c
0Dϕ

x f (x); s} = sϕF(s)−
k−1

∑
l=0

sϕ−l−1 f (l)(0)

where k − 1 ≤ ϕ ≤ k when k ∈ Z+. If f (l)(0) = 0, l = 1, 2, . . . , n then L{c
0Dϕ

x f (x); s} = sϕF(s).

Next, we provide some basic concepts of a signed graph: a signed graph can be
conveniently described by graphs G = (Q, V, E), where Q = {q1, q2, ...qn} represents the
node set, and where V ∈ Q × Q = {(qi, qj)|qi, qj ∈ Q} represents the edge set. The matrix
E = [Eij] ∈ RN×N is the adjacency matrix of a signed graph G, defined as follows: if
(qi, qj) ∈ V then Eij ̸= 0; if (qi, qj) /∈ V then Eij = 0. Due to the cooperation–competition
relationship between nodes, there is the following definition: if the relationship between
node qi and qj is competitive (cooperative) then Eij < 0(Eij > 0).

Lemma 1. We consider an autonomous system Dqx(t) = Bx(t); if all the eigenvalues si (i =
1, 2, . . . n) of B = (bij)nn satisfy |arg(si)| >

qπ
2 and the characteristic equation det(sI − B) = 0

has no purely imaginary roots for any τ > 0 then the zero solution of system is Lyapunov globally
asymptotically stable.

Definition 3. If a node set Q of a signed graph can be divided into two subgroups Q1 and Q2,
and if, among them, Q1 and Q2 meet Q1 ∪ Q2 = Q and Q1 ∩ Q2 = ∅, so that Eij ≥ 0 for
∀qi, qj ∈ Qk(k ∈ 1, 2) and Eij ≤ 0 for ∀qi ∈ Qk, qj ∈ Qξ(k ̸= ξ|k, ξ ∈ 1, 2) then the signed
graph is called a structural equilibrium graph.
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Definition 4. The signum function is defined as

sgn(ε) =


−1, ε < 0

0, ε = 0

1, ε > 0.

3. Model Description

Considering a complex dynamic neural network composed of N neurons, the state
equations of each node in a delayed fractional order neural network with cooperation–
competition topology can be described by the following differential equation:

Dqm xm(t) = −axm(t) + b f (xm(t)) + c f (xm(t − τm))

+ d ∑
n∈Nm

|Gmn|(sgn(Gmn)xn(t)− xm(t)), (1)

where xm(t)(m = 1, 2, . . . N) stand for the state of the mth neuron, a is the self-feedback
coefficient, b and c is a constant and represents the connection weight, d > 0 stands for the
coupling strength, f (x(·)) is the activation function, τ is the time delay at time t, Nm is the
neighbor set of node xm(t), and G = (Gmn)N×N denotes the symmetric adjacency matrix
of the signed graph, describing the cooperation–competition interaction between neurons.

Remark 1. When there is a cooperative relationship between neuron m and neuron n, then Gmn > 0.
When there is a competitive relationship between neuron m and neuron n, then Gmn < 0. Therefore,
the term Gmn(xn(t)− xm(t)) represents the information exchange between the cooperation neighbor
m and neuron n. For the convenience of analysis, we take Gmn = ±1.

Remark 2. When studying competition–cooperation relationships, the introduction of directed
graphs concretizes competition–cooperation patterns. Unlike previous studies, we used graph con-
nectivity to describe the relationships between neurons, whereas previous research used connectivity
coefficients to describe the relationships between neurons, which made the model complex and diffi-
cult to implement. The method proposed in this paper is simple and highly feasible, with adjacency
matrix G = (Gmn)N×N being a key factor.

The structure of competition–cooperation is found in practice commonly. In a real
neural network, it often contains a large number of neurons; usually, each neuron is indepen-
dent but they interact with each other, which is a manifestation of the complexity of complex
systems. Lower-dimensional neural networks are the foundation for understanding the
dynamics of large-scale networks. This article mainly discusses a fractional-order neural
network model with generalized cooperation–competition topology and four neurons.
The topology diagram is shown in Figure 1. The solid line here represents the coopera-
tive relationship between two neurons, while the dashed line represents the competitive
relationship. So, the above system becomes
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Figure 1. Topology diagram of neural networks with generalized cooperation–competition topology.



Dq1 x1(t) = −ax1(t) + b f (x1(t)) + c f (x1(t − τ1))

+ d(x2(t)− x1(t))− d(x4(t)− x1(t))

− d(x3(t)− x1(t))

Dq2 x2(t) = −ax2(t) + b f (x2(t)) + c f (x2(t − τ2))

+ d(x1(t)− x2(t))− d(x4(t)− x2(t))

− d(x3(t)− x2(t))

Dq3 x3(t) = −ax3(t) + b f (x3(t)) + c f (x3(t − τ3))

+ d(x4(t)− x3(t))− d(x1(t)− x3(t))

Dq4 x4(t) = −ax4(t) + b f (x4(t)) + c f (x4(t − τ4))

− d(x2(t)− x3(t))

+ d(x3(t)− x4(t))− d(x1(t)− x4(t))

− d(x2(t)− x4(t)).

(2)

For the convenience of analysis, we make the following assumptions:
(H1) f ∈ CR, f (0) = 0, f ′(0) ̸= 0,
(H2) τ = τ1 = τ3 = τ2 = τ4.

Remark 3. As is well known, the local stability and Hopf bifurcation threshold of a system depend
on the linear part of the system. It is necessary for us to linearize network (2) and explore its
stability conditions and bifurcation criteria hypothesis (H1). There is usually a time delay in the
information transmission between neurons, which is reflected in network (2). Assumption (H2)
actually indicates that the time delay between neurons is equal.

Remark 4. The adjacency matrix G is crucial in a cooperative–competitive topology relationship.
If the competitive and cooperative topological relationship between neurons satisfies an asymmetric
adjacency matrix then the model that satisfies the condition will be a simplified version of the model
studied in this paper.

Obviously, it is easy to see that system (2) has a unique equilibrium point, which
is defined as E(0, 0, 0, 0) , so a Taylor expansion is performed on the nonlinear function
f (x(·)) at E, and its linear term is taken.
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For this article, we mainly considered the study of the stability and Hopf bifurcation
of system (3), and we used a delay feedback controller to delay the start of Hopf bifurcation
and expand the stability domain of the system (3):

Dq1 x1(t) = −ax1(t) + b
′
x1(t) + c

′
x1(t − τ)

+ d(x2(t)− x1(t))− d(x4(t)− x1(t))

− d(x3(t)− x1(t)),

Dq2 x2(t) = −ax2(t) + b
′
x2(t) + c

′
x2(t − τ)

+ d(x1(t)− x2(t))− d(x4(t)− x2(t))

− d(x3(t)− x2(t)),

Dq3 x3(t) = −ax3(t) + b
′
x3(t) + c

′
x3(t − τ)

+ d(x4(t)− x3(t))− d(x1(t)− x3(t))

− d(x2(t)− x3(t)),

Dq4 x4(t) = −ax4(t) + b
′
x4(t) + c

′
x4(t − τ)

+ d(x3(t)− x4(t))− d(x1(t)− x4(t))

− d(x2(t)− x4(t)),

(3)

where b
′
= b f

′
(0), c

′
= c f

′
(0).

4. Main Results

For this section, we selected time delay as the bifurcation parameter, and we stud-
ied the stability and Hopf bifurcation of system (3) without control and with control,
respectively. The following are the main results.

A. Stability and Hopf bifurcation of the uncontrolled system.

In this segment, we mainly studied the dynamic behavior of (3) without control, and (3)
is equivalent to (4):

:



Dq1 x1(t) = (−a + b
′ − 3d)x1(t) + c

′
x1(t − τ) + dx2(t)

− dx3(t)− dx4(t),

Dq2 x2(t) = dx1(t) + (−a + b
′ − 3d)x2(t) + c

′
x2(t − τ)

− dx3(t)− dx4(t),

Dq3 x3(t) = −dx1(t)− dx2(t) + (−a + b
′ − 3d)x3(t)

+ c
′
x3(t − τ) + dx4(t),

Dq4 x4(t) = −dx1(t)− dx2(t) + dx3(t) + (−a + b
′ − 3d)

x4(t) + c
′
x4(t − τ).

(4)

The characteristic matrix ∆(s) of system (4),

∆(s) =


Ξ1 −d d d
−d Ξ2 d d
d d Ξ3 −d
d d −d Ξ4

 (5)

where A = −a + b
′ − 3d and Ξȷ = sqȷ − A − c

′
e−sτ(ȷ = 1, 2, 3, 4).

The characteristic equation corresponding to the above characteristic matrix is

R1(s) + R2(s)e−sτ + R3(s)e−2sτ + R4(s)e−3sτ

+ R5(s)e−4sτ = 0,
(6)
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Multiplying e2sτ on both sides of Equation (6), we can obtain

R1(s)e2sτ+R2(s)esτ+R3(s)+R4(s)e−sτ+R5(s)e−2sτ =0, (7)

where R1(s), R2(s), R3(s), R4(s), R5(s) is a function about s; the detailed information is
presented in Appendix A, abbreviated as R1, R2, R3, R4, R5.

We define RiR and RiI as the real and imaginary part of Ri(i = 1, 2, 3, 4, 5), respectively.
And we let s = iω = ω(cos π

2 + isin π
2 )(ω > 0) be the root of Equation (7), and (7) can be

transformed into (8):

(R1R + iR1I)(cos2ωτ + isin2ωτ) + (R2R + iR2I)

(cosωτ + isinωτ) + (R3R(ω) + iR3I) + (R4R + iR4I)

(cosωτ − isinωτ) + (R5R + iR5I)(cos2ωτ − isin2ωτ)=0.

(8)

Separating the real and imaginary parts, we obtain
(R1R+ R5R)cos2ωτ+ (R5I − R1I)sin2ωτ+ (R2R + R4R)

cosωτ+ (R4I − R2I)sinωτ+ R3R = 0,

(R1I+ R5I)cos2ωτ− (R5R − R1R)sin2ωτ+ (R2I + R4I)

cosωτ− (R4R − R2R)sinωτ + R3I = 0.

(9)

By introducing the trigonometric function formula sinωτ = ±
√

1 − cos2ωτ, cos2ωτ =
2cos2ωτ − 1, sin2ωτ = 2sinωτcosωτ = 2cosωτ

√
1 − cos2ωτ, the first equation of Equation

(9) can be transformed into

(R1R+ R5R)(2cos2ωτ − 1)+ (R2R+ R4R)cosωτ+ R3R =

−2(R5I− R1I)cosωτ
√

1−cos2ωτ−(R4I− R2I)
√

1−cos2ωτ.
(10)

Squaring both sides of Equation (10) makes it easy to obtain

α4cos4ωτ + α3cos3ωτ + α2cos2ωτ + α1cosωτ + α0 = 0. (11)

Let z = cosωτ; then, Equation (11) becomes

α4z4 + α3z3 + α2z2 + α1z + α0 = 0. (12)

In the following, we need to find a condition that ensures that Equation (12) has at
least one root. We define g(z) = α4z4 + α3z3 + α2z2 + α1z + α0. From the above analysis,
we can obtain the following lemma:

Lemma 2. If α0 < 0, i.e., (R1R + R5R)
2 + R2

3R − 2R3R(R1R + R5R)− (R4I − R2I)
2 < 0 then

Equation (11) has at least one positive root.

Proof. Through Equation (12), it can be seen that Equation (12) is a one-dimensional quartic
equation about z. If α0 < 0 then g(0) = α0 < 0. Also, α4 = 4(R1R + R5R)

2 + 4(R5I − R1I)
2

is a constant that is always greater than or equal to 0, and lim
z→+∞

g(z) = +∞. Therefore,

at least one real value z0 satisfies g(z0) = 0. Thus, it can be concluded that Equation (11)
has at least one root cosωτ. This complete the proof.

We assume
cosωτ = h1(ω), (13)

where h1(ω) is a continuous function about ω.
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Similarly, by applying the trigonometric function formula cos2ωτ = 1 − 2sin2ωτ,
sin2ωτ = 2sinωτ

√
1 − sin2ωτ, the first equation of Equation (9) can be transformed into

(R1R + R5R)(1 − 2sin2ωτ) + (R4I − R2I) sin ωτ + R3R =

−2(R5I−R1I) sin ωτ
√

1−sin2 ωτ−(R2R+R4R)
√

1−sin2 ωτ.
(14)

Squaring both sides of Equation (14) makes it easy to obtain

β4 sin4 ωτ + β3 sin3 ωτ + β2 sin2 ωτ + β1 sin ωτ + β0 = 0. (15)

Let ϱ = sinωτ; then, Equation (15) becomes

β4ϱ4 + β3ϱ3 + β2ϱ2 + β1ϱ + β0 = 0. (16)

In the following, we need to find a condition that ensures that Equation (16) has at
least one root. We denote m(ϱ) = β4ϱ4 + β3ϱ3 + β2ϱ2 + β1ϱ + β0. From the above analysis,
we can obtain the following lemma:

Lemma 3. If β0 < 0, i.e.,(R1R + R5R)
2 + R2

3R + 2R3R(R1R + R5R)− (R2R + R4R)
2 < 0 then

Equation (15) has at least one root.

Proof. Through Equation (16), it can be seen that Equation (16) is a one-dimensional
quartic equation about ϱ. If β0 < 0 then m(0) = β0 < 0 < 0. Also, β4 = 4(R1R + R5R)

2 +
4(R5I − R1I)

2 is a constant that is always greater than or equal to 0 and lim
ϱ→+∞

m(ϱ) = +∞.

Therefore, at least one real value ϱ0 satisfies m(ϱ0) = 0. Thus, it can be concluded that
Equation (15) has at least one root sinωτ. This complete the proof.

Remark 5. According to the theorem on the existence of roots in a quadratic equation, if α0 < 0
then g(z) = 0 must have a root z0 belonging to (0,+∞). Obviously, α0 < 0 is a sufficient condition
for ensuring system stability. Similarly, β0 < 0 is quite important.

We assume
sin ωτ = h2(ω), (17)

where h2(ω) is a continuous function about ω.
From sin2ωτ + cos2ωτ = 1, it can be seen that

h2
1(ω) + h2

2(ω) = 1. (18)

In view of cos ωτ = h1(ω), we have

τκ =
1
ω
[arccos h1(ω) + 2κπ], κ = 0, 1, 2, . . . . (19)

Suppose Equation (18) has at least one positive real root.
Set

τ0 = minτκ , κ = 0, 1, 2, . . . , ω0 = ω|τ=τ0 . (20)

In order to derive the conditions for the occurrence of the Hopf bifurcation, the follow-
ing assumptions must be given:

(H3)
D2RD1R + D2I D1I

D2
1R + D2

1I
̸= 0. (21)
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Lemma 4. Let s(τ) = ζ(τ) + iω(τ) be the root of (7) satisfying ζ(τ0) = 0, ω(τ0) = ω0. Then,
the following transversality condition holds:

Re[
ds
dτ

]|τ=τ0,ω=ω0 ̸= 0.

Proof. Taking the derivative with respect to τ on both sides of Equation (7), we have

ds
dτ

=
s(2(R5e−2sτ − R1e2sτ) + (R4e−sτ − R2esτ)

R
′
3+R

′
1e2sτ+R

′
2esτ+R

′
4e−sτ

−τ(2(R5e−2sτ−R1e2sτ)+(R4e−sτ−R2esτ))

, (22)

where R
′
i(i = 1, 2, 3, 4, 5) are the derivatives of Ri.

Then,

[
ds
dτ

]−1 =
R

′
3 + R

′
1e2sτ + R

′
2esτ + R

′
4e−sτ

s(2(R5e−2sτ − R1e2sτ) + (R4e−sτ − R2esτ))
− τ

s
. (23)

Bringing s = iω0 into (23), we have

sign{Re[
ds
dτ

]|s=iω0,τ=τ0} = sign{Re[
ds
dτ

]−1|s=iω0,τ=τ0}

Re[
ds
dτ

]−1|s=iω0,τ=τ0

= Re(
D2

D1
)|s=iω0,τ=τ0

=
D2RD1R + D2I D1I

D2
1R + D2

1I
,

(24)

where{
D1 = s(2(R5e−2sτ − R1e2sτ) + (R4e−sτ − R2esτ))

D2 = R
′
3 + R

′
1e2sτ + R

′
2esτ + R

′
4e−sτ The detailed proof process will

be presented in Appendix B.
Therefore, under the assumptions condition (H3), we have

Re[
ds
dτ

]|s=iω0,τ=τ0 ̸= 0. (25)

Thus, the transversality condition of system (2) near τ = τ0 is satisfied.

Next, we consider the dynamic behavior of the system when τ = 0. When there is no
transmission delay in system (2), Equation (7) becomes

s4 + θ1s3 + θ2s2 + θ3s + θ4 = 0, (26)

where 

θ1 = −4(A + c
′
),

θ2 = 6(A2 − d2 + 2Ac
′
+ c

′2),

θ3 = −4(A3 − 3Ad2 + 2d3 + 3A2c
′ − 3c

′
d2 + 3Ac

′2 + c
′3,

θ4 = A4 − 6A2d2 − 3d4 + 4A3c
′ − 12Ac

′
d2 + 6A2c

′2

− 6c
′2d2 + 4Ac

′3 + c
′4 + 8Ad3 + 8c

′
d3.

In order to obtain some of the main results of this article, we made the following
assumptions:

(H4) θ4 > 0; θ1θ2 > θ3; θ3(θ1θ2 − θ3) > θ2
1θ4.
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Lemma 5. Under assumption (H4) and if τ = 0 then all the characteristic roots of characteristic
Equation (26) have negative real parts. Therefore, system (2) is locally asymptotically stable without
a time delay.

Proof. It follows the assumption (H4) that all the roots si of Equation (26) satisfy |arg(si)| >
qiπ
2 (i = 1, 2, 3, 4). By Lemma 1, we can conclude, then, that all the characteristic roots of

characteristic Equation (26) have no purely imaginary roots. Therefore, without the time
delay, system (2) is locally asymptotically stable.

Based on the above discussion, we can obtain the following main results:

Theorem 1. Assuming that system (2) satisfies hypothesis (H1)–(H4) and satisfies conditions
α0 < 0, β0 < 0, the following statement holds:

(1) If (H1) and (H4) hold, system (2) is locally asymptotically stable when τ = 0.
(2) If (H1), (H2), (H3), and α0 < 0, β0 < 0 hold, system (2) is locally asymptotically stable

when τ ∈ (0, τ0), and it is unstable for τ > τ0. Then, system (2) undergoes Hopf bifurcation
when τ = τ0.

B. Stability and Hopf bifurcation of the controlled system

In recent years, various controllers have been designed to address the Hopf bifurcation
problem in controlling fractional-order systems. However, the exploration of the Hopf
bifurcation control problem for fractional-order systems with cooperative–competitive
topology is limited. To address this limitation, we introduced a time-delay feedback
controller, as shown below:

U(t) = K1(X(t − τ)− X(t)), (27)

where K1 is the feedback gain coefficient.

Remark 6. In view of the general thought on polynomial function controllers, a nonlinear delayed

feedback controller U1(t) =
3
∑

i=1
Ki(X(t− τ)−X(t))i was designed in reference [39]. We know that

the linear term K1(X(t − τ)− X(t)) can change the beginning of the Hopf bifurcation in fractional
order models, while the nonlinear terms K2(X(t − τ)− X(t))2 and K3(X(t − τ)− X(t))3 only
affect the frequency and amplitude of bifurcation oscillation, and the feedback gain coefficient K2 has
little effect on the frequency of bifurcation oscillation, while K3 has almost no effect. Therefore, we
chose to introduce a time-delay feedback controller U(t) = K1(X(t − τ)− X(t)) for bifurcation
control in this article.

We add the above controller to system (2); then, system (2) will be transformed into

Dq1 x1(t) = −ax1(t) + b f (x1(t)) + c f (x1(t − τ1))

+ d(x2(t)− x1(t))− d(x4(t)− x1(t))

− d(x3(t)− x1(t)) + K1(x1(t − τ)− x1(t)),

Dq2 x2(t) = −ax2(t) + b f (x2(t)) + c f (x2(t − τ2))

+ d(x1(t)− x2(t))− d(x4(t)− x2(t))

− d(x3(t)− x2(t)),

Dq3 x3(t) = −ax3(t) + b f (x3(t)) + c f (x3(t − τ3))

+ d(x4(t)− x3(t))− d(x1(t)− x3(t))

− d(x2(t)− x3(t)),

Dq4 x4(t) = −ax4(t) + b f (x4(t)) + c f (x4(t − τ4))

+ d(x3(t)− x4(t))− d(x1(t)− x4(t))

− d(x2(t)− x4(t)) + K1(x4(t − τ)− x4(t)).

(28)
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Remark 7. Assuming node set V = (x1, x2, x3, x4), it can be seen that node set V can be divided
into two subsets V1 and V2 from definition 3. Therefore, we only need to control one node in each
subset when adding control. For this article, we chose to add time-delay feedback controllers to the
equations of node x1 and node x4 in system (2).

By the Taylor expansion of system (28), the linearization part of system (28) at the
equilibrium point E(0, 0, 0, 0) can be obtained:

Dq1 x1(t) = (−a + b
′ − 3d − K1)x1(t) + (c

′
+ K1)

x1(t − τ) + dx2(t)− dx3(t)− dx4(t),

Dq2 x2(t) = dx1(t) + (−a + b
′ − 3d)x2(t) + c

′
x2(t − τ)

− dx3(t)− dx4(t),

Dq3 x3(t) = −dx1(t)− dx2(t) + (−a + b
′ − 3d)x3(t)

+ c
′
x3(t − τ) + dx4(t),

Dq4 x4(t) = −dx1(t)− dx2(t) + dx3(t) + (−a + b
′ − 3d

− K1)x4(t) + (c
′
+ K1)x4(t − τ).

(29)

The characteristic matrix ∆1(s) of system (29),

∆1(s) =


Λ1 −d d d
−d Ξ2 d d
d d Ξ3 −d
d d −d Λ4

 (30)

where A = −a + b
′ − 3d, B = −a + b

′ − 3d − K1, G = c
′
+ K1, and Λℓ = sqℓ − B −

Ge−sτ , (ℓ = 1, 4).
The characteristic equation corresponding to the above characteristic matrix is

η1(s) +η2(s)e−sτ+η3(s)e−2sτ+η4(s)e−3sτ+η5(s)e−4sτ =0, (31)

where η1(s), η2(s), η3(s), η4(s), η(s) is a function about s, abbreviated as η1, η2, η3, η4, η5 in
subsequent articles.

Multiplying e2sτ on both sides of Equation (31), we can obtain

η1e2sτ + η2esτ + η3 + η4e−sτ + η5e−2sτ = 0. (32)

We define ηiR and ηiI as the real and imaginary part of ηi(i = 1, 2, 3, 4, 5), respectively.
Then, Equation (32) is equivalent to

(η1R + η1I)e2sτ + (η2R + η2I)esτ + (η3R + η3I)

+ (η4R + η4I)e−sτ + (η5R + η5I)e−2sτ = 0.
(33)

We let s = iω = ω(cos π
2 + isin π

2 )(ω > 0) be the root of Equation (31), and we
substitute s = iω = ω(cos π

2 + isin π
2 ) into Equation (31) to obtain

(η1R + iη1I)(cos2ωτ + isin2ωτ) + (η2R + iη2I)(cosωτ+

isinωτ) + (η3R + iη3I) + (η4R + iη4I)(cosωτ − isinωτ)+

(η5R + iη5I)(cos2ωτ − isin2ωτ) = 0.

(34)
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Separating the real and imaginary parts, we obtain
(η1R+η5R)cos2ωτ+(η5I−η1I)sin2ωτ+(η2R+η4R)

cosωτ+(η4I−η2I)sinωτ+η3R =0,

(η1I+η5I)cos2ωτ−(η5R−η1R)sin2ωτ+(η2I+η4I)

cosωτ−(η4R−η2R)sinωτ+η3I =0.

(35)

By introducing the trigonometric function formula sinωτ = ±
√

1 − cos2ωτ, cos2ωτ =
2cos2ωτ − 1, sin2ωτ = 2sinωτcosωτ = 2cosωτ

√
1 − cos2ωτ, the first equation of Equa-

tion (35) can be transformed into

(η1R + η5R)(2cos2ωτ − 1) + (η2R + η4R)cosωτ + η3R =

−(η5I−η1I)2cosωτ
√

1−cos2ωτ−(η4I−η2I)
√

1−cos2ωτ.
(36)

Squaring both sides of Equation (36) makes it easy to obtain

γ4cos4ωτ + γ3cos3ωτ + γ2cos2ωτ + γ1cosωτ + γ0 = 0. (37)

Let χ = cosωτ; then, Equation (37) becomes

γ4χ4 + γ3χ3 + γ2χ2 + γ1χ + γ0 = 0. (38)

In the following, we need to find a condition that ensures that Equation (38) has at least
one root. We denote n(χ) = γ4χ4 + γ3χ3 + γ2χ2 + γ1χ+ γ0, noting that lim

χ→+∞
n(χ) = +∞.

From the above analysis, we can obtain the following lemma:

Lemma 6. If γ0 < 0, i.e.,(η1R + η5R)
2 + η2

3R − 2η3R(η1R + η5R) − (η4I − η2I)
2 < 0 then

Equation (38) has at least one root.

Proof. Through Equation (38), it can be seen that Equation (38) is a one-dimensional quartic
equation about χ. If γ0 < 0 then n(0) = γ0 < 0. Due to γ4 = 4(η1R + η5R)

2 + 4(η5I − η1I)
2

being a constant that is always greater than or equal 0 and lim
χ→+∞

n(χ) = +∞, at least one

real value χ0 satisfies n(χ0) = 0. Thus, it can be concluded that Equation (37) has at least
one root cosωτ. This complete the proof.

We assume
cosωτ = H1(ω), (39)

where H1(ω) is a continuous function about ω.
Similarly, by applying the trigonometric function formula cosωτ = ±

√
1 − sin2ωτ,

cos2ωτ = 1 − 2sin2ωτ, sin2ωτ = 2sinωτcosωτ = 2sinωτ
√

1 − sin2ωτ, we can obtain

(η1R + η5R)(1 − 2sin2ωτ) + (η4I − η2I) sin ωτ + η3R =

−2(η5I−η1I) sin ωτ
√

1−sin2 ωτ−(η2R+η4R)
√

1−sin2 ωτ.
(40)

Squaring both sides of Equation (40) makes it easy to obtain

ξ4 sin4 ωτ + ξ3 sin3 ωτ + ξ2 sin2 ωτ + ξ1 sin ωτ + ξ0 = 0. (41)

Let υ = sinωτ; then, Equation (41) becomes

ξ4υ4 + ξ3υ3 + ξ2υ2 + ξ1υ + ξ0 = 0. (42)

In the following, we need to find a condition that ensures that Equation (42) has at least
one root. We denote ψ(υ) = ξ4υ4 + ξ3υ3 + ξ2υ2 + ξ1υ + ξ0, noting that lim

υ→+∞
ψ(υ) = +∞.
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From the above analysis, we can obtain the following lemma:

Lemma 7. If ξ0 < 0, i.e.,((η1R + η5R)
2 + η2

3R + 2η3R(η1R + η5R) − (η2R + η4R)
2 then the

Equation (42) has at least one root.

Proof. Through Equation (42), it can be seen that Equation (42) is a one-dimensional
quartic equation about υ. If ξ0 < 0 then ψ(0) = ξ0 < 0. Also, due to ξ4 = 4(η1R(ω) +
η5R(ω))2 + 4(η5I(ω)− η1I(ω))2 being a constant that is always greater than or equal 0 and

lim
υ→+∞

ψ(υ) = +∞, at least one real value υ0 satisfies ψ(υ0) = 0. Thus, it can be concluded

that Equation (41) has at least one root sinωτ. This completes the proof.

We assume
sin ωτ = H2(ω), (43)

where H2(ω) is a continuous function about ω.
From sin2ωτ + cos2ωτ = 1, it can be seen that

H2
1(ω) + H2

2(ω) = 1. (44)

In view of cos ωτ = H1(ω), we have

τϑ =
1
ω
[arccos H1(ω) + 2ϑπ], ϑ = 0, 1, 2, . . . . (45)

We suppose that Equation (44) has at least one positive real root.
We set

τ∗ = min(τϑ), ϑ = 0, 1, 2, . . . , ω∗ = ω|τ=τ∗ . (46)

In order to derive the conditions for the occurrence of Hopf bifurcation, the following
assumptions must be given:

(H5)
E2RE1R + E2I E1I

E2
1R + E2

1I
̸= 0. (47)

Lemma 8. Let s(τ) = ς(τ) + iω(τ) be the root of (32) satisfying ς(τ∗) = 0, ω(τ∗) = ω∗. Then,
the following transversality condition holds:

Re[
ds
dτ

]|τ=τ∗ ,ω=ω∗ ̸= 0.

Proof. Taking the derivative with respect to τ on both sides of Equation (32), we have

ds
dτ

=
s(2(η5e−2sτ − η1e2sτ) + (η4e−sτ − η2esτ)

η
′
3+η

′
1e2sτ+η

′
2esτ+η

′
4e−sτ

−τ(2(η5e−2sτ−η1e2sτ)+(η4e−sτ−η2esτ))

, (48)

where η
′
i (i = 1, 2, 3, 4, 5) are the derivatives of ηi.

Because of sign{Re[ ds
dτ ]|s=iω∗ ,τ=τ∗} = sign{Re[ ds

dτ ]
−1|s=iω∗ ,τ=τ∗}

Then

[
ds
dτ

]−1=
η
′
3+η

′
1e

2sτ+η
′
2e

sτ+η
′
4e
−sτ

s(2(η5e−2sτ−η1e2sτ)+(η4e−sτ−η2esτ))
− τ

s
. (49)
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Bringing s = iω into (49), we have

Re[
ds
dτ

]−1|s=iω∗ ,τ=τ∗

= Re(
E2

E1
)|s=iω∗ ,τ=τ∗

=
E2RE1R + E2I E1I

E2
1R + E2

1I
,

(50)

where {
E1 = s(2(η5e−2sτ − η1e2sτ) + (η4e−sτ − η2esτ)),

E2 = η
′
3 + η

′
1e2sτ + η

′
2esτ + η

′
4e−sτ .

The detailed proof process will be presented in Appendix C.
Therefore, under the assumptions of condition (H5), we have

Re[
ds
dτ

]|s=iω∗ ,τ=τ∗ ̸= 0. (51)

Thus, the transversality condition of system (28) near τ = τ∗ is satisfied.

Next, we consider the dynamic behavior of the system when τ = 0. When there is no
transmission delay in system (28), Equation (32) becomes

s4 + Π1s3 + Π2s2 + Π3s + Π4 = 0, (52)

where the detailed process of Π1, Π2, Π3, Π4 will be presented in Appendix D.
In order to obtain some of the main results of this article, we made the following

assumptions:

(H6) Π4 > 0,
∣∣∣∣Π1 Π3

1 Π2

∣∣∣∣ > 0,

∣∣∣∣∣∣
Π1 Π3 0
1 Π2 Π4
0 Π1 Π3

∣∣∣∣∣∣ > 0

Lemma 9. Under assumption (H6) and if τ = 0, then all the characteristic roots of characteristic
Equation (52) have negative real parts. Therefore, without time delay, system (28) is locally
asymptotically stable.

Proof. It follows the assumption (H6) that all the roots si of Equation (52) satisfy |arg(si)| >
qiπ
2 (i = 1, 2, 3, 4). By Lemma 1, we can conclude, then, that all the characteristic roots of

characteristic Equation (52) have no purely imaginary roots. Therefore, without time delay,
system (28) is locally asymptotically stable.

Based on the above discussion, we can obtain the following main results:

Theorem 2. Assuming that system (28) satisfies hypothesis (H1), (H2), (H5), (H6) and satisfies
conditions γ0 < 0, ξ0 < 0, the following statement holds:

(1) If (H1) and (H6) hold, system (28) is locally asymptotically stable when τ = 0.
(2) If (H1), (H2), (H5), and γ0 < 0, ξ0 < 0 hold, system (28) is locally asymptotically stable

when τ ∈ (0, τ∗), and it is unstable for τ > τ∗. Then, system (28) undergoes Hopf bifurcation
when τ = τ∗.

5. Numerical Simulation

In this section, we will provide two numerical simulation examples to verify the main
results obtained in the previous section and the effectiveness of the added delay feedback
controller. In this paper, the activation function was chosen as f (x) = tanh(x) and its
selection met the assumption (H1). The parameter values of the system were set to fixed
values, as shown in Table 1:
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Table 1. Parameter values of the system.

Parameter q1 q2 q3 q4

Values 0.92 0.85 0.77 0.75

Parameter a b c d

Values 1 0.3 −1.5 0.5

Example 1. In this example, we mainly considered the following uncontrollable fractional-order
systems with cooperation–competition relationships:

D0.92x1(t) = −x1(t) + 0.3 f (x1(t))− 1.5 f (x1(t − τ1))

+ 0.5(x2(t)− x1(t))− 0.5(x4(t)− x1(t))

− 0.5(x3(t)− x1(t)),

D0.85x2(t) = −x2(t) + 0.3 f (x2(t))− 1.5 f (x2(t − τ2))

+ 0.5(x1(t)− x2(t))− 0.5(x4(t)− x2(t))

− 0.5(x3(t)− x2(t)),

D0.77x3(t) = −x3(t) + 0.3 f (x3(t))− 1.5 f (x3(t − τ3))

+ 0.5(x4(t)− x3(t))− 0.5(x1(t)− x3(t))

− 0.5(x2(t)− x3(t)),

D0.75x4(t) = −x4(t) + 0.3 f (x4(t))− 1.5 f (x4(t − τ4))

+ 0.5(x3(t)− x4(t))− 0.5(x1(t)− x4(t))

− 0.5(x2(t)− x4(t)).

(53)

Obviously, we can see that the above system had a unique equilibrium point E(0, 0, 0, 0).
We calculated τ0 = 1.8885 and ω0 = 0.8069. Figure 2 shows the waveform plots and
phase diagrams of the neurons in system (53). From Figure 2, we find that the system
approached a stable equilibrium point E(0, 0, 0, 0) when τ = 1.6 < τ0 = 1.8885, and when
τ = 1.9 > τ0 = 1.8885 the system lost stability and generated bifurcation periodic solutions
near the equilibrium point, as shown in Figures 3 and 4. Based on the previous assumptions
(H1)–(H4), the conclusion of Theorem 1 can be confirmed.

Next, we use the control variable method to discuss the effect of orders on the Hopf
bifurcation critical value of the uncontrollable system (54). When qi(i = 1, 2, 3, 4) changed,
its corresponding bifurcation point τ0 and frequency critical value ω0 could be easily de-
termined, as shown in Tables 2 and 3. At the same time, as shown in Figure 5, we plotted
the curve of the bifurcation value changing with order. From the figure, it is evident
that the bifurcation value gradually decreased and then increased as the order increased;
the bifurcation value was smallest when qi = 0.5.
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Figure 2. The waveform plots of the neurons in system (53) for τ = 1.6 < τ0 = 1.8885.
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Figure 3. The waveform plots of the neurons in system (53) for τ = 1.9 > τ0 = 1.8885.

Table 2. The bifurcation value changing with orderq1, q2.

Different Orders
Different q1 Different q2

ω0 τ0 ω0 τ0

0.1 0.8012 1.9172 0.8195 1.8735

0.2 0.7779 1.9734 0.7963 1.9269

0.3 0.7615 2.0144 0.7798 1.9663

0.4 0.7519 2.0384 0.7700 1.9894

0.5 0.7491 2.0440 0.7669 1.9954

0.6 0.7527 2.0322 0.7703 1.9844

0.7 0.7627 2.0033 0.7801 1.9572

0.8 0.7789 1.9594 0.7963 1.9150

0.9 0.8015 1.9018 0.8191 1.8590

1 0.8312 1.8312 0.8493 1.7902
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Figure 4. The phase diagrams of the neurons in system (53) for τ = 1.9 > τ0 = 1.8885.

Table 3. The bifurcation value changing with orderq3, q4.

Different Orders
Different q3 Different q4

ω0 τ0 ω0 τ0

0.1 0.8348 1.8383 0.8377 1.8316

0.2 0.8121 1.8883 0.8152 1.8808

0.3 0.7959 1.9253 0.7991 1.9172

0.4 0.7862 1.9471 0.7895 1.9386

0.5 0.7831 1.9527 0.7864 1.9441

0.6 0.7864 1.9421 0.7898 1.9334

0.7 0.7962 1.9158 0.7996 1.9072

0.8 0.8124 1.8749 0.8158 1.8666

0.9 0.8354 1.8204 0.8389 1.8123

1 0.8660 1.7530 0.8695 1.7452

Example 2. In this example, we mainly considered the following controllable fractional-order
system with cooperation–competition relationships:

D0.92x1(t) = −x1(t) + 0.3 f (x1(t))− 1.5 f (x1(t − τ1))

+ 0.5(x2(t)− x1(t))− 0.5(x4(t)− x1(t))

− 0.5(x3(t)− x1(t)) + K1(x1(t − τ)− x1(t)),

D0.85x2(t) = −x2(t) + 0.3 f (x2(t))− 1.5 f (x2(t − τ2))

+ 0.5(x1(t)− x2(t))− 0.5(x4(t)− x2(t))

− 0.5(x3(t)− x2(t)),

D0.77x3(t) = −x3(t) + 0.3 f (x3(t))− 1.5 f (x3(t − τ3))

+ 0.5(x4(t)− x3(t))− 0.5(x1(t)− x3(t))

− 0.5(x2(t)− x3(t)),

D0.75x4(t) = −x4(t) + 0.3 f (x4(t))− 1.5 f (x4(t − τ4))

+ 0.5(x3(t)− x4(t))− 0.5(x1(t)− x4(t))

− 0.5(x2(t)− x4(t)) + K1(x4(t − τ)− x4(t)).

(54)
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It is obvious that system (54) had a unique equilibrium, E∗(0, 0, 0, 0). In order to better
demonstrate the effectiveness of the bifurcation control of the delay feedback controller
proposed in this article, we adopted all the parameters and orders set in Example 1. To
compare with Figures 3 and 4, we still took τ = 1.9 and the feedback gain coefficient
k1 = 0.4. We calculated that the bifurcation point τ0 = 3.1056 and the critical frequency
ω0 = 0.4773. Figures 5 and 6 show the waveform plots and phase diagrams of the
neurons in system (54). From Figure 5, we can see that the system approached a stable
equilibrium point E∗(0, 0, 0, 0) when τ = 1.9 < τ∗ = 3.1056 and when the τ = 3.2 >
τ∗ = 3.1056 the system lost stability and generated a bifurcation periodic solution near
the equilibrium point, as shown in Figures 7 and 8. Based on the previous assumptions
(H1)− (H2), (H5)− (H6), the conclusion of Theorem 2 can be confirmed.
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Figure 5. The waveform plots of the neurons in system (54) for τ = 1.9 < τ∗ = 3.1056.

Figure 6. The phase diagrams of the neurons in system (54) for τ = 1.9 < τ∗ = 3.1056.

Remark 8. From Figure 2, it can be seen that the uncontrolled system (53) was unstable and that
periodic solutions would appear when τ = 1.9. Figure 5 shows that at τ = 1.9, the controlled
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system (54) was locally asymptotically stable at the equilibrium point. Comparing Figure 2 with
Figure 5, the results show the effectiveness of our designed delay feedback controller.
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Figure 7. The waveform plots of the neurons in system (54) for τ = 3.2 > τ∗ = 3.1056.

Figure 8. The phase diagrams of the neurons in system (54) for τ = 3.2 > τ∗ = 3.1056.

In addition, we investigated the effect of feedback gain parameter k1 on the dynamic
behavior of the system. Figures 9 and 10 show that with the increase of k1 in system (54)
the bifurcation control of the controller became more pronounced.

Remark 9. From Figure 10, it can be seen that as the feedback gain coefficient k1 increases, the Hopf
bifurcation value τ∗ of the system increases. The yellow region is the stable region of system (54),
which will undergo Hopf bifurcation on the boundary curve. When the values of k1 and τ exceed
the region, system (54) will bifurcate out of its periodic solution from the equilibrium point. This
indicates that as the feedback gain coefficient k1 increases, the start of the Hopf bifurcation can be
delayed, which broadens the stability threshold of the control system, and the bifurcation control of
the controller becomes more pronounced.
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Figure 9. (a-d) The waveform plots of different in k1 on the dynamics of system (54) with q1 = 0.92,
q2 = 0.85, q3 = 0.77, q4 = 0.75, and τ = 1.9.
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Figure 10. Curve of bifurcation value changing with k1 in system (54).

In order to further analyze the impact of changes in the fractional order of the system
on bifurcation, we provide a sensitivity analysis of the system to order. As shown in
Figure 11, q1 has stronger sensitivity to the bifurcation critical value.
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Figure 11. Sensitivity analysis of system (54).

6. Conclusions

For this article, we investigated the bifurcation control problem of fractional-order
neural networks with general cooperation–competition topology. Our research mainly
focused on the following aspects. Firstly, self-feedback delay was selected as the bifurcation
parameter to analyze the bifurcation dynamic behavior of the uncontrolled system, and a
new sufficient condition was established to ensure the stability of the network model
and the existence of Hopf bifurcation. Secondly, the influence of fractional order on
the bifurcation critical value of uncontrolled systems was discussed. Then, a time-delay
feedback controller was introduced to study the stability of its controlled system and the
existence of Hopf bifurcation. Finally, the influence of feedback gain coefficient on the
controlled system was discussed. The results indicate that when qi(i = 1, 2, 3, 4) ∈ (0, 0.5),
reducing the order will delay the start of Hopf bifurcation and broaden its stability threshold.
When qi(i = 1, 2, 3, 4) ∈ (0.5, 1), reducing the order will delay the start of Hopf bifurcation
and broaden its stability threshold. In addition, for uncontrolled systems, increasing the
feedback gain coefficient k1 results in more pronounced bifurcation control of the controller.

In future research, we will introduce more types of controllers to broaden the stability
thresholds of network models.
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Appendix A 

R1(s) = sq1+q2+q3+q4 − A(sq1+q2+q3 + sq1+q2+q4

+ sq2+q3+q4 + sq1+q3+q4) + (A2 − d2)(sq1+q2

+ sq1+q3 + sq1+q4 + sq2+q3 + sq2+q4 + sq4+q3)

+ (−A3 + 3Ad2 − 2d2)(sq1 + sq4 + sq2 + sq3)

+ A4 − 6A2d2 + 8Ad3 − 3d4,

R2(s) = −c
′
(sq1+q2+q3 + sq1+q2+q4 + sq2+q3+q4

+ sq1+q3+q4) + 2Ac
′
(sq1+q2 + sq1+q3 + sq1+q4

+ sq2+q3 + sq2+q4 + sq4+q3)

+ (−3A2c
′
+ 3c

′
d2)(sq1 + sq4 + sq2 + sq3)

+ 4A3c
′ − 12Ac

′
d2 + 8c

′
d3,

R3(s) = c
′2(sq1+q2 + sq1+q3 + sq1+q4 + sq2+q3

+ sq2+q4 + sq4+q3)− 3Ac
′2(sq1 + sq4 + sq2 + sq3)

+ 6A2c
′2 − 6c

′2d2,

R4(s) = −c
′3(sq1 + sq4 + sq2 + sq3) + 4Ac

′3,

R5(s) = c
′4.

Appendix B

Re[
ds
dτ

]−1|s=iω0,τ=τ0

=Re(
D2(s)
D1(s)

)|s=iω0,τ=τ0

=Re(
D2(s)
D1(s)

)|s=iω0,τ=τ0

=Re(
D2R + iD2I
D1R + iD1I

)|s=iω0,τ=τ0

=Re(
(D2R + iD2I)(D1R − iD1I)

(D1R + iD1I)(D1R − iD1I)
)|s=iω0,τ=τ0

=
D2RD1R + D2I D1I

D2
1R + D2

1I
.

(A1)
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Appendix C

Re[
ds
dτ

]−1|s=iω∗ ,τ=τ∗

= Re(
η
′
3+η

′
1e2sτ+η

′
2esτ+η

′
4e−sτ

s(2(η5e−2sτ−η1e2sτ)+(η4e−sτ−η2esτ))
)|s=iω∗ ,τ=τ∗

= Re(
E2

E1
)|s=iω∗ ,τ=τ∗

= Re(
E2R + iE2I
E1R + iE1I

)|s=iω∗ ,τ=τ∗

= Re(
(E2R + iE2I)(E1R − iE1I)

(E1R + iE1I)(E1R − iE1I)
)|s=iω∗ ,τ=τ∗

=
E2RE1R + E2I E1I

E2
1R + E2

1I
,

EiR and EiI as the real and imaginary part of Ei(i = 1, 2), respectively.

Appendix D 

Π1 = −2(A + c
′
+ B + G),

Π2 = A2 + 4AB + B2 + 2Ac
′
+ 4Bc

′
+ c

′2

− 6d2 + 4AG + 2BG + 4c
′
G + G2,

Π3 = −2A2B − 2AB2 − 4ABc
′ − 2B2

− 2Bc
′2 + 6Ad2 + 6Bd2 + 6c

′
d2 − 8d3

− 2A2G − 4ABG − 4Ac
′
G − 4Bc

′
G

− 2c
′2G + 6d2G − 2AG2 − 2c

′
G2,

Π4 = A2B2 + 2AB2c
′
+ B2c

′2 − A2d2

− 4ABd2 − B2d2 − 2Ac
′
d2 − 4Bc

′
d2 − c

′2d2

+ 4(A + B + G + c
′
)d3 + 2BG(A2 + c

′2 − d2)

− 3d4 + 4AG(Bc
′ − d2)− 4c

′
d2G + A2G2

+ 2AG2c
′
+ (c

′2 − d2)G2.
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