Solution for Time-Fractional Coupled Burgers Equations by Generalized-Laplace Transform Methods
Abstract
:1. Introduction
- (1)
- (GLT) in place of “Generalized-Laplace transform”.
- (2)
- (DGLT) in place of “double Generalized-Laplace transform”.
- (3)
- (IDGLT) in place of “inverse double Generalized-Laplace transform”.
- (4)
- (TGLT) in place of “triple Generalized-Laplace transform”.
- (5)
- (ITGLT) in place of “inverse triple Generalized-Laplace transform”.
- (6)
- (DM) “decomposition method”.
- (7)
- (DGLTDM) in place of “double Generalized-Laplace transform decomposition method”.
- (8)
- (TGLTDM) in place of “triple Generalized-Laplace transform decomposition method”.
- If we set , and , we obtain triple Laplace transform:
- If we set , and substituting s by , we obtain double Laplace– Yang Transform:
- At and substituting by , respectively, we obtain a triple Sumudu Transform:
2. Double Generalized-Laplace Transform Decomposition Method and Time-Fractional Burgers Equation (DGLTDM)
- Step 2: Multiplying Equation (30) by , and using the inverse of (IDGLT), we acquire
- Convergence:
- The second problem:
- Step 2: The (DGLTDM) defined the solution of Equation (39) according to the following forms:
3. Triple Generalized-Laplace Transform Decomposition Method and Fractional Coupled Burgers Equation (TGLTDM)
- Step 2: The (TGLTDM) defined the solution of the time-space fractional coupled Burgers equation in the following forms:We can obtain Adomian’s polynomials , and , respectively, as follows:
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bateman, H. Some recent researches on the motion of fluids. Mon. Weather Rev. 1915, 43, 163–170. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory of turbulence. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1948; Volume 1, pp. 171–199. [Google Scholar]
- Kaya, D. An explicit solution of coupled viscous Burgers’ equation by the decomposition method. Int. J. Math. Math. Sci. 2001, 27, 675–680. [Google Scholar] [CrossRef]
- Dehghan, M.; Hamidi, A.; Shakourifar, M. The solution of coupled Burgers’ equations using Adomian Padé technique. Appl. Math. Comput. 2007, 189, 1034–1047. [Google Scholar] [CrossRef]
- Biazar, J.; Ghazvini, H. Exact solution for nonlinear Burgers’ equation by homotopy perturbation method. Numer. Methods Partial. Differ. Equ. 2009, 25, 833–842. [Google Scholar] [CrossRef]
- Saad, K.; Al-Sharif, E.H. Analytical study for time and time-space fractional Burgers’ equation. Adv. Differ. Equ. 2017, 2017, 300. [Google Scholar] [CrossRef]
- Singh, G.; Singh, I.; AlDerea, A.M.; Alanzi, A.M.; Khalifa, H.A.E.-W. Solutions of (2 + 1)-D & (3 + 1)-D Burgers Equations by New Laplace Variational Iteration Technique. Axioms 2023, 12, 647. [Google Scholar] [CrossRef]
- Prakash, A.; Verma, V.; Kumar, D.; Singh, J. Analytic study for fractional coupled Burger’s equations via Sumudu transform method. Nonlinear Eng. 2018, 7, 323–332. [Google Scholar] [CrossRef]
- Suleman, M.; Wu, Q.; Abbas, G. Approximate analytic solution of (2 + 1) dimensional coupled differential Burger’s equation using Elzaki homotopy perturbation method. Alex. Eng. J. 2016, 55, 1817–1826. [Google Scholar] [CrossRef]
- Khan, M. A novel solution technique for two-dimensional Burger’s equation. Alex. Eng. J. 2014, 53, 485–490. [Google Scholar] [CrossRef]
- Alhefthi, R.K.; Eltayeb, H. The Solution of Coupled Burgers’ Equation by G-Laplace Transform. Symmetry 2023, 15, 1764. [Google Scholar] [CrossRef]
- Aminikhah, H. An analytical approximation for coupled viscous Burgers’ equation. Appl. Math. Model. 2013, 37, 5979–5983. [Google Scholar] [CrossRef]
- Khater, A.H.; Temsah, R.S.; Hassan, M.M. A Chebyshev spectral collocation method for solving Burgers-type equations. J. Comput. Appl. Math. 2008, 222, 333–350. [Google Scholar] [CrossRef]
- Mittal, R.C.; Arora, G. Numerical solution of the coupled viscous Burgers’ equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1304–1313. [Google Scholar] [CrossRef]
- Ghandehari, M.A.M.; Ranjbar, M. A numerical method for solving a fractional partial differential equation through converting it into an NLP problem. Comput. Math. Appl. 2013, 65, 975–982. [Google Scholar] [CrossRef]
- Bayrak, M.; Demir, A. A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 2018, 336, 215–230. [Google Scholar]
- Kim, H. The intrinsic structure and properties of Laplace-typed integral transforms. Math. Probl. Eng. 2017, 2017, 1762729. [Google Scholar] [CrossRef]
- Eltayeb, H.; Mesloub, S. The New G-Double-Laplace Transforms and One-Dimensional Coupled Sine-Gordon Equations. Axioms 2024, 13, 385. [Google Scholar] [CrossRef]
- Eltayeb, H. Analytic Solution of the Time-Fractional Partial Differential Equation Using a Multi-G-Laplace Transform Method. Fractal Fract. 2024, 8, 435. [Google Scholar] [CrossRef]
- Nee, J.; Duan, J. Limit set of trajectories of the coupled viscous Burgers’ equations. Appl. Math. Lett. 1998, 11, 57–61. [Google Scholar] [CrossRef]
- Eltayeb, H.; Mesloub, S.; Kılıcman, A. A note on a singular coupled Burgers equation and double Laplace transform method. J. Nonlinear Sci. Appl. 2018, 11, 635–643. [Google Scholar] [CrossRef]
- Eltayeb, H. Application of double Sumudu-generalized Laplace decomposition method and two-dimensional time-fractional coupled Burger’s equation. Bound. Value Probl. 2024, 2024, 48. [Google Scholar] [CrossRef]
t | x | Exact | ||||
---|---|---|---|---|---|---|
0.00 | 1.2832 | 1.25528 | 1.23157 | 1.2214 | 1.2214 | |
0.25 | 1.64767 | 1.61181 | 1.58137 | 1.56831 | 1.56831 | |
0.1 | 0.50 | 2.11564 | 2.06961 | 2.03052 | 2.01375 | 2.01375 |
0.75 | 2.71654 | 2.65743 | 2.60724 | 2.58571 | 2.58571 | |
1.00 | 3.48811 | 3.41221 | 3.34776 | 3.32011 | 3.320112 |
t | x | Exact | ||||
---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | |
0.25 | 0.204328 | 0.213246 | 0.220639 | 0.223818 | 0.22386 | |
0.1 | 0.50 | 0.395952 | 0.413233 | 0.42756 | 0.43372 | 0.433802 |
0.75 | 0.562957 | 0.587528 | 0.607897 | 0.616656 | 0.616772 | |
1.00 | 0.694961 | 0.725293 | 0.750438 | 0.761251 | 0.761394 |
t | x | Exact | ||||
---|---|---|---|---|---|---|
0.00 | −0.0509492 | −0.0200888 | −0.00492833 | −0.0008333 | 0.00 | |
0.25 | 0.0000985564 | 0.0335443 | 0.0507572 | 0.0557083 | 0.0565523 | |
0.1 | 0.50 | 0.153242 | 0.1944443 | 0.217814 | 0.225333 | 0.226209 |
0.75 | 0.408481 | 0.462609 | 0.496241 | 0.508042 | 0.508971 | |
1.00 | 0.765815 | 0.838041 | 0.88604 | 0.903833 | 0.904837 |
y | t | x | Exact | ||||
---|---|---|---|---|---|---|---|
0.00 | −0.0118283 | −0.0114159 | −0.0110883 | −0.0109517 | −0.0110517 | ||
0.25 | 0.0620988 | 0.0599333 | 0.0582137 | 0.0574963 | 0.0580215 | ||
0.10 | 0.10 | 0.50 | 0.28388 | 0.273981 | 0.26612 | 0.26284 | 0.265241 |
0.75 | 0.653516 | 0.630727 | 0.61263 | 0.60508 | 0.610607 | ||
1.00 | 1.17101 | 1.13017 | 1.09774 | 1.08422 | 1.09412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayeb, H.; Mesloub, S. Solution for Time-Fractional Coupled Burgers Equations by Generalized-Laplace Transform Methods. Fractal Fract. 2024, 8, 692. https://doi.org/10.3390/fractalfract8120692
Eltayeb H, Mesloub S. Solution for Time-Fractional Coupled Burgers Equations by Generalized-Laplace Transform Methods. Fractal and Fractional. 2024; 8(12):692. https://doi.org/10.3390/fractalfract8120692
Chicago/Turabian StyleEltayeb, Hassan, and Said Mesloub. 2024. "Solution for Time-Fractional Coupled Burgers Equations by Generalized-Laplace Transform Methods" Fractal and Fractional 8, no. 12: 692. https://doi.org/10.3390/fractalfract8120692
APA StyleEltayeb, H., & Mesloub, S. (2024). Solution for Time-Fractional Coupled Burgers Equations by Generalized-Laplace Transform Methods. Fractal and Fractional, 8(12), 692. https://doi.org/10.3390/fractalfract8120692