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Abstract: In this work, nonlinear time-fractional coupled Burgers equations are solved utilizing a
computational method, which is called the double and triple generalized-Laplace transform and
decomposition method. We discuss the proof of triple generalized-Laplace transform for a Caputo
fractional derivative. We have given four examples to show the precision and adequacy of the
suggested approach. The results show that this method is easy and accurate when compared to the A
domain decomposition method (ADM), homotopy perturbation method (HPM), and generalized
differential transform method (GDTM). Finally, we have sketched the graphics for all these examples.
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1. Introduction

Generalized classical calculus is a fractional calculus. Several research areas such as
science and engineering have used fractional differential equations to solve these problems.
For instance, Burgers equation is widely utilized to explain numerous physical problems,
namely, unidirectional propagation of weakly nonlinear acoustic waves, shock waves in the
viscous medium, flow systems, and electromagnetic waves, etc. The time-fractional Burgers
equation is a type of diffusion convection equation. The Burgers equation was presented
by the author of [1] in 1915 and subsequently discussed by the researcher in [2]. Many
studies have been conducted by mathematicians to find out the numerical or analytical
solution of time-space fractional Burgers equations such as, e.g., [3,4]; the authors in [4],
implemented the A domian decomposition method and Pade approximation technique,
and the homotopy perturbation method was utilized to obtain exact solutions for nonlinear
Burgers equation [5]. The space-time-fractional Burgers equation for various initial condi-
tions were solved by the variational iteration method (VIM) in [6,7]. The time-fractional
coupled Burgers equations were discussed using the homotopy perturbation Sumudu
transform method (HPSTM) in [8]. The authors in [9] studied a series solution for two-
dimensional Burgers equations, employing the homotopy perturbation method. The author
in [10] investigated the solutions of the two-dimensional nonlinear Burgers differential
equations employing the Laplace decomposition method (LDM). The authors in [11] used
the G-Laplace transform method to find the exact solution of the Burgers equations. In [12],
the approximate solutions of the coupled Burgers equations were obtained by applying the
homotopy perturbation method and Laplace transform. The authors in [13,14] obtained
the approximate solution of the viscous coupled Burgers equation using cubic and cubic
B-spline collocation method.

This study aims to introduce a new technique named the double and triple generalized-
Laplace transform decomposition method. This technique is used to obtain the solution of
fractional coupled Burgers equation and to the assist mathematicians in solving numerous
equations related to physics and engineering in the future.
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Remarks: Through this study, we use the following abbreviations:

(1) (GLT)in place of “Generalized-Laplace transform”.

(2) (DGLT) in place of “double Generalized-Laplace transform”.

(3) (IDGLT) in place of “inverse double Generalized-Laplace transform”.

(4) (TGLT) in place of “triple Generalized-Laplace transform”.

(5) (ITGLT) in place of “inverse triple Generalized-Laplace transform”.

(6) (DM) “decomposition method”.

(7) (DGLTDM) in place of “double Generalized-Laplace transform decomposition method”.
(

)

TGLTDM) in place of “triple Generalized-Laplace transform decomposition method”.

Now, we recall the following definitions which are useful in this work.

Definition 1. The fractional derivative of f(x, t) in the Caputo sense is denoted by

—o—1f(x,
DY £) — ﬁfé(t—T)le%dr,k—1<a<k,
Sk , fork=ceN

For more details, see [15].

Definition 2 ([16]). The partial fractional integrals and caputo derivatives of a function
f(x t), where (x,t) € RT x RT are granted by

n

D (1) = g o = AP S G M, )

wheren —1 < B <n,0<p.

Definition 3 ([17]). Let f(t) be integrable, for all t > 0. The (GLT) Gy of the function f(t) is given by
F(s) = Galf) =" [ f(t)e™*at, @
0

forse Canda € Z.
The following symbols are using in this work:
G2 = GxGi, G3 = GGGy, G;' =G, 'G,!, G3'=G,'G Gy

Definition 4 ([18]). The (DGLT) of the function f(x,t) is defined as

Galf ()] = Flp,s) = ps® [ [ h 5 tay, ®

where o € 7, p,s € C and the symbol Gy indicate transform of x and t, respectively, and the
function F(p,s) is denoted by the (DGLT) of the f(x,t).

Definition 5 ([18]). The (IDGLT) is given by

B 1 T+Hico pgtico 11
G (F(ps) = fGut) = —— [ [ e e sydsdp,
(271’1) T—ico Jg—ico

where G, Lindicates (IDGLT).
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Definition 6 ([19]). The (TGLT) of the function f(x,, t) is defined as

Glf (ot ) = Fpas) = prgs [ 7 [Te i oty @

where x € 7, p,q,s € C and the symbol G3 indicate the transform of x, vy and t, respectively, and
the function F(p, q,s) is denoted as the (TGLT) of the f(x, 7, t)-

Definition 7 ([19]). The inverse (TGLT)

T+ico  pgtico  pdtico

1 1
X+5’)/+§t1:(

5 (F(p.q.s) p,q,s)dsdqdp,

T—ico Jg—ico Jiy—

where G5 1 denotes (ITGLT).

The advantage of the (TGLT) is that it is useful to produce some transformations from
Definition 6 as follows:

1

1. If weseta =0,5 = %,q: g

and p = %, we obtain triple Laplace transform:

o0 00 0

LyLyLy(f(x, 7. t)) = F(p.q,s) / / / Flx, v, e P+ drdaay, (5)
000

2. Ifweseta =0, o= % S0 = % and substituting s by @, we obtain double Laplace—
Yang Transform:

00 00 O

LLym(fGor) = Fo.p.@) = [ [ [founne e Saaray, 6
000
3. Ata = —1 and substituting p,q,s by u, v, i, respectively, we obtain a triple Sumudu
Transform:
SysuSi(F00 D) = Fluop) = o [ [ [ oo e W Haagar. @)
000

Theorem 1. If (DGLT) of the function f(x,t) is given by Go[f(x,t)] = F(p, s), then (DGLT)
9 Xt Pf(ut) ;
of and are given by

o12
e [af(a)f ﬂ = H22) ey, (8)
s

" (0] _ Fns) (1.0)

an/t _ F p,s a1 _ aaF p,O
Gz[ 2 ]— 2 s**F(p,0) —s 5 )

Proof. By using definition of (DGLT) for of gf’t) , we have
GxGr| L | = e ’5[ [t ]dx, (10)
0 0
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and the integral inside the bracket is calculated as follows:

s"‘]oe_éaf(a)g’t)dt = s [e bf()(, )ro SSZe_éf(X,t)dt

0
= LE(p 0 - s (00) an

By substituting Equation (11) into Equation (10), we have

Z[af(at )} = P"‘O/ooe_)’g [1F(P/f) —S"‘f()c,O)]dt,

and thus,
G, {af(a)g’t)] = %F(p,s) —s"F(p,0). (12)

In a similar way, one can easily see that

2 S
G

O

Theorem 2. The (DGLT) of the Caputo fractional derivative Df f(x, t) is denoted by

F(p.s) il 1f(x,0)
GxGi [fo(X/t)} = fﬁ —s" ]; B~k Gy [ ailcc—l (13)
wheren —1 < B <n,0<p.

Proof. Utilizing Equation (3), we obtain

Gth[fo(X/t)} = PS/ / e 7 sDPf(x, dtdy
= pS/ |eh 5ﬁ)/0t(t—A)”ﬁ1WdAdth

n
- / / s / A)”—H%dtd;@x (14)
Assuming r = t — A in Equation (22), we gain
_x " f(x, A [ g 1
GxGi[DEf(x )] = / / J;An Vo bl sdr]d/\d)(. (15)

The gamma function is defined by the integral inside the bracket as

/oo rn—ﬁ—le—gdr _ F(T’l — :B)
0

("

@ =

Hence, Equation (23) becomes

Gth[fo(x,t)} = / / angfn’ -3 r<(” ;_[? dAdy. (16)

=
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By rewriting Equation (24), we obtain

GG [Dff(n] = o ﬁ[““ o [Ted [T O —?dAdx] (17)

We define the integral inside the bracket in the following form:

" f(x, t "Ff(x,\) _a
GXGt|: .g(t)’f ):| _ ptx+lszx+l/0 / ,g)isl éd)\d)(
S nooq F1f(x,0
_ Lfn ) ey Sn_kGX[ atfk(—?i )]. (18)
k=1

By substituting Equation (26) into Equation (25), we obtain

B _E(ps) .y 1 O f(x,0)
Gx Gt {th(?(/t)} == _° k:ZlSﬁkaX a1 |

The proof is complete. [

One can easily obtain the (GDLT) of the functions Clio ) and P lt) from Theorem 2

otP or28
as follows:
PFf(xt) F(p,s)  aps1
— M 7 = _— <
2P f(x, t F(p,s o a—
Ga { % } - (S’iﬁ ) _ -241F(p,0) — v 22E, (5, 0),
0 < B<1. (20)

Definition 8. The (TGLT) of the partial derivative % is denoted by

"w(x, 7.t F(p.qs = 1
G3{ 7 )}_ (p.q )—S“ZSHGz

ot" gn = otk—1

o w(x, 7, o)]

Theorem 3. The (TGLT) of th Caputo fractional derivative Df w(x,,t) is given by
p F(pas)  ay 1 o |9 @k 1,0)
Gs [D W ﬂ —#° k:zl sh—k G2 '

otk—1 @)

wheren —1 < B <n,0<p.
Proof. Using the definition of (TGLT) for Df w(x,v,t), we have
Gs {DfW()c, 4 t)}
= P”‘q“S“/ / / e 71 DPw(x, v, t)dt dydy
o Jo Jo

_ K00 R Rl e *&*1*5 1 /t _ n—ﬁ—lanw(Xr’Y/)\)
= pqs/ / / e v 7F(n—ﬁ) O(t A) B VI dAdt dydy

- / / / ****** / (t—A)F- 1%mwm. (22)
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By putting r = t — A in Equation (22), we obtain
Gs3 [Dﬁw()(, 'y,t)}

- L

The gamma function is defined by the integral inside the bracket as follows:

/oo Bl Sdr = Ln—p) ’B)
0

("

‘m><

(X/’)/r/\) —= /oo n—p—1,-1
/0 — ¢ ; r e~ sdr|dAdydy. (23)

@ =

Hence, Equation (23) becomes

Gs [Dfew(x,7,1)]
paqﬂcszx /.oo/oo 7%7% /oo an(U(X,’)’,/\) A F(n—ﬁ)
— s dAdvydy. 24
I'(n—pB)Jo Jo ¢ 0 oA ¢ (1)"% rax (24)
S
By rewriting Equation (24), one can obtain
Ga [ Dfw (7, 1)]
R IR A A fu/‘”w—%
s [pqs/o /0 e P a A A e sdAdydyx|. (25)

The integral inside the bracket in the above equation is defined by

a"w(x, v, 1) ,2,(,1 © "w(x,y,A) _a
Gs{ — | = p'q / / [ “/O i e sdA|dvydyx
F(p,q,s) Lol > lw(x,7,0)
—a g k§_1 R GGy pyva . (26)

By replacing Equation (26) into Equation (25), we have

F(p.q,s) =1
Gg[wa} IL*S“ZS‘Bika

k—1
sP = ot

*w(x, v, 0)] .

The proof is complete. [

2. Double Generalized-Laplace Transform Decomposition Method and Time-Fractional
Burgers Equation (DGLTDM)

Here, we explain the solutions to two problems by utilizing the (DGLTDM).
In this work, we deal with the time-fractional Burgers equation containing the initial
condition granted by

wa—wm—l—nwwx—l-C(wZ)X = h(xt),
w(x,0) = mh(x). (27)

The first problem: To show the basic idea of (DGLTDM), we consider Equation (27) can be
written in the following form:
Dfw—Lw(x,t) + No(x,t) = f(xt),
wix,0) = fAk) (28)
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Here, L and N are linear and nonlinear differential operators, respectively. The
following steps are needed to solve Equation (28).
Step 1: Using the (DGLT) on both sides of Equation (28), it becomes :

Gy Dfw| — GolLw(x, 1) — Nw(x,1)] = Golf (x, 1)) (29)
Employing Theorem 1 and Equation (19), in the above equation, we obtain
w(p,s _
P _ e ba0(p,0) 4 GalLaw(i ) - Ne(x ) + Galf o). (0)
Step 2: Multiplying Equation (30) by s?, and using the inverse of (IDGLT), we acquire
wxt) = AG0+ Gy [FIGlLw(n ) — No(x )]
+G;1[sﬁF(p,s)]. (31)
Step 3: The solution of Equation (28) is given by infinite series as follows:

w(x,t) =Y wnlxt). (32)
n=0

By replacing Equation (32) into Equation (31), we obtain
Y@l =fily)  +G;[sPE(p,s)]
n=0

P le L(i wn(x,t)> — i an(x,t)]H. (33)
n=0

n=0
Step 4: Now, by using Equation (33), we derive the following:

+G;!

wo = fi(x)+ Gy [PF(p.s)], (34)
and
w = Gyt [SB[GZ[LWO - Nwo(X/f)H]
w, = Gz’l[sﬁ[Gz[Lwl —Nw1(x,t)]]}
w3z = Gz_1 [Sﬁ[Gz[LCUZ - NWZ(Xrt”]}
wn = G;'[sP[Gallewy 1 — Neoy 1 (x, D)]]] (35)

The solution of Equation (28) is obtained by substituting Equation (35) into Equation (32)
as follows:

w(x t) = ilﬂ wn(x, t) = wo(x, t) + w1 (x,t) +wa(x, t) + ... + wn(x, t).

We assume the inverse of Equations (34) and (35) exists.

Convergence:
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Theorem 4. Let B be a Banach space. The series solution of Equation (35) is convergent if there
exists k, 0 < k < 1, such that ||wn(x,t)|| < k||wn—1(x,t)| foralln € N.

Proof. By defining sequence S, of partial sums of the series of Equation (35) as follows:

So = wol(x,t)

S1 = wolx,t)+wilxt)

52 = Wy (Xr t) + w1 (X/ t) +ws (X; t)

Sn = wolx,t)+wi(xt) +wa(x,t) + .. +wn(x t),

we show that {S,},” ; is a Cauchy sequence in Banach space B. Therefore, we consider

ISn1=Sull = Nlwnir () < kllwn(x Ol < Kllewn—1(x, DI < ...
< K" Hlwo(x, -

By using the above triangle inequality for n > m, we have

[Sn = Smll = [1(Sn = Sp—1) + (Sn—1 = Sn—2) + - + (Sm+1 — Sw) I,
S HS" - Snle + Hsnfl - Sn—ZH Tt ||Sm+1 - Sm”/
< K'lwo(x, Bl + K" Hlwo(x, Ol + - + K™ lwo (x, 1),

1 knm
o (1]{) llcwo(x, t)]]-

From 0 < k < 1, we see that 1 — k"~ < 1; therefore,

km+1
ot Dl

1Sn = Smll <

Since ||wo(x, t)|| is bounded, ||Sy — Sm|| — 0atn, m — oo. Therefore, the sequence {S, },_,
is a Cauchy sequence in the Banach space B, and the series solution of Equation (35) con-
verges. [J

To illustrate this technique for time-fractional Burgers equations, we offer the following
example:

Example 1. Consider the following time-fractional Burgers equation contains the initial condition

B 2
Diw = wyy+2ww, — (W),
t XX X ( )X
w(x,0) = sin(yx), 0< B< 1. (36)

By using the previous steps, we obtain

Wy = Sin(X)r (37)
and
Wys1 = Gyt [sffc;2 (W +2An — Bn]]. (38)
The Adomain polynomials of the nonlinear term F(u) can be estimated by the following
expression:

1 4" LI
Qn:ad)\n F Z)\ui , n=2012---,
i=0 A=0
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where Adomian polynomials Q,, of the nonliear term F(u) are defined by

Qo = F(up),
Q1 = w1 F'(u),
1
Q = uF'(up) + iulFN(uO)/
1

Qs = uzF'(up) +uuF " (ug) + QM?F " (ug),

1 1
Q4 — u4F’(u0) + <2!u%—|—u1u3>13”(u0) +Eu%u2[_~///(u0>

1
+EM%F ) (uo).

Now, it is easy to generate A, and B,, from the above equation, as follows:

Ay = wowoy,

Al = wowiy + wiwoy,

Ay = wowry + wiwiy + waoy,

and
2

By = (wo)y
Bl = 2600(,(]1)( + 2(,01600)(,
B, = 2600(02X + Zwlwlx + 2602(4]0)(.

According to the GDLTDM, we obtain the following:
wp = Ggl [S‘BGZ [onX +2A0 — B()H
= G;![sPGy[—sin(x)]]
a+2
- _gt p gtp+1
2 1+ pZ

b
TETD sin(x).

7

At n =1, we have

wy = Gl[sﬁGz[tﬁsin(X)”
2 r(B+1)
[ P g
= o[
2h
= Tty Sl

In a similar way, we obtain

x+2
— gl P arspa
2 [14p2

£h
TTEEED sin(x).

7
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The series solution of Equation (36) can be found in the following form:

: b P2 BF
w(x,t) =sin(x) — m sin(x) + m sin(x) — m sin(x) + - - -

By putting B =1, the exact solution of Equation (36) is given by the following:

w(x, t) = sin(x)e".

Figure 1: We demonstrate the comparison between the exact solution and the obtained
numerical solution for Equation (36). At = 1and = 1, we obtained the accurate solution.
By taking various values of j3, for instance, (8 = 0.75, § = 0.85 and § = 0.95), we obtained
the estimate solutions.

Figure 2: We demonstrate the result of the functions w(,t) in three-dimensional

Space.
t
0.8
=1
Exact
0.6 B=0.95
p=0.85
B=0.75
0.4
0.2
- - - - L x Error
0.2 0.4 0.6 0.8 1.0

Figure 1. Comparison between exact and numerical solutions.

B Exact
y o =1
/ W 5=0295
10 L I B=085
0.0 H B=0.75

Figure 2. The surface of the function w(x, t).

Table 1 Shows the numerical solution for different values of B for the function w(x, t).
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Table 1. Comparison between exact and approximation solutions.

t X B =0.75 B = 0.85 B =0.95 p=1 Exact
0.00 1.2832 1.25528 1.23157 1.2214 1.2214
0.25 1.64767 1.61181 1.58137 1.56831 1.56831
0.1 0.50 2.11564 2.06961 2.03052 2.01375 2.01375
0.75 2.71654 2.65743 2.60724 2.58571 2.58571
1.00 3.48811 3.41221 3.34776 3.32011 3.320112

The second problem:
To illustrate the essential idea of this method, we consider the following system of
time-fractional coupled Burgers equation with the initial conditions of the form:

Dfu— gy +muity +{(uw), = f(xt),
wa—wxx+17wwx+y(uw)x = h(xt), (39)
and
u(x,0) = fi(x), w(x,0)=hi(x) (40)

fort > 0. Here, f(x,t), h(x,t), f1(x) and hy(x) are given functions, 7 is a real constant, {
and y are arbitrary constants depending on the system parameters such as Peclet number,
Stokes velocity of particles due to gravity and Brownian diffusivity [20]. The next steps are
needed to solve Equation (39).

Step 1: Taking the (DGLT) on both sides of Equation (39) and single generalized-Laplace
transform for Equation (40) and multiplying the outcome by s#, we obtain

U(p,s) = s“E(p) + sPE(p,s) + PG [y — i — L (ueo), |, (41)

and
W(p,s) = s*" Hy(p) +sPH(p,s) +sPG, [“’xx — wwy — y(uw)x}. (42)

where U(p,s) and W(p,s) are double generalized-Laplace transform of u(yx,t) and
w(x, t), respectively.
Step 2: The (DGLTDM) defined the solution of Equation (39) according to the following forms:
u(ut) = Y un(xt), w(nt) =) wn(xt). (43)
n=0 n=0

We can obtain Adomian’s polynomials A, C, and D, respectively, as follows:

Cn - 2 ununx, (44)
n=0
and .
Dn - 2 unw;q, (45)
n=0

where A, is mentioned in Example 1. The Adomian polynomials for the nonlinear term
wwy, utty, and uw are given by

Ay = wowoy,

Al = wowiy + wiwoy,

Ay = Wowoy + W1wiy + Watoy,

Az = wowsy + Wiway + wrwiy + W3Woy,

Ay = WoWyay + W1Wwsy + Woroy + W3W1y + WaWpy- (46)
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Co = wuogugy,
C1 = uguyy + Uy,
C = UpUgy + Uilyy + UpUoy,
C = UQUZy + UTUy + Ul + U3UQy,
Cs = uglgy + uquzy + upliny + Usliyy + Ugligy. (47)
and
Dy = upwo,
Dy = wupwi+ uiwy,
Dy = ugwy + ujwy + urwy.
D3 = ugws+ uiwy + urwq + uszwy,
D3 = upwy + uiws + upwy + uswq + ugwy. (48)

Operating with the (IDGLT) on both sides of Equations (41) and (42) and using
Equations (43)—(45), we obtain

Y ounlot) = A0 +G;[sPR(p,s)]
n=0
L n=0
Gy HsPGy | Y. Ca
L n=0

, (49)

—G; ' [sPG, [é(i}ﬂ)
L "= x

and

e

il t) = m(x)+6;[PH(p,s)]

oo

+G;1 S/gGQ
n=0

)
Il
o

-G, 1|sPGy ln ):%) n
L n=

-G, '|sPGy [ﬂ<§6D”> ” (50)
L "= x

On matching both sides of Equations (49) and (50), we can obtain

w = fil0)+G |PE(ps)],
wy = hi(x)+Gy? {sﬁH(p,s)}. (51)

In general, the recursive relations are given by

Upy1 = G{1 [SﬁG2[unx)(}] - Gfl [SﬁGZ [Ucn]}
G, '[#Ga[2(Dn), ]], (52)
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and
wyp1 = Gyt [SﬁGz[wnm]} -Gy! [Sﬁcz[ﬂAn]}
G5 ' [#Ga[u(D), ] (53)

Here , we assume that the (IDGLT) concerning p and s exists for each term on the
right-hand side of the above equations. To demonstrate this approach for time-fractional
coupled Burgers equations, we offer the following examples:

Example 2. Consider the following homogeneous form of a coupled Burgers equation [12]

Dfu — gy — 2uuy + (uw), = 0,
wa — Wyy — 2wwy + (uw), = 0, (54)
with initial condition
u(x,0) =siny, w(x,0)=siny. (55)

By using Equations (51)—(53), we have

ug = siny, wp=siny,
_ %u
u = G, {sﬁGz [32(20 + 2ugugy — (Uowo)x} } ,
B . . o gi+p+1 puc+2 B B )
up = G, [SﬁGz[—SlnX]} =G, {— T = TR siny,
_ 1 . 1 g+p+1 pa+2 B B )
w = G, sﬁGz[—sz]} =G, [— 52 SRSy sin x,
[ [P
upy = G, |s°Go W +2(1/£01/l1X + M1M0X) — (upw1 + leo)x ,
[ th 21 21
_ —1|.B B e L
G, _s GZ[F(ﬁJrl) sin x RS sin2x + TE+1) s1n2x”,
[a+2B+1 ja+2
= szl i pz :|/
1+p
©?h
u2 — m SlnX.
In a similar manner,
t2f _
Wy = m sm x.
We continue in the same way to obtain the following solutions:
; : b 26 2138
M(X, ) = Slnx_mslnX‘F mslnx—mslnx+"',
; , b b 2%
CU(X, ) = SlnX*mslnX‘i‘mslnX*msln)(‘i”"'.
By putting B = 1, we obtain
N
u(x,t) = wyt+up+uz+---= (1—t+2|—3'+---> sinx,

2 ,
wixt) = w0+w2+w3+~~-=<1—t+2|—3|+~~->smx,
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and thus, the exact solutions become
u(x,t) =e'tsiny, w(xt)=ec 'siny.

Figure 3: This shows the comparison between the exact solution and the gained
numerical solution for Equation (54). Att = 1 and 8 = 1, we obtained the accurate solution;
by taking diverse values of § such as (8 = 0.75, B = 0.85 and § = 0.95), we obtained the
estimated solutions.

Figure 4: We demonstrate the result of the functions w(x,t) = u(x,t) in three-
dimensional space.

t

0.8
Exact
B=1
0.6 B=0.95
B=0.85
B=0.75

0.4

02r

. . . I . . . . 1 x
0.2 04 0.6 0.8 1.0

Figure 3. Comparison between exact and numerical solutions.

Figure 4. The surface of the function w(x, t) = u(x,t).

Table 2 Shows the numerical solution for different values of B for the function
w(x t) = u(xb).
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Table 2. Comparison between exact and approximation solutions.

t x B =0.75 B =10.85 B = 0.95 p=1 Exact
0.00 0.00 0.00 0.00 0.000 0.00

0.25 0.204328 0.213246 0.220639 0.223818 0.22386

0.1 0.50 0.395952 0.413233 0.42756 0.43372 0.433802

0.75 0.562957 0.587528 0.607897 0.616656 0.616772
1.00 0.694961 0.725293 0.750438 0.761251 0.761394

Example 3 ([21]). Consider the following system of singular fractional coupled Burgers equation
with the initial conditions of the form:

Dfu - )1—(()(14%))( —2uuy + (uw), = —x%et—4e7t,
wa - )%(xwx)x —2wwy + (uw), = —x’e ! —det, (56)
and
u(x,0)=x* wx0)=x> (57)
By applying the above-mentioned steps, we have
1
U(p,s) = 25"T1p*3 1sPG, [X(XMX)X + 2uuy — (uw)x}
2
—sﬂGz[(x2+4)(1—t+2!—3!+~--ﬂ, (58)
and
w(ps) = 2s"t1pt3 4 6P, [wm +2wwy — (uw)x}
o
—sb 2 b — g
st[(X +4)(1 o =gt )] (59)
Hence,
U(p,s) = 25"T1p*3 4 sPG, [;(xux)x + 2uuy — (uw)x}
_ {(2}7“3 " 4p“+1) (S,BthxH _ gBrat3 | gprats )} (60)
and
w(p,s) = 28*T1p*3 1 6PG, [wm + 2wwy — (uw)x]
_ [<2pa+3 +4pa+1> (Sﬁ+a+1 _ gPHatd | prats )} (61)
Operating the (IDGLT) for Equations (60) and (61), and applying Equations (43) and (33),
we obtain
[ee] 1 [e0] [e0] [e0]
Youn(xt) = X*+Gy' PG| = <x Y, unx> +2Y Ci— Y. Dy
n=0 X n=0 X n=0 n=0

B B+1 B+2
‘[<X2+4)(r<ﬁt+1>‘r(tﬁ+z>+r<tﬁ+3>"”)]' ©2)
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and

1

Y walxt) = xX*+Gy! |:SﬁG2[
n=0 X

(xanX> +22An— ZD”
n=0 X n=0 n=0

B B+1 p+2
[("2*4)<r<ﬁt+1>r<2+2>+r<;+3>'”)} ©3)

Then, we determine the iteration components as

P p+1 h+2
to = "2‘<"2+4)(r<ﬁ+1>‘r(mz)*r(ms)"")

B B+1 p+2
- W“) (r(/stm B r<§s+z> ! F(tﬁ+3) B )]

wo
and
_ 1B |l
Upy1 = G2 sP Gy E(Xun)()x‘kzcn_Dn ’
_ —1| B 1
wpr1 = Gy |sPGy }(Xwnx)x—i—ZAn — Dyl |,

where n > 0. The rest terms are given by, at n = 0,

T 1
m = Gy SﬁGZ{X(X”O)c)X"‘z”O”OX_(”OWO)X”’
- t:B tﬂ.ﬂ,—] t‘5+2
= G,'|sPGy |44 - =)
2 |° 2[ (F(ﬁ+l) [(B+2)  T(B+3) )”
~ Gt _[4pa+1sa+/3+1 gt (52/3+a+1 _ Bratl y 2ptatl )H
bOTT(B+) T2p+1) T(2p+2) T(2+3)

In a similar manner,

juy

0 1
w = G, sﬁGz[X(;(a)OX)X+2w0on(uowo)XH,

- [t +(rrn -y )

_ G2—1 :[4ptx+1sa+ﬂ+l _ 4pzx+1 (52ﬁ+a+1 _ 2Btatl | 2ftatl )H,
tﬁ t2/3 t2,5+1 t2/5+2
w1 = 4 — 4( — + — > .
r(p+1) r2p+1) T(2+2) T(28+3)

Similarly, at n =1
Uy = Gz_l [S'BGz[O]} =0, wp, =0.

In a similar manner,
Uz = 0, w3 = 0-

As a collection of all terms, we obtain

M(X,t) = ug+uy+u+uz+---,
wxt) = wotw+wrtwst--
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Thus, the approximation solution of Equation (56) is defined by

t2ﬁ+2
TTepre )

th oy th+2
uot) = X2<7‘2+4)(r(5+1) TT(+2) T T(E+3) )
1B 128 12641
BT _4<r(2/3+1) “T2B+2)
P p+1 h+2
wiph = XZ_(X2+4)(I“(/3+1) TT(ET2) T TETI) _)
1B 128 12641
HMrETD (F(2ﬁ+1) “T2+2)

Our exact solution can be obtained by putting p = 1, as follows:

t2 i’3 i’4
”(er):XZ(l—tJr—Jr_.

20 31 4!
and ) s .
t t t
(U(X/t) :X2<1—t+2!—3!+4!—'
Hence,
”(X/ t) = Xze_tr
w(xt) = xe .

t2‘8+2
TTepra) >

)
)

Figure 5: This illustrates the contrast between the exact solution and the obtained
numerical solution for Equation (54). Att = 1 and § = 1, we achieved the accurate solution.
By taking different values of , for instance, (8 = 0.75, B = 0.85 and B = 0.95), we obtained

the estimated solutions.

Figure 6: We demonstrate the result of the functions w(, t) = u(x, t) in three-dimensional

space.

t

0.2 0.4 06 0.8 1.0

Figure 5. Comparison between exact and numerical solutions.
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10 W =075

Figure 6. The surface of the function (x, f).

Table 3 Explain the numerical solution for different values of B for the function ¥ (x, t).

Table 3. Comparison between exact and approximation solutions.

t X B =0.75 B =0.85 B =095 p=1 Exact
0.00 —0.0509492 —0.0200888 —0.00492833 —0.0008333 0.00
0.25 0.0000985564 0.0335443 0.0507572 0.0557083 0.0565523
0.1 0.50 0.153242 0.1944443 0.217814 0.225333 0.226209
0.75 0.408481 0.462609 0.496241 0.508042 0.508971
1.00 0.765815 0.838041 0.88604 0.903833 0.904837

3. Triple Generalized-Laplace Transform Decomposition Method and Fractional
Coupled Burgers Equation (TGLTDM)

Here, we explain the solutions of the singular time-fractional coupled system of
Burgers equation by applying the triple Generalized- Laplace transform decomposition
method (TGLTDM):

To demonstrate the essential idea of this method, we consider the following singular
time-fractional coupled system of Burgers equation with the initial conditions of the form:

.1 1 Ul 4
Diu— —(xu — —(yu + “uuy + Zuw = L7, 1),
‘ X(x Oy 7(7 1)y T iy fort)

Diw— —(xw — —\Yw + -uw, + —wyw = h P ,f, 64
t X(X X)X ,Y('Y 7)7 X X v Y (x, 71 (64)

and
u(x,0)= A7), wx0)=h"7) (65)

for t > 0. Here, f(x,7.t), h(x,7.t), fi(x,v) and h1(x, ¥) are known functions, 7 is a real
constant, { and p are arbitrary constants. To obtain the solution of Equation (64), the
following steps are applied.
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Step 1: Applying the (TGLT) on both sides of Equation (64) and (DGLT) for Equation (65)
and multiplying the outcome by sf, one can obtain

U(p,g,s) = s“"'F(p.q)+5PF(p.q,5)

1 1 U 4 ]
+sPG { u + —(yu — SUUy — ZUW |, 66
3 X(X Xy 7(7 1)y T (66)

and

w(p,q,s) = s“"'Hi(p,q) +sPH(p.q,s)

1 1 Ul 4 }
+sPG { wy), + = (Ywy), — —UWy — ZTwyw|. 67
3 X(X X)X ,Y('Y 7)7 x T (67)

Step 2: The (TGLTDM) defined the solution of the time-space fractional coupled Burgers
equation in the following forms:

[e)

u(x, v t) =Y un(x,vt), wirt)= Y wi(x,1t) (68)
n=0 n=0
We can obtain Adomian’s polynomials F,;, E, and R;, respectively, as follows:
E, = Z UnyWy, Fp= Z Unwpy, Ry = Z WnWhpey (69)
n=0 n=0 n=0

where C, is mentioned in Equation (47). The Adomian polynomials for the nonlinear term
Uyw, Uwy, and ww. are defined by

Ey = upwy,

Er = uywiy + u1woy,

E, = UpW2y + UTW1y + U2WO-,

E3 = upwsy + tiway + w1y + UzWypy, (70)
PO = UoWoy

F = UoW1y + UIWOy,

F = Uy + Urw1y + UaWoy,
F3 = ugwsy + uiway + upwiy + Uswoy, (71)
and
Ry = wowy
Ry = Wow1y + W1Woy
Ry = wowy, + W1W1y + W2W0y .
R3 = wowsy + wiwoy + wrwiy + W3Woy- (72)

Step 3: Applying the (ITGLT) on both sides of Equations (66) and (67) and using Equa-
tions (44) and (69), we obtain
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Y unlort) = flur)+ Gy [PE(p,q,5)]
n=0
1| | B 1 =
+G3 | [sPGa| = [ x X uny
X n=0 X
1| | B 1 >
+G | [sPGs| = (7 X uny
i n=0 ¥
66| T Y ]
3 3 n
L X n=0
—G;l SﬁG3 § < Z En) ’ (73)
i n=0 X
and
Y wlomt) = mGoy)+G5[PH(pg5)]
n=0
-1 B 1 >
+G3 | [sPGs | = x ) wny
X n=0 X
-1 B 1 =
+G; sSPGa| =7 Y] wny
L 7 n=0 7] ]
6P| 1Y F 1
3 3 n
L X n=0
—~G3 ! [sPGs g(Z Rn> . (74)
i n=0 X

Step 4: On comparing both sides of Equations (73) and (74), we can obtain

(o) = ke +G, 6 [PF(p.a,5)],
@) = ML) +6, 6 PH(pg9))- (75)

In general, the rest of the recursive relations are given by

_ 1 1
upr1 = G ! {55G3 {X(XMX)X + ;(’W«/)7 - %Cn - iEn} } ,
_ 1 1
wpy1 = Gy ! {SﬁGS {X(wa)x + ;(’Y‘Uv)y - %Fn - iRnH, (76)

We assume that the ITGLT) concerning p, g, and s exists for each term on the right-
hand side of Equations (75) and (76). In the next example, we apply (TGLTDM) to solve the
singular time-fractional coupled Burgers equation.

Example 4 ([22]). Consider the following system of singular fractional coupled Burgers equation
with the initial conditions of the form:
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p - l — l 1 l _ 2 2\, ,—t
Diu X(XuX)X 7(7u7>7+xuu7(+ 'tuW _ (X y )e
1 1 1 1 B
wa o }(XWX)X - ;(')’w'y),y + )—Cuwx + §w7w — XZ _ 72)6 t, (77)
and
u(p, 7,0 =22 =7 w10 =x" - (78)
By applying the above-mentioned method, we have
U(p,q,s) = sot1 (2!pzx+3th+1 _ Z!q“+3p"‘+1)
+SﬁG |: u + —(yu — Zuu. — —u C(J:|
3| 5 ity + 2 (i) = St — iy
2
B 2 2 t t
+5sz{(7( —v)<1+t+2!+3!+...>}, 79)
and
w(p,q,5) = g+l (2!Ptx+3th+l . z!qzx+3plx+1)
+5°G { wy), + —(ywy), — —uwy — —w a)]
3 x(X Oy 7(7 )y Suwx =
218
+S§G3{<X2—72)<1+t+2!+3!+...)]_ (80)
Therefore,
U(p,q,s) = gotl (2!ptx+3qa+l _ 2!th+3pac+l)
+5°G [X” + —(yu,), — —uly — —u w]
+ [(2!pa+3qzx+1 B 2!qa+3p1x+1) (Sﬁ+a+l JogPrat2 | pratd )} (81)
and

w(p,q,s) = gl (lea+3qa+l_z!qa+3ptx+l)
1

1

1 1
+sPGs [X(wa)x + —(ywy), — —uwy — ,yw“r“’]

Y X

i |:(2!plx+3qlx+1 _ Z!qa+3pa+1) (Sﬁ+a+1 4gPtat2 L )} (82)

Operating an (ITGLT) for Equations (81) and (82), and using the polynomial series solution,

we obtain the following:

Youlxmt) = X*=7°
n=0
o |1 1{ &
+G; " |sPGs | — XZ”WX + = ’yZum
X n=0 X ,)/ n=0
ny 1 1
X =0 T n=0
2 2 tﬁ t,B-‘rl tﬂ-‘rZ
*[(X 7)<F(ﬁ+1)+F(ﬁ+2)+F(ﬁ+3

7T )} (83)
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and

i Wp (X/ Y, t)

n=0

+Gy

1 S‘Bcgl

(sen) 305 |

x|

18 18
+G; PGy |—= Y B — =
3 3[ x by Lk ]

2 2 P 1B+1 h+2

“{(X U )(F(,BJrl) N ER RS
Then, we determine the iteration components as

_ 2 .2 2 .2 tP thH! th+2
w = (@) x 7)<rm+1>*rw+z>*nﬁ+m

_ 2 2 2 2 tb thH1 th+2
w = (-7 (x 7)<Hﬁ+D+Fw+2Y+Nﬁ+®

and

Un4+1

Wyt1

— {sﬁGg [X (X”nx)x + %(7””7%( — G- En} } '

= 6 [ L txwm), + 2w~ B R,

where n > 0. The remaining terms are given by the following, at n =0 :

uy =

up = 0,

In a similar manner,

wp =

a)1:0.

Similarly, at n =1,

In a similar manner,

{ = {x (o) +

Gy? [sﬁc3 [0]] :

1 1
{Sﬁ Gs [ - wor), o (xvwny)

Gy [sﬁcs[o]},

Uy = Ga_l [sﬁG3[O]} =0, wp, =0.

Ll3:0, (U3:0.

As a collection of all terms, we obtain

ug+uy+upt+uz+--,
wy+w+wy+wz+---

u(x,v,t)
(U()(, Y, t) =

1('yu) 1uu 1u w”
—(vtoy)., — —Uotloy — —Uoywo | |,
y T

1
— —UWy — —WoWy ’
XX ””

+ )] (84)

),
),
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Thus, the approximate solution of Equation (77) is defined by

B pt1 B2
u(x vt = (X272)+("272)(r(ﬁt+1)+r(§s+z)*r(is+3)+"'>’

B B+1 B+2
Wit = (Xz_"z)+(7‘2‘72)<r(ﬁt+1)+r(;+2)+r(§3+3)+"'>'

The exact solution can be obtained by substituting with p = 1, as follows:

5 5 2 3 4
) 2 3 4
wx,1t) = (x 7)(1+t+ +3,+ + - >
Hence,
w(x, 1) = (x2 - 72)6*,
wmt) = (2=77)e

Figure 7: This illustrates the contrast between the exact solution and the obtained
numerical solution for Equation (54). Att = 1 and 8 = 1, we obtained the accurate solution.
By taking different values of , for instance, (8 = 0.75, f = 0.85 and B = 0.95), we obtained

the estimated solutions.

Figure 8: We demonstrate the result of the functions w(yx,t) =

dimensional space.

u(x,t) in three-

Table 4 Indicates the numerical solution for different values of 8 for the function

P(x, t).

Table 4. Comparison between exact and approximation solutions.

y t X B =0.75 B =0.85 B = 0.95 p=1 Exact
0.00 —0.0118283 —0.0114159 —0.0110883 —0.0109517 —0.0110517
0.25 0.0620988 0.0599333 0.0582137 0.0574963 0.0580215
0.10 0.10 0.50 0.28388 0.273981 0.26612 0.26284 0.265241
0.75 0.653516 0.630727 0.61263 0.60508 0.610607
1.00 1.17101 1.13017 1.09774 1.08422 1.09412
t
12 B=0.75
p=0.85
1.0
B=0.95
0.8 Exact
B=1
06
04
0.2
r ; -7 02/ 04 0.6 0.8 1.0 .

Figure 7. Comparison between exact and numerical solutions.
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- Mg L P W 5=095
L B B=0.85
1.0 B 5=0.75

Figure 8. The surface of the function (x, f).

4. Conclusions

This study proposes a new double and triple generalized-Laplace transform decom-
position method (DGLTDM and TGLTDM), a novel method combining DGLT, TGLT, and
DM to obtain the solutions of regular and singular fractional Burgers equations. This
combination produces a strong method. The ability and precision of the proposed plan
are confirmed through examples. This technique can be used for many difficult linear and
nonlinear FPDEs and systems of FPDE that do not require linearity. Furthermore, in the
future, we plan to employ this technique to solve various scientific problems related to our
research field.
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