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Abstract: For fractional-order systems, observer design is remarkable for the estimation of unavail-
able states from measurable outputs. In addition, the nonlinear dynamics and the presence of
parameters that can vary over different operating conditions or time, such as load or temperature,
increase the complexity of the observer design. In view of the aforementioned factors, this paper
investigates the observer design problem for a class of Fractional-Order Polynomial Fuzzy Systems
(FORPSs) depending on a parameter. The Caputo–Hadamard derivative is considered in this study.
First, we prove the practical Mittag-Leffler stability, using the Lyapunov methods, for the gen-
eral case of Caputo–Hadamard Fractional-Order Systems (CHFOSs) depending on a parameter.
Secondly, based on this stability theory, we design an observer for the considered class of FORPSs.
The state estimation error is ensured to be practically generalized Mittag-Leffler stable by solving
Sum Of Squares (SOSs) conditions using the developed SOSTOOLS.

Keywords: Mittag-Leffler function; Caputo–Hadamard derivative; observer design

1. Introduction

The last decade has seen a significant increase in research into fractional-order systems.
Dynamical systems that have been differentiated or integrated can be better described by
fractional-order models [1–5]. Furthermore, in the physical world, fractional-order state
equations are usually used to describe a number of physical systems [6,7], such as the
fractional Langevin equation [8] and the fractional model of nonlinear Duffing oscillator [9].
For control systems, stability analysis is one of the most important issues [10–13]. In
the literature, stability and stabilization problems for fractional-order systems have been
extensively studied [14–17]. Practical stability is one kind of stability that has been studied;
this notion was discussed in [18,19].

Due to its effectiveness at approximating nonlinear dynamics, the Takagi-Sugeno
Method (TSM) [20] is extensively employed in the literature to represent various classes
of Nonlinear Systems (NSs). By adopting the Linear Matrix Inequality (LMI) approach,
many results have used TSM for different categories of integer-order NSs such as regular
NS, singular NS, delayed NS, and stochastic NSs. Recent developments have extended
the TSM to tackle stability problems of fractional-order NSs. Lin et al., in [21], developed
a stabilizing static output feedback controller. In [22], an adaptive observer, based on
sliding mode technique, is designed for a class of descriptor systems. The problem of the
stabilization of singular NSs is treated in [23]. Taking into account input saturations and
uncertainties, the authors in [24] developed an adaptive control for delayed fractional-order
NSs described by the Takagi-Sugeno fuzzy model.
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Although the LMI approach has proved its ability for studying stability, an alternative
to this approach, called Sum Of Squares (SOSs) [25], has been appearing since 2002. This
method generalizes the LMI approach by resolving polynomial matrix inequalities, which
can be viewed as a more general form of linear inequalities. Accordingly, in 2007, polyno-
mial fuzzy models extend Takagi-Sugeno fuzzy models by incorporating local models with
polynomial matrices in place of constant matrices [26]. To date, extensive research has been
conducted to address the issues of stability and control in integer-order polynomial fuzzy
models using an SOS approach. For instance, by approximating membership functions
adopting the sector nonlinearity of the control input, Lam et al. [27] proposed new relaxed
stability results for Polynomial Fuzzy Systems (PFSs). Based on the line integral polynomial
fuzzy Lyapunov function, Saenz et al. [28] investigated the stabilization problem associated
with the disturbance attenuation for PFSs. In addition, by adopting the Positivstellensatz,
the domain of the polynomial variables that represent the membership functions is con-
strained in order to provide less conservative SOS conditions. However, it is important to
note that very little attention has been paid to fractional-order polynomial fuzzy models.
For instance, in a recent work cited in [29], an observer was designed for FORPSs with a
Caputo derivative. However, there are no works proposed for Caputo–Hadamard FORPSs
depending on a parameter. Thus, motivated by the above interpretation, our work offers
the following contributions:

• Based on the advantages of polynomial fuzzy models and by adopting the Caputo–
Hadamard fractional-order derivative, a new class of Caputo–Hadamard Fractional-
Order Polynomial Fuzzy Systems (CHFORPSs) depending on a parameter is consid-
ered in this study.

• The Practical Generalized Mittag-Leffler stability problem has not yet been explored
for the general case of Caputo–Hadamard Fractional-Order systems depending on a
parameter in the literature. Therefore, this paper tackles and resolves this gap.

• Compared to recent work [18], this paper addresses the Caputo–Hadamard derivative
rather than the Caputo derivative, which presents a greater challenge due to its
increased complexity. Additionally, our design accounts for the presence of s nonlinear
function depending on a parameter.

Notations: Mx(ζ),Fx(ζ), and SOS∫ are the sets of polynomial matrices in x(ζ) and
the polynomial function in x(ζ) and SOSs.

2. Preliminaries

In this section, we provide specific definitions and lemmas, as outlined in [14].

Definition 1 ([14]). The Hadamard fractional integral of a locally integrable function Ψ of order
δ > 0 is given by:

IδΨ(τ) =
1

Γ(δ)

∫ τ

1

(
log

τ

ν

)δ−1 Ψ(ν)

ν
dν, τ ≥ 1. (1)

Definition 2 ([14]). The Caputo fractional derivative with order 0 < δ < 1 for an absolutely
continuous function h : [t0, ∞) → R is as follows:

CH Dδ
1h(ϑ) =

1
Γ(1 − δ)

∫ ϑ

1

(
log

ϑ

ν

)−δ
h′(ν)dν, ϑ ≥ 1. (2)

Lemma 1 ([15]). Let δ ∈ (0, 1) and S ∈ Rn×n be a Symmetric Positive Definite (SPD) matrix.
Then:

1
2

CH Dδ
1(xT(σ)Sx(σ)) ≤ xT(σ)S CH Dδ

1x(σ), σ ≥ 1. (3)
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Definition 3 ([14]). The Mittag-Leffler function is given by:

Ec1,c2(z) =
+∞

∑
k=0

zk

Γ(kc1 + c2)
, (4)

where c1, c2 > 0, z ∈ C.
When c2 = 1, we write Ec1,1(z) := Ec1(z).

Lemma 2 ([18]). For c ∈ (0, 1) and r ∈ R, we have∫ σ

0
(σ − s)c−1Ec,c(r(σ − s)c)ds = σcEc,c+1(rσc).

Remark 1. If r < 0, then σ 7−→ σcEc,c+1(rσc) is a bounded function.

The solution of the FOS:

CH Dδ
1y(ζ) = θy + m(ζ), ρ ≥ 1,

y(1) = y0, (5)

is given by [15]:

y(ζ) = Eδ

(
θ
(

log ζ
)δ
)

y0 +
∫ ζ

1

(
log

ζ

l

)δ−1
Eδ,δ

(
θ
(

log
ζ

l

)δ
)

m(l)
dl
l

.

Definition 4 ([25]). Let b(x(ζ)) ∈ Fx(ζ). If ∃ {b1(x(ζ)), b2(x(ζ)), . . . , bm(x(ζ))} ∈ Fx(ζ)
such that

b(x(ζ)) =
m

∑
j=1

b2
j (x(ζ). (6)

then b(x(ζ)) ∈ SOS∫ , which implies that b(x(ζ)) ≥ 0.

Lemma 3 ([26]). Let X(x(ζ)) ∈ Mx(ζ). If eTX(x(ζ))e ∈ SOS∫ , where e is a vector independent
of x(ζ); then, M(x(ζ)) ≥ 0, ∀x(ζ).

3. Main Results
3.1. CHFORPSs Depending on a Parameter Description

We consider the following CHFORPSs depending on a parameter:
Model rule s(s ∈ S = {1, 2, · · · , f}): If N1(ζ) is Qs1 and · · · and Np(ζ) is Qsp , then{ CH Dδ

1x(ζ) = As(x(ζ))x(ζ) + Bs(x(ζ))u(ζ) + fs(ζ, x(ζ), ϵ), ζ ≥ 1,
y(ζ) = Cx(ζ),

(7)

where x(ζ) is the state vector, u(ζ) is the input vector, y(ζ) is the measured output vector,
{As(x(ζ)), Bs(x(ζ))} ∈ Mx(ζ), C is a constant matrix, and fs(ζ, x(ζ), ϵ) are functions
depending on a parameter ϵ.

Remark 2. The model (7) employs a polynomial fuzzy structure; it is distinguished from Takagi-
Sugeno models by its use of nonlinear polynomial functions in the local models. This approach
introduces polynomial nonlinearity directly into each rule, allowing for a compact yet accurate
representation of complex dynamics with fewer rules than a Takagi-Sugeno model would require.
Furthermore, the term fs(ζ, x(ζ), ϵ) depends not only on ζ and x(ζ) but also on a parameter ϵ,
which allows one to represent a broader range of uncertainties or disturbances.
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Remark 3. It is noted that this paper represents the first comprehensive investigation into the
observer-based control of CHFORPSs that includes nonlinear functions fs(ζ, x(ζ), ϵ) depending
on a parameter ϵ.

Assumption 1. We suppose that:

- As(x(ζ)) and Bs(x(ζ)) are solely dependent on measurable variables, i.e., As(x(ζ)) = As(y(ζ))
and Bs(x(ζ)) = Bs(y(ζ)).

- Each fs(ζ, x(ζ), ϵ)(s ∈ S) verifies the following condition:

∥ fs(ζ, x1(ζ), ϵ)− fs(ζ, x2(ζ), ϵ)∥ ≤ δ1(ϵ)∥x1(ζ)− x2(ζ)∥+ δ2(ϵ)µ(ζ), (8)

where µ(ζ) is a continuous function and δ1(ϵ) > 0, δ2(ϵ) > 0 such that limϵ→0 δq(ϵ) = 0,
(q = 1, 2).

- Nj(ζ), j = 1, . . . , p are measurable.

Remark 4. In Assumption 1, we consider polynomial matrices that depend only on measurable
states. This assumption is commonly used in numerous engineering systems, such as the inverted
pendulum and tunnel diode electronic circuit, and so on [30].

Remark 5. If µ(ζ) = 0 and the scalar δ1(ϵ) = δ1 does not depend on ϵ, then (8) simplifies to the
following Lipschitz condition:

∥ fs(ζ, x1(ζ), ϵ)− fs(ζ, x2(ζ), ϵ)∥ ≤ δ1∥x1(ζ)− x2(ζ)∥. (9)

The complete polynomial fuzzy CHFOSs can be expressed as follows:

CH Dδ
1x(ζ) =

f

∑
s=1

βs(N(ζ))
(

As(y(ζ))x(ζ) + Bs(y(ζ))u(ζ) + fs(ζ, x(ζ), ϵ)
)

(10)

where

βs(N(ζ)) =
∏

p
ς=1 Qsς(Nς(ζ))

∑r
ι=1 ∏

p
ς=1 Qsς(Nς(ζ))

in which N(ζ) = [N1(ζ), . . . , Np(ζ)].

It is clear that

βs(N(ζ)) ≥ 0,
f

∑
s=1

βs(N(ζ)) = 1. (11)

In the particular case, when As(y(ζ) and Bs(y(ζ)) are constant, FORPSs reduce to the
following Fractional-Order Takagi-Sugeno Fuzzy System (FOTSS):

CH Dδ
1x(ζ) =

f

∑
s=1

βs(N(ζ))
(

Asx(ζ) + Bsu(ζ) + fs(ζ, x(ζ), ϵ)
)

(12)

3.2. Practical Generalized Mittag-Leffler Stability of the General Case of CHFOSs

Consider the ϵ−CHFOSs{ CH Dδ
1x(ζ) = F(ζ, x(ζ), ϵ), ζ ≥ 1

x(1) = x0.
(13)
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Definition 5. The ϵ−CHFOSs (13) is said to be ϵ∗−Practically Generalized Mittag-Leffler stable
if for all 0 < ϵ < ϵ∗ there are positive scalars c1(ϵ), c2(ϵ) and r(ϵ) such that:

∥xϵ(ζ)∥ ≤ c1(ϵ)∥x0∥
[

Eδ

(
− c2(ϵ)(log(ζ))δ

)] 1
2
+ r(ϵ), ∀ζ ≥ 1 (14)

where limϵ→0 r(ϵ) = 0 and 0 < c1(ϵ) ≤ ρ1, ρ2 ≤ c2(ϵ) ≤ ρ3 in which ρ1, ρ2, and ρ3 are positive
scalars.

Theorem 1. For given ϵ∗ > 0, suppose that for all 0 < ϵ < ϵ∗ there is Vϵ ∈ C1
(
[1, ∞)×Rn,R

)
such that {

a1(ϵ)∥x∥2 ≤ Vϵ(ζ, x) ≤ a2(ϵ)∥x∥2 + r1(ϵ)
CH Dδ

1Vϵ(ζ, xϵ(ζ)) ≤ −a3(ϵ)∥xϵ(ζ)∥2 + µ(ζ)r2(ϵ)
(15)

where µ ∈ C
(
[1,+∞),R+

)
and the positive scalars aι(ϵ), rN(ϵ) (ι = 1, 2, 3; N = 1, 2), satisfying

the following conditions:

• ∀ϵ ∈]0, ϵ∗], a3(ϵ)
a2(ϵ)

≥ λ, 0 < a2(ϵ)
a1(ϵ)

≤ K where λ, K > 0.

• ζ →
∫ ζ

1 (log(ζ)− log(s))δ−1Eδ,δ(−λ(log(ζ)− log(s))δ) µ(s)
s ds is a bounded function.

• limϵ→0 c(ϵ) = 0 where c(ϵ) = r1(ϵ)
a2(ϵ)+(M1+M2)a3(ϵ)

a1(ϵ)a2(ϵ)
+ r2(ϵ)

(M1+M2)
a1(ϵ)

in which
M1 = sup

s≥1

(
(log(s))δEδ,δ+1

(
− λ(log(s))δ

))
and

M2 =
∫ ζ

1
(log(ζ)− log(s))δ−1Eδ,δ(−λ(log(ζ)− log(s))δ)

µ(s)
s

ds.

then, the system (13) is ϵ∗−Practically Generalized Mittag-Leffler stable.

Proof. We obtain from (15)

CH Dδ
1Vϵ(ζ, xϵ(ζ)) ≤ − a3(ϵ)

a2(ϵ)
Vϵ(ζ, xϵ(ζ)) + ρ(ζ)l(ϵ)

≤ −λVϵ(t, xϵ(t)) + ρ(ζ)l(ϵ), ∀ζ ≥ 1, (16)

where ρ(ζ) =
(
µ(ζ) + 1

)
and l(ϵ) = r2(ϵ) +

r1(ϵ)a3(ϵ)
a2(ϵ)

.
Let consider the function h(ζ) given by

h(ζ) =CH Dδ
1Vϵ(ζ, xϵ(ζ)) + λVϵ(ζ, xϵ(ζ)). (17)

Therefore,

Vϵ(ζ, xϵ(ζ)) = Eδ

(
− λ(log(ζ))δ

)
Vϵ(1, xϵ(1))

+
∫ ζ

1
(log(ζ)− log(s))δ−1Eδ,δ(−λ(log(ζ)− log(s))δ)

h(s)
s

ds, (18)

then,

Vϵ(ζ, xϵ(ζ)) ≤ Eδ

(
− λ(log(ζ))δ

)
Vϵ(1, xϵ(1))

+l(ϵ)
∫ ζ

1
(log(ζ)− log(s))δ−1Eδ,δ(−λ(log(ζ)− log(s))δ)

ρ(s)
s

ds. (19)

Hence,

Vϵ(ζ, xϵ(ζ)) ≤ Eδ

(
− λ(log(ζ))δ

)
Vϵ(1, xϵ(1)) + Ml(ϵ), ∀ ζ ≥ 1, (20)
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where M = M1 +M2.
By (15), we have:

∥xϵ(ζ)∥2 ≤ 1
a1(ϵ)

Eδ

(
− λ(log(ζ))δ

)(
a2(ϵ)∥xϵ(1)∥2 + r1(ϵ)

)
+

Ml(ϵ)
a1(ϵ)

, ∀ ζ ≥ 1. (21)

Since Eδ

(
− λmδ

)
≤ 1, ∀m ≥ 0, so

∥xϵ(ζ)∥2 ≤ a2(ϵ)

a1(ϵ)
Eδ

(
− λ(log(ζ))δ

)
∥xϵ(1)∥2 + c(ϵ) , ∀ ζ ≥ 1 (22)

Therefore,

∥xϵ(ζ)∥ ≤
[ a2(ϵ)

a1(ϵ)
Eδ

(
− λ(log(ζ))δ

)
∥xϵ(1)∥2

] 1
2
+ r(ϵ) , ∀ ζ ≥ 1, (23)

with r(ϵ) =
√

c(ϵ). Hence, the system (13) is ϵ∗−Practically Generalized Mittag-Leffler
stable.

4. Observer Design for FORPSs

Developing the following observer in the form of a polynomial fuzzy model for CHFOSs:
Model rule s(s ∈ S = {1, 2, · · · , f}): If N1(ζ) is Qs1 and · · · and Np(ζ) is Qsp then

CH Dδ
1 x̂(ζ) = As(y(ζ))x̂(ζ) + Bs(y(ζ))u(ζ) + fs(ζ, x̂(ζ), ϵ)

+Ls(y(ζ))(y(ζ)− ŷ(ζ)), ζ ≥ 1,
ŷ(ζ) = Cx̂(ζ),

(24)

where x̂(ζ) and ŷ(ζ) are the estimates of x(ζ) and y(ζ), respectively. Ls(y(ζ) are the
polynomial observer gains.

Remark 6. The polynomial observer (36) includes the function fs(ζ, x(ζ), ϵ), which depends on
the parameter ϵ. This dependency introduces complexity to the design conditions. Furthermore, the
use of the Caputo–Hadamard derivative, which has distinct characteristics compared to the Caputo
derivative, further complicates the design by introducing different memory effects.

The overall observer can then be expressed through fuzzy blending as follows:

CH Dδ
1 x̂(ζ) =

f

∑
s=1

βs(N(ζ))
(

As(y(ζ))x̂(ζ) + Bs(y(ζ))u(ζ) (25)

+ fs(ζ, x̂(ζ), ϵ) + Ls(y(ζ))(y(ζ)− ŷ(ζ))
)

.

Let x̃(ζ) = x(ζ)− x̂(ζ) and f̃s(ζ, x̂(ζ), ϵ) = fs(ζ, x̂(ζ), ϵ)− f̂s(ζ, x̂(ζ), ϵ), we obtain

CH Dδ
1 x̃(ζ) =

f

∑
s=1

βs(N(ζ))
((

As(y(ζ))− Ls(y(ζ))C
)
x̃(ζ) + f̃s(ζ, x̂(ζ), ϵ)

)
. (26)

Theorem 2. For given scalar η > 0, the error x̃(ζ) in (26) is ϵ∗−Practically Generalized Mittag-Leffler
stable if there are Q = QT > 0 and Ys(y(ζ)) ∈ Fy(ζ) such that the following conditions are satisfied:

−eT(QAs(y(ζ))−Ys(y(ζ))C + As(y(ζ))TQ− CTYT
s (y(ζ)) + η I)e ∈ SOS∫ , (27)

where e is a vector independent of y(ζ).

ζ →
∫ ζ

1
(log(ζ)− log(s))δ−1Eδ,δ(−

η

2∥Q∥ (log(ζ)− log(s))δ)
µ2(s)

s
ds (28)
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is bounded.
In this case, the polynomial gains Ls(y(ζ)) are given as follows: Ls(y(ζ)) = Q−1Ys(y(ζ)).

Proof. We select the following Lyapunov functional candidate:

V(x̃(ζ)) = x̃(ζ)TQx̃(ζ), (29)

Based on Lemma 1 and Equation (26), we obtain

CH Dδ
1V(ξ) ≤ 2 CH Dδ

1 x̃(ζ)TQx̃(ζ)

=
f

∑
s=1

βs(N(ζ)){x̃(ζ)TΩs(y(ζ))x̃(ζ) + 2x̃(ζ)TQ f̃s(ζ, x̂(ζ), ϵ)}
(30)

where: Ωs(y(ζ)) = QAs(y(ζ))−Ys(y(ζ))C + As(y(ζ))TQ− CTYs(y(ζ))T .
According to (8), we obtain

2x̃(ζ)TQ f̃s(ζ, x̂(ζ), ϵ) ≤ 2∥x̃(ζ)∥ × ∥Q∥
(
δ1(ϵ)∥x̃(ζ)∥+ δ2(ϵ)µ(ζ)

)
. (31)

By letting η1 such that 0 < η1 < η
4 , we obtain

2∥x̃(ζ)∥ × ∥Q∥δ2(ϵ)µ(ζ) ≤ η1∥x̃(ζ)∥2 +

(
∥Q∥δ2(ϵ)µ(ζ)

)2

η1
. (32)

Therefore,

2x̃(ζ)TQ f̃s(ζ, x̂(ζ), ϵ) ≤
(

η1 + 2δ1(ϵ)∥Q∥
)
∥x̃(ζ)∥2 +

(
∥Q∥δ2(ϵ)µ(ζ)

)2

η1
. (33)

Since limϵ→0 δ1(ϵ) = 0, there is ϵ∗ > 0 such that ∀ϵ ∈ (0, ϵ∗], 2δ1(ϵ)∥Q∥ < η
4 ; then,

we obtain

2x̃(ζ)TQ f̃s(ζ, x̂(ζ), ϵ) ≤ η

2
∥x̃(ζ)∥2 +

(
∥Q∥δ2(ϵ)µ(ζ)

)2

η1
. (34)

Taking into account the condition (27), we obtain

CH Dδ
1V(ξ) ≤ − η

2 ∥x̃(ζ)∥2 +

(
∥Q∥δ2(ϵ)µ(ζ)

)2

η1
. (35)

It follows from Theorem 1 that the error system is ϵ∗−Practically Generalized Mittag-
Leffler stable.

We propose the Algorithm 1 for Theorem 1.

Algorithm 1 Steps for Solving Theorem 1

1: Solve the SOS conditions (27) using SOSTOOLS for the known system matrices As(y(ζ))
and C.

2: Ensure condition (28) for fs(ζ, x(ζ), ϵ).
3: Compute x(ζ) and x̂(ζ) using the polynomial gains Ls(y(ζ)) from Step 1 and the

system’s initial conditions.

In the particular case of CHFOTSS, the polynomial observer (36) reduces to the following
form: Model rule s(s ∈ S = {1, 2, · · · , f}): If N1(ζ) is Qs1 and · · · and Np(ζ) is Qsp then
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CH Dδ

1 x̂(ζ) = As x̂(ζ) + Bsu(ζ) + fs(ζ, x̂(ζ), ϵ)
+Ls(y(ζ)− ŷ(ζ)), ζ ≥ 1,

ŷ(ζ) = Cx̂(ζ),
(36)

where Ls are constant instead of polynomial matrices. Therefore, we obtain:

CH Dδ
1 x̃(ζ) =

f

∑
s=1

βs(N(ζ))
((

As − LsC
)

x̃(ζ) + f̃s(ζ, x̂(ζ), ϵ)
)

. (37)

Consequently, we obtain the following Corollary:

Corollary 1. For given scalar η > 0, the error x̃(ζ) in (37) is ϵ∗−Practically Generalized Mittag-
Leffler stable if there are matrices Q = QT > 0,Ys such that conditions (28) and the following
LMIs are satisfied:

QAs −YsC + AT
s Q− CTYT

s + η I < 0 (38)

In this case, the gains Ls are given as follows: Ls = Q−1Ys.

5. Illustrative Example

Consider the following Caputo–Hadamard Fractional-Order NS:
CH Dδ

1x1(ζ) = sin(x1(ζ))− 0.5x1(ζ)x2(ζ) + u(ζ) + ϵ2 ζ2

ζ4+1 sin(x2(ζ)),
CH Dδ

1x2(ζ) = −1.5x2
1(ζ)− 2x2(ζ)− x2

1(ζ)x2(ζ) + u(ζ) + ϵ2 ζ2

ζ4+1 sin(x2(ζ)), ζ ≥ 1,
(39)

where δ = 0.9 and u(ζ) is defined as

u(ζ) =

{
7 sin(20πζ), 1 ≤ ζ < 3,
9(ζ − 3), 3 ≤ ζ ≤ 4.

First, we develop a Takagi-Sugeno fuzzy model that can precisely characterize the
behavior of the NSs (39). In order to achieve this, we suppose that the premise variables are:

N1(ζ) =
sin(x1(ζ))

x1(ζ)
, N2(ζ) = −0.5x1(ζ), N3(ζ) = −2 − x2

1(ζ),

We have max(N1(ζ)) = 1 and min(N1(ζ)) = −0.2172, ∀x1(ζ). To obtain the maximum
and the minimum of N2(ζ) and N3(ζ), the state x1(ζ) is restricted to be bounded. Therefore,
we assume that |x1(ζ)| < m1. Then, we can obtain

N2 = max(N2(ζ)) = 0.5m1, N3 = max(N3(ζ)) = −2,

N2 = min(N2(ζ)) = −0.5m1, N3 = min(N3(ζ)) = −2 − m2
1.

Based on the concept of sector nonlinearity, we establish the following CHFOTSS:

CH Dδ
1x(ζ) =

8

∑
s=1

βs(N(ζ)){Asx(ζ) + Bu(ζ) + f (ζ, x(ζ), ϵ)}, (40)

where
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A1 =

[
1 N2

−1.5 N3

]
, A2 =

[
1 N2

−1.5 N3

]
, A3 =

[
1 N2

−1.5 N3

]
,

A4 =

[
−0.2172 N2
−1.5 N3

]
, A5 =

[
−0.2172 N2
−1.5 N3

]
, A6 =

[
−0.2172 N2
−1.5 N3

]
,

A7 =

[
1 N2

−1.5 N3

]
, A8 =

[
−0.2172 N2
−1.5 N3

]
, B =

[
1
1

]
β1(N(ζ)) = κ1 × κ2 × κ3, β2(N(ζ)) = κ1 × κ2 × κ3, β3(N(ζ)) = κ1 × κ2 × κ3,

β4(N(ζ)) = κ1 × κ2 × κ3, β5(N(ζ)) = κ1 × κ2 × κ3, β6(N(ζ)) = κ1 × κ2 × κ3,

β7(N(ζ)) = κ1 × κ2 × κ3, β8(N(ζ)) = κ1 × κ2 × κ3, f (ζ, x(ζ), ϵ) =

[
ϵ2 ζ2

ζ4+1 sin(x2)

ϵ4 cos(x1)

]
,

in which

κ1 =
x1(ζ)− sin(x1(ζ))

1.2172x1(ζ)
, κ1 =

sin(x1(ζ)) + 0.2172x1(ζ)

1.2172x1(ζ)
,

κ2 =
N2 − N2(ζ)

N2 − N2
, κ2 =

N2(ζ)− N2

N2 − N2
, , κ3 =

N3 − N3(ζ)

N3 − N3
, κ3 =

N3(ζ)− N3

N3 − N3
.

By taking into account only the premise variable N1(ζ), the NSs (39) could be described
by the following CHFORPSs:

CH Dδ
1x(ζ) =

2

∑
s=1

βs(N(ζ)){As(x(ζ))x(ζ) + Bu(ζ) + f (ζ, x(ζ), ϵ)}, (41)

A1(x(ζ)) =

[
1 −0.5x1(ζ)

−1.5 −2 − x2
1(ζ)

]
, A2(x1(ζ)) =

[
−0.2172 −0.5x1(ζ)
−1.5 −2 − x2

1(ζ)

]
β1(N(ζ)) =

sin(x1(ζ)) + 0.2172x1(ζ)

1.2172x1(ζ)
, β2(N(ζ)) =

x1(ζ)− sin(x1(ζ))

1.2172x1(ζ)

Table 1 highlights two main advantages of the CHFORPS model over the CHFOTSS
model. The first one is the reduction of rules and consequently the system description
probably with fewer computational costs. The second one is the system validity. In
fact, CHFOTSS is only valid in a limited domain where x1(ζ) ∈ [−m1, m1]. However,
CHFORPSs apply for x1(ζ) ∈ (−∞,+∞), signifying they can handle a larger range of
values for x1(ζ).

Table 1. Comparison between CHFOTSS and CHFORPSs.

Number of Rules System’s Validity Domain

CHFOTSS 8 x1(ζ) ∈ [−m1, m1]

CHFORPSs 2 x1(ζ) ∈ (−∞,+∞)

We assume that x1(ζ) is measurable. Then, the output equation is

y(ζ) = Cx(ζ) (42)

where C =
[

1 0
]
.

Since y(ζ) = x1(ζ), then As(x(ζ)) and N(ζ) are measurable. Furthermore, f (ζ, x(ζ), ϵ)
satisfies condition (8) for δ1(ϵ) = ϵ2, δ2(ϵ) = ϵ4, and µ(ζ) = 2.

By solving the SOS conditions in Theorem 1, we obtain
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Q =

[
0.5173 0.02601

0.02601 0.3608

]
,

L1(y(ζ)) =
[

0.4325y2(ζ) + 0.868 − 0.02217y2(ζ)− 0.4066
]
,

L2(y(ζ)) =
[

0.432y2(ζ) + 0.3098 − 0.02225y2(ζ)− 0.4095
]
.

Table 2 demonstrates the advantage of the SOS approach compared to the LMI ap-
proach. Actually, the first one gives an unbounded domain of feasibility in which m1 = +∞,
while the second one provides a limited domain in which m1 = +∞.

Table 2. Comparison between LMI approach and SOS approach.

Domain of Feasibility

LMI approach m1 = 4

SOS approach m1 = +∞

For the simulations, we consider ϵ = 10−4; then, 2δ1(ϵ)∥Q∥ = 7.4283× 10−7 < η
4 = 10−3

4 .

Figure 1 shows x(ζ) and x̂(ζ) for the initial conditions x(ζ) =
[
−1 4

]T and x̂(ζ) =[
0 0

]T, while Figure 2 shows them for the initial conditions x(ζ) =
[
−9 −2

]T and

x̂(ζ) =
[

0 0
]T.

1 1.5 2 2.5 3 3.5 4

-5

-4

-3

-2

-1

0

x1(ζ)

x̂1(ζ)

Time ζ
1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

x2(ζ)

x̂2(ζ)

Figure 1. Time evolution of x(ζ) and x̂(ζ) for the initial conditions x(ζ) =
[
−1 4

]T
and x̂(ζ) =

[
0 0

]T
.

1 1.5 2 2.5 3 3.5 4

-25

-20

-15

-10

-5

0

x1(ζ)

x̂1(ζ)

Time ζ
1 1.5 2 2.5 3 3.5 4

-2

0

2

4

x2ζ()

x̂2(ζ)

Figure 2. Time evolution of x(ζ)and x̂(ζ) for the initial conditions x(ζ) =
[
−9 −2

]T
and x̂(ζ) =

[
0 0

]T
.
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6. Conclusions

The problem of observer design for FORPSs depending on a parameter is investigated
in this work. First, we propose a practical generalized Mittag-Leffler stability analysis of
the general case of Caputo–Hadamard Fractional-Order systems depending on a parameter.
Building upon this essential analysis, an observer is designed for the considered class of
FORPSs. The practical generalized Mittag-Leffler stability of the state estimation error is
achieved by solving a set of SOSs using SOSTOOLS.
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