Quantitative Relationship Between Strength and Porosity of Nano-Silica-Modified Mortar Based on Fractal Theory
Abstract
:1. Introduction
2. Experimental Design
2.1. Experimental Materials and Mix Ratio
2.2. Mortar Configuration and Maintenance
2.3. Mortar Performance Test
2.3.1. Slurry Fluidity Test
2.3.2. Mortar Strength Test
2.3.3. Pore Structure Test
2.3.4. SEM Test
3. Fractal Model and Calculation Method
4. Experimental Result
4.1. Mortar Fluidity
4.2. Strength of Mortar
4.3. Pore Structure
4.4. SEM Results
5. Pore Structure Fractal Dimension
5.1. Fractal Dimension of Volume
5.2. Box Dimension
6. Grey Correlation Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Zeng, X.; Yin, B.; Wang, J.; Liew, K.M. Electrical resistivity of cement-based materials through ion conduction mechanisms for enhancing resilient infrastructures. Cem. Concr. Compos. 2024, 154, 105792. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Y.; Hu, S.; Wang, J.; Zhang, P. Dam concrete quality evaluation and prediction model based on fractal characteristics of elastic-wave computed tomography. J. Mater. Res. Technol. 2023, 27, 4224–4235. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, Y.; Liu, Z.; Si, R.; Wu, J. A review on early-age cracking of concrete: Causes and control. Case Stud. Constr. Mater. 2024, 21, e03848. [Google Scholar] [CrossRef]
- Naji Givi, A.; Abdul Rashid, S.; Aziz, F.N.A.; Salleh, M.A.M. Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos. Part B Eng. 2010, 41, 673–677. [Google Scholar] [CrossRef]
- Shen, A.; Lin, S.; Guo, Y.; He, T.; Lyu, Z. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions. Constr. Build. Mater. 2018, 174, 684–692. [Google Scholar] [CrossRef]
- Kang, X.; Li, Y.; Fan, Y. Basic properties of recycled micropowder and its influence on properties of colloidal sand. J. Qinghai Univ. 2019, 37, 18–23. [Google Scholar]
- Althoey, F.; Zaid, O.; Martínez-García, R.; Alsharari, F.; Ahmed, M.; Arbili, M.M. Impact of Nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review. Case Stud. Constr. Mater. 2023, 18, e01997. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, W. Nano-mechanical behavior of a green ultra-high performance concrete. Constr. Build. Mater. 2014, 63, 150–160. [Google Scholar] [CrossRef]
- Ismael, R.; Silva, J.V.; Carmo, R.N.F.; Soldado, E.; Lourenço, C.; Costa, H.; Júlio, E. Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding. Constr. Build. Mater. 2016, 125, 1080–1092. [Google Scholar] [CrossRef]
- Jayapalan, A.R.; Lee, B.Y.; Kurtis, K.E. Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem. Concr. Compos. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- Balapour, M.; Ramezanianpour, A.; Hajibandeh, E. An investigation on mechanical and durability properties of mortars containing nano and micro RHA. Constr. Build. Mater. 2017, 132, 470–477. [Google Scholar] [CrossRef]
- Sun, H.; Luo, L.; Yuan, H.; Li, X. Experimental evaluation of mechanical properties and microstructure for recycled aggregate concrete collaboratively modified with nano-silica and mixed fibers. Constr. Build. Mater. 2023, 403, 133125. [Google Scholar] [CrossRef]
- Nili, M.; Ehsani, A. Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater. Des. 2015, 75, 174–183. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, Y.; Yuan, L.; Luan, C.; Wang, J.; Cheng, X.; Zhou, Z. Optimizing the content of nano-SiO2, nano-TiO2 and nano-CaCO3 in Portland cement paste by response surface methodology. J. Build. Eng. 2021, 35, 102073. [Google Scholar] [CrossRef]
- Li, K.F.; Yang, C.Q.; Zeng, L.; Xu, F.; Pan, Y. Effects of nano-SiO2 on interfacial bond performances between normal-strength concrete and high-strength concrete. J. Build. Eng. 2023, 68, 106052. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Supit, S.W.M. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Constr. Build. Mater. 2015, 99, 208–225. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, Y.; Zhang, C.; Yang, H.; Liu, B. Thermal performance and mechanical properties of phase change cement paste with Nano-SiO2 grafted straw-paraffin. Constr. Build. Mater. 2024, 419, 135551. [Google Scholar] [CrossRef]
- Qian, C.; Zhang, Z.; Zhu, Y. Effect of Field’s metal particles coated with PVA, nano-SiO2 and PVA@nano-SiO2 on the performance of cement pastes. Compos. Part B Eng. 2024, 287, 111823. [Google Scholar] [CrossRef]
- Prakasam, G.; Murthy, A.; Kumar, S.; Reheman, M.; Iyer, N. Effect of nanosilica on durability and mechanical properties of high-strength concrete. Mag. Concr. Res. 2015, 68, 229–236. [Google Scholar]
- Ma, Q.; Zhu, Y. Experimental research on the microstructure and compressive and tensile properties of nano-SiO2concrete containing basalt fibers. Undergr. Space 2017, 2, 175–181. [Google Scholar]
- Chen, A.; Tang, X.; Wang, S. Experimental study on effect of nano-silica content on performance of high performance concrete. Ind. Build. 2014, 44, 102–105. [Google Scholar]
- Xu, Y.; Wang, J.; Zhang, P.; Guo, J.; Hu, S. Effect of micron-scale pores increased by nano-SiO2 sol modification on the strength of cement mortar. Nanotechnol. Rev. 2022, 11, 2742–2756. [Google Scholar] [CrossRef]
- Guan, D.; Pan, T.; Guo, R.; Wei, Y.; Qi, R.; Fu, C.; Zhang, Z.; Zhu, Y. Fractal and Multifractal Analysis of Microscopic Pore Structure of UHPC Matrix Modified with Nano Silica. Fractal Fract. 2024, 8, 360. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.; Zhang, P.; Meng, Q. The Counterbalance of the Adverse Effect of Abrasion on the Properties of Concrete Incorporating Nano-SiO2 and Polypropylene Fiber Based on Pore Structure Fractal Characteristics. Fractal Fract. 2022, 6, 392. [Google Scholar] [CrossRef]
- Shen, A.; Chen, X.; Guo, Y. Study on wear resistance of SAP pavement concrete modified by nano-SiO2 in seasonal freezing area. Mater. Guide 2023, 2023, 1–12. [Google Scholar]
- Guo, J.; Yan, Y.; Wang, J.; Xu, Y. Strength Analysis of Cement Mortar with Carbon Nanotube Dispersion Based on Fractal Dimension of Pore Structure. Fractal Fract. 2022, 6, 609. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). The Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. The Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- SL/T 352-2020; Test Code for Hydraulic Concrete. Ministry of Water Resources of China: Beijing, China, 2020.
- Samayoa Ochoa, D.; Damián Adame, L.; Kryvko, A. Map of a Bending Problem for Self-Similar Beams into the Fractal Continuum Using the Euler–Bernoulli Principle. Fractal Fract. 2022, 6, 230. [Google Scholar] [CrossRef]
- Li, W.; Shaikh, F.U.A.; Wang, L.; Lu, Y.; Wang, B.; Jiang, C.; Su, Y. Experimental study on shear property and rheological characteristic of superfine cement grouts with nano-SiO2 addition. Constr. Build. Mater. 2019, 228, 117046. [Google Scholar] [CrossRef]
- Feng, P.; Chang, H.; Liu, X.; Ye, S.; Shu, X.; Ran, Q. The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Mater. Des. 2020, 186, 108320. [Google Scholar] [CrossRef]
- Byung-Wan, J.; Chang-Hyun, K.; Ghi-ho, T.; Jong-Bin, P. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 2007, 21, 1351–1355. [Google Scholar]
- Wang, Q.; Li, S.; Zhang, J.; Pan, S.; Guo, Z. Effect of graphene oxide on hydration process and main hydration products of cement. J. Chin. Ceram. Soc. 2018, 46, 163–172. [Google Scholar]
- Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Niu, M.; Li, G.; Zhang, J.; Cao, L. Preparation of alkali-free liquid accelerator based on aluminum sulfate and its accelerating mechanism on the hydration of cement pastes. Constr. Build. Mater. 2020, 253, 119246. [Google Scholar] [CrossRef]
- Hou, P.; Qian, J.; Cheng, X.; Shah, S.P. Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cem. Concr. Compos. 2015, 55, 250–258. [Google Scholar] [CrossRef]
- Hou, P.; Kawashima, S.; Kong, D.; Corr, D.J.; Qian, J.; Shah, S.P. Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Compos. Part B-Eng. 2013, 45, 440–448. [Google Scholar] [CrossRef]
Appearance | Particle Size (nm) | Content | PH | Solvent | Specific Gravity | Specific Surface Area (cm2/g) | Viscosity (mpa.s) |
---|---|---|---|---|---|---|---|
Translucent liquid | 30 | 30% | 7.9 | Water | 1.202 | 250 ± 30 | 3.39 |
Specimen | Cement (g) | Sand (g) | Water(g) | Admixture | |
---|---|---|---|---|---|
NS | Water Reducer | ||||
S0 | 450 | 1350 | 225 | 0 | 1% |
S1 | 450 | 1350 | 225 | 1.5% | 1% |
S2 | 450 | 1350 | 225 | 3% | 1% |
Specimen | Region I | Region II |
---|---|---|
S0 | 2.9983 | 2.9722 |
S1 | 2.9495 | 2.9996 |
S2 | 2.8916 | 2.9972 |
NS Content | Volume Fractal Dimension | Fractal Dimension of Bubble Distribution | Porosity (%) | Compressive Strength (MPa) | Flexural Strength (MPa) |
---|---|---|---|---|---|
0 | 2.9722 | 2.2468 | 6.21 | 40.9 | 7.09 |
1.5% | 2.9996 | 2.2022 | 8.42 | 47.5 | 7.55 |
3% | 2.9972 | 2.4139 | 11.91 | 52.6 | 7.85 |
Grey Coefficient | Volume Fractal Dimension | Fractal Dimension of Bubble Distribution | Porosity |
---|---|---|---|
ri(1) | 1 | 1 | 1 |
ri(2) | 0.8793 | 0.9237 | 0.8271 |
ri(3) | 0.8041 | 0.8152 | 0.9251 |
ri | 0.8944 | 0.9129 | 0.9174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Liao, Y.; Xu, Y.; Wang, J. Quantitative Relationship Between Strength and Porosity of Nano-Silica-Modified Mortar Based on Fractal Theory. Fractal Fract. 2024, 8, 694. https://doi.org/10.3390/fractalfract8120694
Hu S, Liao Y, Xu Y, Wang J. Quantitative Relationship Between Strength and Porosity of Nano-Silica-Modified Mortar Based on Fractal Theory. Fractal and Fractional. 2024; 8(12):694. https://doi.org/10.3390/fractalfract8120694
Chicago/Turabian StyleHu, Shaowei, Yi Liao, Yaoqun Xu, and Juan Wang. 2024. "Quantitative Relationship Between Strength and Porosity of Nano-Silica-Modified Mortar Based on Fractal Theory" Fractal and Fractional 8, no. 12: 694. https://doi.org/10.3390/fractalfract8120694
APA StyleHu, S., Liao, Y., Xu, Y., & Wang, J. (2024). Quantitative Relationship Between Strength and Porosity of Nano-Silica-Modified Mortar Based on Fractal Theory. Fractal and Fractional, 8(12), 694. https://doi.org/10.3390/fractalfract8120694