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Abstract: State estimation of batteries is crucial in battery management systems (BMSs), particularly
for accurately predicting the state of charge (SOC), which ensures safe and efficient battery operation.
This paper proposes a joint SOC estimation method based on a fractional-order model, utilizing a
multi-innovation full-tracking adaptive unscented Kalman filter (FOMIST-AUKF-EKF) combined
with an extended Kalman filter (EKF) for online parameter updates. The fractional-order model more
effectively represents the battery’s dynamic characteristics compared to traditional integer-order
models, providing a more precise depiction of electrochemical processes and nonlinear behaviors. It
offers superior modeling for long-memory effects, complex dynamics, and aging processes, enhancing
adaptability to aging and nonlinear characteristics. Comparative results indicate a maximum end-
voltage error reduction of 0.002 V with the fractional-order model compared to the integer-order
model. The multi-innovation technology increases filter robustness against noise by incorporating
multiple historical observations, while the full-tracking adaptive strategy dynamically adjusts the
noise covariance matrix based on real-time data, thus enhancing estimation accuracy. Furthermore,
EKF updates battery parameters (e.g., resistance and capacitance) in real time, correcting model
errors and improving SOC prediction accuracy. Simulation and experimental validation show that
the proposed method significantly outperforms traditional UKF-based SOC estimation techniques in
accuracy, stability, and adaptability. Specifically, under varying conditions such as NEDC and DST,
the method demonstrates excellent robustness and practicality, with maximum SOC estimation errors
of 0.27% and 0.67%, respectively.

Keywords: fractional-order model; state of charge (SOC); battery management system; multi-
innovation; online update of battery parameters

1. Introduction

With the growing global demand for renewable energy, batteries are being increasingly
used as energy storage devices in electric vehicles, renewable energy generation systems,
and energy storage systems [1,2]. The battery management system (BMS) plays a critical
role in ensuring safety, reliability, and longevity of batteries [3]. A core function of the BMS
is the accurate estimation of the state of charge (SOC), which indicates the remaining charge.
However, accurately estimating SOC is challenging due to the complex electrochemical
processes within batteries, varying operating conditions, and effects of aging. Fractional-
order models offer a novel approach to address these challenges by providing a more precise
representation of battery dynamics, improving SOC prediction accuracy, and optimizing
overall BMS performance. Traditional SOC estimation methods, such as model-based
approaches using voltage and current measurements [4,5], rely on sensor data but often
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struggle with inaccuracies due to noise and battery system nonlinearity [6]. The fractional-
order model (FOM) has gained prominence due to its ability to capture nonlinearities and
long-term memory effects [7]. By utilizing fractional-order calculus, FOMs provide a more
accurate and flexible representation of complex electrochemical behavior, particularly for
aging, polarization, and diffusion [7–9].

In recent years, a variety of model-based predictive methods have emerged, with
model predictive control (MPC) primarily being used for system control by optimizing
control inputs to achieve dynamic control over systems [10,11]. This approach can be
applied in battery management systems (BMSs) to balance battery charging currents and
also in the design of charging and discharging strategies according to battery aging trends
under various conditions. Although MPC offers significant advantages in control and
optimization, it is mainly used for optimizing control inputs rather than direct SOC estima-
tion, making it unsuitable for SOC estimation. Neural-network-based predictive models,
however, can achieve highly accurate SOC predictions using historical data, particularly
under complex battery conditions, where they can adapt quickly to changes over time [12].
Nevertheless, data-driven methods have high computational demands, and neural network
models require substantial historical data for training to ensure sufficient generalization
capabilities. In the estimation of battery SOC, the Kalman filter [13] and its extended
versions, such as the extended Kalman filter (EKF) [14] and the unscented Kalman filter
(UKF) [15], are widely utilized due to their ability to handle nonlinear systems. However,
the EKF relies on first-order Taylor expansion for linearization, which introduces signifi-
cant linearization errors when applied to highly nonlinear systems. In contrast, the UKF
addresses this issue by employing the unscented transformation (UT) [16,17], resulting in
improved performance in estimating the SOC of batteries [18]. To overcome the limitations
of traditional equivalent circuit and electrochemical models, the impedance model based
on fractional-order theory has been explored. Its parameters are determined using an
evolutionary optimization method, leading to the development of the fractional-order
unscented Kalman kilter (FOUKF) method, which is more suitable for tackling large-scale
nonlinear problems. Jin et al. [19] demonstrated that the error in SOC estimation using the
fractional-order model (FOM) was consistently lower than that of the DPM-based SOC
estimation method. Lai et al. [20] developed an SOC estimator and formulated a synergistic
estimation method for both SOC and state of power (SOP), verifying its effectiveness under
dynamic operating conditions. However, the error in these methods tends to increase as
the battery ages, primarily due to the lack of online updating for the parameters in the
fractional-order model.

Addressing the time-varying characteristics of battery systems and mitigating mea-
surement noise are crucial for enhancing estimation accuracy and robustness [21]. This
paper introduces a method that combines a fractional-order multiple innovation strong
tracking adaptive unscented Kalman filter with an extended Kalman filter for joint es-
timation (FOMIST-AUKF-EKF). To improve SOC estimation accuracy and stability, this
approach integrates fractional-order models with multiple innovation filtering, adaptive
unscented Kalman filtering, and strong tracking techniques. Unlike single innovation
filtering, multiple innovation filtering utilizes observations across multiple time steps,
thereby improving robustness against noise [22,23]. Moreover, the Strong Tracking Filter
(STF) strengthens the filter’s ability to react to sudden shifts in the system state [24].

Wang et al. introduced a compensated adaptive model leveraging a strong tracking
filter, but the predictive accuracy of this approach diminishes as parameter dimensions
increase [25]. Although it accurately captures abrupt changes in lithium-ion batteries, it
lacks considerations for computational cost and parameter dimensionality. Incorporating an
adaptive mechanism allows the noise covariance matrix to adjust dynamically based on real-
time measurements, thereby enhancing estimation performance across varied operating
conditions [26]. Fan et al. [27] developed an adaptive traceless Kalman filtering method that
optimized the AUKF’s estimation accuracy by determining the ideal covariance matching
(CM) window size. To address uncertainties in lithium-ion battery noise, Fu et al. [28]
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proposed an adaptive extended Kalman filter (AEKF), demonstrating that the AEKF is
more resistant to interference compared to conventional EKF.

In this study, the EKF is applied for real-time parameter updates of the battery model
shown in Figure 1. Through first-order linearization, the EKF facilitates dynamic parameter
adjustments, even in complex battery systems. Integrating the EKF with fractional-order
models allows for real-time corrections of battery parameters, providing an estimation
framework that captures the battery’s nonlinear characteristics and adapts to parame-
ter variations across different operating conditions, thus ensuring sustained accuracy.
Zhang et al. [29] explored the multiscale effect of fractional-order models in parameter
identification, implementing the model by isolating distinct features for online param-
eter identification. Beelen et al. [30] proposed an approach for simultaneous SOC- and
EKF-based parameter estimation, achieving an error margin of 0.5%. Compared to tradi-
tional SOC estimation methods, the FOMIST-AUKF-EKF approach offers several distinct
advantages, including:

(1) A proposed method for estimating battery SOC based on a fractional-order model,
which better explains electrochemical behavior and long-term memory effects.

(2) Improved estimation accuracy and robustness in the battery’s dynamic response
through multi-innovation filtering and full-tracking strong tracking. The introduc-
tion of an adaptive UKF further enhances the system’s ability to adjust to model
uncertainties and noise variations.

(3) Online updates of the battery’s full parameters using the EKF, which dynamically
corrects the critical parameters in the battery model, ensuring long-term accuracy in
SOC estimation.
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The remainder of this paper is organized as follows: Section 2 introduces the concept
of fractional calculus in battery equivalent models. Based on fractional calculus, a fractional-
order second-order RC model is established, along with the state space equations, and
the results of parameter identification and accuracy are discussed. Section 3 presents
the computational process of the FOMIST-AUKF-EKF algorithm. Section 4 analyzes and
verifies the computational accuracy of the FOMIST-AUKF-EKF algorithm. Lastly, Section 5
summarizes the experimental conclusions.

2. Fractional-Order Modeling
2.1. Fractional-Order Calculus

With the increasing demand for accurate SOC estimation, the need for a precise
equivalent model has become more essential. Fractional-order models provide an ef-
fective approach for capturing the dynamic characteristics of batteries, such as memory
effects and time delays—complexities that traditional integer-order models struggle to
accurately represent.
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The three most popular definitions of fractional-order calculus are as follows: the
Caputo definition [31], the Riemann–Liouville (RL) definition [32], and the Grünwald–
Letnikov (GL) definition [33].

Caputo derivative definition:

Dα
t f (t) =

1
Γ(1 − α)

∫ t

0

f ′(τ)
(t − τ)α

dτ 0 < α < 1 (1)

where α is the fractional-order operator, Γ() is the gamma function, τ and t are the bound-
aries of the operation. Caputo derivatives are suitable for initial value problems, where
initial conditions are easy to handle, and are commonly used in physics and engineer-
ing [34].

Riemann–Liouville (RL) definition:

Dα
t f (t) =

1
Γ(n − α)

dn

dtn

∫ t

0

f (τ)
(t − τ)α−n+1 dτ n−1 < α < n (2)

where n is a positive integer without an initial t condition. Riemann–Liouville has a
wide range of applications in theoretical studies and was one of the first definitions of
fractional-order calculus to be proposed.

Grünwald–Letnikov (GL) definition:

Dα
t f (t) = lim

h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f (t − jh) (3)

where h represents the sampling interval and (α
j) is the Newtonian binomial coefficient, as

shown in Equation (4).

(
α

j

)
=

{
α!

j!(α−j)! =
Γ(α+1)

Γ(k+1)Γ(α−j+1) , j > 0

1, j = 0
(4)

(−1)j(α
j) can be simplified using recursive methods as follows:

ω
(α)
0 = 1, ω

(α)
j =

(
1 − α + 1

j

)
ω
(α)
j−1, j = 1, 2, 3 · · · (5)

The Grünwald–Letnikov derivative provides a difference-based approach to defining
fractional-order derivatives, and this definition provides a powerful tool for describing and
analyzing systems with complex dynamic behavior [35,36]. Therefore, the GL definition of
the fractional-order model for predicting battery SOC is most applicable.

The continuous differential-integral can be defined as:

aDα
t =


dα

dtα , α > 0
1, α = 0∫ t

a (dτ)α, α < 0

(6)

In particular, the computational cost increases significantly when the step size h
is small. In this study, while estimating the battery SOC using the UKF, the fractional-
order model is updated with full parameters using the EKF, dramatically reducing the
computational cost.

2.2. Fractional-Order Model

The fractional-order model offers a more precise representation of the complex electro-
chemical behavior and nonlinear characteristics of batteries, especially during the charge
and discharge processes. In these processes, the relationship between internal current and
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voltage often follows fractional-order dynamics, which traditional integer-order models
struggle to fully capture. Common equivalent circuit models for batteries include the
first-order Thevenin model and the second-order RC model. While the first-order RC
model demands less computational power, it is generally suitable for systems exhibit-
ing simple time constant behaviors, typically in linear and low-frequency applications.
Lithium-ion batteries, however, present more complex dynamic behaviors during charging
and discharging, including delays and phase shifts, which cannot be effectively captured
by the first-order RC model. The second-order RC model, due to its superior stability,
is widely employed in integer-order modeling of battery behavior [37]. The use of two
RC networks provides a more precise representation of battery dynamics across different
time scales. In the fractional-order model, the introduction of two capacitors, C1 and
C2, along fractional-order operators α and β, forms a fractional-order network with two
constant-phase elements (CPEs), as illustrated in Figure 1.

The fractional-order capacitive impedance can be expressed as:{
ZCPE1 = 1

(sαC1)
ZCPE2 = 1

(sβC2)
(7)

The total impedance of the fractional-order model is:

Z f = R0 +
1

1
R1

+ 1
ZCPE1

+
1

1
R2

+ 1
ZCPE2

(8)

where s is the complex frequency variable of the Laplace transform. α and β denote the
orders of capacitors C1 and C2, respectively.

In addition, the resistance and the two sets of RC elements here are referred to as
“ZARC”, which are used to describe the frequency response characteristics of the battery in
the mid-frequency region, particularly the charge transfer and double layer effects at the
electrolyte interfaces. This model effectively captures the influence of nonlinear effects.

Using this model to capture the true behavior of batteries is challenged by system-
atic and measurement errors, given that the charge–discharge process involves intricate
physicochemical reactions and is influenced by external factors such as time-dependent
variables, uncertainties, and modeling inaccuracies. Additionally, the noise in the system
is inherently unpredictable and non-Gaussian. Therefore, incorporating a novel tracking
algorithm enables the system to manage complex, non-Gaussian noise under nonlinear
operating conditions, as outlined in Section 3.

The battery SOC method is calculated using the ampere–time integration method:

SOCk = SOCk−1 +

∫ k
k−1 ηki(t)dt

QN
(9)

where ηk is the Coulombic efficiency and QN is the rated capacity of the battery. The battery
capacity is obtained by charging the battery with constant current and constant voltage
followed by the hybrid pulse power characterization (HPPC) discharge experiment, and
the experimental steps are shown in Table 1. The average value of QN was obtained from
three experiments as 6.5 Ah, and ηk = 0.95 was taken in this study.

Table 1. Intermittent discharge experimental procedure.

Step Detailed Procedure

1 Charge the battery at constant current of 2 A and constant voltage of 4.2 V, respectively.
2 Discharge for 3 min with constant current of 6.5 A.
3 Leave the cell stationary for three hours to reach electrochemical equilibrium.
4 Repeat steps 2 and 3 until the cut-off voltage.
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With the fractional-order model shown in Figure 1, the state space equations are
established as follows:[

dα

dtα U1
dβ

dtβ U2

]
=

[
− 1

R1C1
0

0 − 1
R2C2

][
U1
U2

]
+

[
1

C1
1

C2

]
I(t) (10)

where U1 and U2 are the voltages across the RC network, respectively, and I(t) is the total
battery current.

U(t) can be found in Kirchhoff’s voltage law (KVL):

U(t) = [−1 − 1]
[

U1
U2

]
− I(t)R0 + UOCV (11)

UOCV indicates the end cell voltage (OCV) associated with the SOC.
The discrete fractional-order nonlinear model of the state space equation is as follows:

xk = Ak−1xk−1 + Bk−1Ik−1 + ωk−1 −
k
∑

j=1
Kjxk−1

Uk = Ckxk − IkR0 + E + νk

(12)

where Ak−1 = diag
{
− hα

R1C1
,− hβ

R2C2
, 1
}

, Bk−1 = diag
[

hα

C1
, hβ

C2
,− ηk−1h

QN
]T, Ck−1 = [−1,−1, 0] ,

and the state vector xk =
[
U1(k), U2(k), SOC(k)]T . ωk and νk are the system process noise

and observation noise, respectively.

2.3. Fractional-Order Model Parameter Identification

Accurate parameter identification is essential for effective battery state of charge (SOC)
prediction using the fractional-order model. This study employs the whale optimization
algorithm (WOA) for offline parameter identification, with the results serving as initial
values for the fractional-order model. These initial values are subsequently updated
through online parameter identification using the extended Kalman filter (EKF). Specifically,
the WOA is used to identify parameters for the fractional-order model, including R1, R2,
C1, C2, α and β.

In the WOA, adjusting the control coefficients for the contraction-enclosure and explo-
ration phases allows the algorithm to alternate between contraction-enclosure and random
search modes. This flexibility enables the algorithm to adapt effectively across different
search stages.

When |a| < 1, the algorithm mainly performs shrink-wrap operations:

X(t + 1) = X(t)− a·|c·X(t)− X(t)| (13)

When |a| ≥ 1, the algorithm then randomly chooses to perform a global search:

X(t + 1) = Xrand − a·|c·Xrand − X(t)| (14)

The difference between the predicted voltage and the actual voltage is used to measure
the fitness function, which can be defined as:

J(i) =
T+1

∑
i=1

(
Uekf(i)− Uot(i)

)2 (15)

where Uekf(i) is the voltage at the ith time point through the fractional-order model and
Uot(i) is the voltage at the ith time point actually measured. T represents the number of
sampling time points.
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The degree of adaptation can be expressed as:

fit =
Jmax − J(i)

∑N
i=1(Jmax − J(i))

(16)

where Jmax denotes the maximum value of the fitness function.

2.4. Analysis of Fractional-Order Model Parameter Identification Results

Simulations were conducted using MATLAB R2023b software, setting the population
size to 300, with a termination condition of an error of less than 0.008 V, using a data set of
120,000 data points. The results of parameter identification are shown in Table 2.

Table 2. Fractional-order model parameter identification results.

Model R0 R1 R2 C1 C2 α β

FOM 0.0286 Ω 0.0100 Ω 0.0398 mΩ 2.7626 kF 280.54 kF 0.9039 0.9819

In the fractional-order second-order RC model, the parameters are designed to simu-
late the dynamic characteristics of the battery’s charge and discharge processes based on
its electrochemical behavior. Specifically, R1 represents the polarization resistance of the
battery, which is associated with the battery’s energy storage and release characteristics.
This resistance is typically larger in magnitude. R2, on the other hand, generally represents
the ohmic resistance (internal resistance) of the battery, which reflects the direct opposition
to current flow and is usually smaller in value.

The capacitors C1 and C2 in the model represent the battery’s energy storage capability.
The core of the fractional-order model lies in the fractional-order operators α and β, which
influence the system’s response speed and dynamic characteristics. By incorporating these
fractional-order parameters, the model is able to more accurately capture the nonlinear and
hysteretic effects present in the battery during its charge and discharge cycles.

2.5. Model Accuracy Validation

The accuracy of the WOA is validated by comparing the terminal voltages predicted
by the identified fractional-order models with the actual measured voltages. Additionally,
the results are compared with those obtained using the integer-order second-order RC
model. The comparisons are presented in Figures 2 and 3.
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Figure 3. Model identification results. (a) End voltage comparison; (b) end voltage error comparison.

The fractional-order model, by incorporating fractional-order integral terms, can
provide a smoother estimation of the battery’s state of charge (SOC), avoiding the signif-
icant fluctuations or errors typically observed in integer-order models during the later
stages of discharge. This mitigates the issue of inaccurate SOC estimation caused by end-
voltage errors. As illustrated in the figure, the fractional-order model better captures the
electrochemical processes of the battery, with errors noticeably smaller than those of the
integer-order model. The maximum voltage difference between the two models reached
0.03 V. Specific evaluation metrics are shown in Table 3.

Table 3. Model evaluation indicators.

Model Average Error Maximum Error

IOM 0.0027 V 0.0366 V

FOM 0.0025 V 0.0340 V

3. Fractional-Order-Model-Based Strong Tracking Multi-Neo-Interest Adaptive
Untraceable Kalman Method (FOMIST-AUKF-EKF)
3.1. Fractional-Order Traceless Kalman Filter Algorithm

The nonlinear system (12) can be expressed as:{
xk+1 = F(xk, uk+1) + ωk
yk = G(xk, uk) + vk

(17)

Setting the initial state and state error covariance:

x̂+0,0 = E
[
U1,2, ẑ+0

]
, P+

x0,0
= E

[(
x0,0 − x̂+0,0

)(
x0,0 − x̂+0,0)

T
]

(18)

where x̂+0,0 and P+
x0,0

are the initial putative values and the error covariance matrix.
Step 1: For k = 1, 2, 3. . .. . ., calculation:

(1) Update prior estimation.
(2) Create sigma points at time step k − 1:

x̂0
k−1,l = x̂+k−1 +

∧
x
(i)
l

x̂+k−1 =
∧
x
(i)
k−1 +

(√
(j + λ)P+

k−1

)
i
, i = 1, 2, . . . , j

∧
x
(i)
k−1 =

∧
x
(i)
k−1 −

(√
(j + λ)P+

k−1

)
i
, i = j + 1, j + 2, . . . , 2j

(19)
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where k is the time step, λ is the scaling factor, α is a scale factor, and j is the quantity
of state variables. Particularly, λ = α2(j + k)− j, α = 0.01.

(3) Calculate the weights: 
w(0)

m = λ/(j + λ)

w(0)
c = λ/(n + λ) +

(
1 − α2 + β

)
w(i)

m = w(i)
c = 1/(2(n + λ))

(20)

where β is the coefficient corresponding to the type of noise.

(4) Update prior state value
∧
x
−
k,l :

∧
x
−
k,l = f

(
∧
x

i
k,l−1,

∧
x
−
k , uk,l

)
=

2n

∑
i=0

ωi
m
∧i

x k,l −
k

∑
j=1

Kj
∧+

x k,l−j (21)

(5) Update state error covariance P−
xk,l

:

P−
xk,l

=
2n

∑
i=0

ωi
c

(
∧i

x k,l −
∧−
x k,l

)(
∧i

x k,l −
∧−
x k,l

)T

+ Qk,l (22)

Step 2: Observation estimation:
Convert sigma points into observation estimation points:

∧i

y k,l = g(
∧i

x k,l ,
∧−

θ k, uk,l) (23)

where g(.) represents the observation models.
And then:

∧−
y k,l =

2n

∑
i=0

ωi
m
∧i
y k,l (24)

Calculating covariance matrix:

P−
y =

2n

∑
i=0

ωi
c

(
∧i
y k,l −

∧−
y k,l

)(
∧i
y k,l −

∧−
y k,l

)T
+ Rk,l (25)

P−
xy =

2n

∑
i=0

ωi
c

(
∧i

xk,l −
∧−
xk,l

)(
∧i

yk,l −
∧−
y k,l

)T

(26)

Calculating the Kalman gain:

Kk =
Pxy

Py
(27)

Posterior estimation update:
Updating the states and covariance:

∧+

xk,l =
∧−
xk,l + Kk

(
yk,l −

∧−
yk,l

)
(28)

P+
xk,l = P−

xk,l − KkPyKT
k (29)

3.2. Improved SOC Prediction Method Based on Fractional-Order Model
3.2.1. Multi-Innovation-Based FOUKF (FOMI-UKF)

In practical operating conditions, observed measurements are often affected by noise
and environmental disturbances, and relying on a single observation can lead to significant
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deviations due to these influences. By incorporating multiple innovations, a combination
of information from various observations can be utilized to reduce state estimation errors
and enhance filtering accuracy.

The multi-innovation algorithm introduces multiple innovations in both the observa-
tion update and state update processes of the FOUKF algorithm, as illustrated below:

Multi-New Interest Observation Update:
Consider that there are m observations zk,1, zk,2, . . . , zk,m. Define the new rate νk,j as

the error of the j th observation:

νk,j = zk,j − g(
∧i

x k,l ,
∧−

θ k, uk,l) (30)

Equation (25) Kalman gain Kk update is modified to Kj,k:

Kj,k =
[
K1,k, K2,k, · · ·Kp,k

]
(31)

The covariance matrix is updated to:

P+
xk,l = P−

xk,l − Σm
j=1K

j,k
PyKT

j,k (32)

Weighted update of state estimates using multiple new interest:

x̂k|k = x̂k|k−1 + Σm
j=1λjKk,jνk,j (33)

Adding weighting factors to the state estimates at different moments can adjust the
balance between historical information and current observations. For FOMI-UKF, the state
weighting factors are as follows:{

λ1 = 0.2

λ2 = λ3 = · · · λm = 1−λ1
m−1 , 0 ≤ a ≤ 1

(34)

where m is the length of the innovation. Although multi-neo-interest coupling can in-
crease the estimation accuracy, adding more information will undoubtedly increase the
computational cost, so this study sets the value of m to 18.

3.2.2. Fractional-Order Strong-Tracking Multi-Neo-Interest Traceless Kalman Filter
Algorithm (FOMIST-UKF)

UKF modeling of observation and process noise relies heavily on the accuracy of the
covariance matrix. However, extreme operating currents or high noise levels can lead
to unstable UKF estimates and low convergence rates, resulting in significant estimation
errors and lags.

The strong tracking filter adjusts the filter gain during the state estimation process to
respond quickly to sudden and nonlinear changes in the system state, thus enhancing the
convergence ability of the filter.

FOMISTFUKF dynamically adjusts the covariance matrix by introducing a tracking
factor λ_k. One of the substantial tracking factors is as follows:

λk =

{
λ0,k λ > 1
1 λ ≤ 1

(35)

Among them:

λ0,k =
Tr(Px

y )

Tr(P+
xk,l)

(36)
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where Tr(Px
y ) is the trace of the Px

y matrix, and the statistical width of Px
y is obtained from

the true value of the number m of new interest. When the trace factor λ > 1, a real-variable
asymptotic cancelation factor λ0,k is introduced; when the strong trace factor λ ≤ 1, the
prediction is made according to the normal UKF.

3.2.3. Fractional-Order Multi-Innovation Strongly Tracking Adaptive Traceless Kalman
Filter Algorithm (FOMIST-AUKF)

The conventional UKF relies on a pre-set process noise variance matrix Qk and obser-
vation noise matrix Rk. If the initial values are set too high or too low, the predicted results
will be dispersed, and the noise characteristics under realistic operating conditions will
change over time.

The adaptive UKF uses the statistical properties of the new interest vector to estimate
the adjustment Rk and the adjustment Qk using the process residuals as follows:

Calculate the sample covariance of the information Pν:

Pν =
1
k

k

∑
i=1

νi,jνi,j
T (37)

Update the observation noise covariance matrix Rk:

Rk = βRk−1 + (1 − β)Py (38)

where β is a forgetting factor for smoothing updates and 0 < β < 1.
Calculate the process residuals ek and the sample covariance Pe:

ek = x̂k|k − x̂k|k−1 (39)

Pe =
1
k

k

∑
i=1

eieT
i (40)

Update process noise covariance matrix Qk.

Qk = γQk−1 + (1 − γ)Pe (41)

where γ is a forgetting factor for smoothing updates and 0 < γ < 1.
The new interest vector νk and the process residual ek reflect the errors in the observa-

tions as well as in state prediction, and the adaptive tuning of R and Q allows the filter to
adapt more accurately to changes in the noise characteristics of the system and reduce the
resulting estimation errors.

3.3. Fractional-Order Strong-Tracking Multi-Neo-Interest Adaptive Traceless Kalman Filter
Algorithm with EKF Joint Estimation (FOMIST-AUKF-EKF)

Realistic battery operating conditions usually have nonlinear characteristics, and the
parameters of the battery will change with factors such as discharge multiplication and
battery aging, so fixed battery parameters cannot accurately reflect the current state of
the battery. Therefore, updating the estimated battery parameters online in real time
is necessary.

This study extends the FOMIST-AUKF using the EKF to provide more accurate pa-
rameter estimates for the system. The specific methodology is as follows:

Initialization: parameter estimation vector θ̂0, covariance matrix Pθ(0), process noise
and measurement noise covariance matrices Qθ and Rθ .

Parameter status update:

zk =

[
xk
θk

]
(42)
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State prediction for extended states:

ẑk|k−1 =

[
x̂k|k−1
θ̂k|k−1

]
(43)

Updated based on observations:

ŷk,θ = h(x̂k|k−1, θ̂k|k−1) (44)

System linearization:

Fθ =
∂ f (x̂k|k, Rk−1, θ)

∂θ
|θ̂k−1

(45)

The Kalman gain is calculated as follows:

Kk = Pθ,k−1H⊤(HPθ,k|k−1H⊤ + R)−1 (46)

where H⊤ is the transpose of the observation matrix.
Prediction parameter covariance:

Pθ,k = Pθ,k−1 + Qθ (47)

Prediction parameter status:

ẑk|k = ẑk|k−1 + Kk(yk − ŷk) (48)

The detailed steps of the FOMIST-AUKF-EKF algorithm are as follows (see Figure 4):
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4. Experimental Simulation Verification of Working Conditions
4.1. Experimental Platforms

The experimental platform of this study was carried out on battery test apparatus
(Neware CT-4008Tn-5V12A-S1). The precision error of this testing instrument is 0.05%,
the thermostat (Neware MGDW-225-20) is controlled at 25 ◦C, and the working condition
platform is shown in Figure 5. The test was conducted under the New European Driving
Cycle (NEDC) condition (Figure 6a) and the driving situation tracking test (DST) condition
(Figure 6b).
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4.2. Condition Test

In order to verify the robustness and stability of FOMISTFAUKF-EKF, the experiments
were conducted to compare UKF, FOUKF, FOMI-UKF, FOMIST-UKF, FOMIST-AUKF, and
FOMIST-AUKF+EKF, respectively.

The test state indicators MAE and RMSE are calculated as follows:

MAE =
1
n∑n

i=1 | xi − x̂i | (49)

RMSE =

√
1
n

n

∑
k=1

(Ut − Ue)
2 (50)
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As shown in Figure 6a,b, the FOMISTFAUKF-EKF algorithm’s SOC estimation re-
sults and SOC error are presented under the NEDC conditions. Figure 7c,d illustrate the
predicted end voltage and its associated error. Under the NEDC scenario, the FOMIST-
AUKF-EKF algorithm achieves a mean absolute error (MAE) of 0.018% and a root mean
square error (RMSE) of 0.56% in SOC prediction. The algorithm maintains high accuracy
even under extreme current conditions, primarily due to the strong tracking mechanism
(Equation (33)), which enables rapid adjustment to observation errors, effectively reduc-
ing SOC estimation errors caused by load variations. The introduction of multi-sensor
fusion further enhances the accuracy of the estimates by updating the voltage values as
per Equation (31), thereby mitigating estimation bias caused by individual measurement
errors. The MAE of the end voltage is 0.0061 V, with a maximum error of only 0.1054 V. The
results are shown in Table 4.
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Figure 7. NEDC operating conditions. (a) SOC comparison; (b) SOC error comparison; (c) end
voltage comparison; (d) end voltage error.

Table 4. Errors of each algorithm under NEDC conditions.

Method
NEDC

FOMIASTFAUKF+EKF FOMIASTFUKF FOMISTFUKF FOMIUKF FOUKF UKF EKF

Average Error (%) 0.13 0.25 0.50 0.63 0.69 0.74 0.87
Maximum Error (%) 0.27 0.51 1.17 1.31 1.65 2.20 2.71

The FOMIST-AUKF-EKF algorithm predicts a MAE of 0.28% and RMSE of 1.21% for
SOC under DST condition. The detailed results are presented in Figure 8 and Table 5: the
terminal voltage MAE is 0.0117 V with a maximum error of only 0.1825 V. This shows
that the investigated method is also robust as well as convergent to extreme currents for
complex conditions. In particular, the MAEs of FOUKF and UKF are 1.65% and 2.20%,
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respectively, which fully demonstrate that the fractional-order model is more accurate
than the integer-order model in describing the battery interior under the fractional-linear
operating conditions.
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Figure 8. (a) SOC comparison; (b) SOC error comparison; (c) terminal voltage comparison; (d) termi-
nal voltage error under DST operating conditions.

Table 5. Errors of each algorithm under DST conditions.

Method
DST

FOMIASTFAUKF+EKF FOMIASTFUKF FOMISTFUKF FOMIUKF FOUKF UKF EKF

Average Error (%) 0.27 0.58 0.87 1.34 1.43 1.53 1.60
Maximum Error (%) 0.67 1.00 1.39 1.96 2.74 2.98 3.90

Accurate SOC estimation is indispensable for real-time parameter updating, and in
this study, EKF is used to jointly estimate the battery parameters, which reduces the compu-
tational burden and strikes a balance between accuracy and computational complexity. The
real-time update estimation of battery model parameters by FOMISTFAUKF-EKF under
NEDC conditions is shown in Figures 9–11. In particular, the ohmic resistance of a battery,
R0, typically reflects the voltage drop of the battery during a fast response, and R0 has a
direct effect on the transient change in current.

As the battery is used, the activity of the electrode material gradually decreases,
resulting in an increase in the ohmic resistance R0. R1 and R2 correspond to the polarization
resistance of the battery at different time constants, respectively, and they increase with the
thickening of the SEI film of the battery. The capacitance C1, C2 is related to the polarization
effect of the cell, and the capacitance parameters generally do not change significantly with
cell aging, especially in the early and middle part of the cell life, so the C1, C2 values as well
as the fractional order α, β do not change significantly.
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5. Conclusions

This paper proposes an improved UKF-EKF joint estimation algorithm based on
fractional-order models. By incorporating multiple hibernation filters, this approach over-
comes the limitations of updating the system with single-time measurements, thereby
enhancing SOC estimation accuracy. A strong tracking filtering algorithm is integrated,
allowing the Kalman filter to quickly respond to abrupt changes through an adaptive
gain adjustment mechanism. Additionally, an adaptive algorithm is employed, enabling
the filter to continuously adjust the noise covariance matrix based on real-time measure-
ment data. This dynamic adaptation to the system’s noise characteristics ensures robust
filtering performance. The EKF achieves precise SOC estimation through full-parameter
joint estimation for the fractional-order model. The algorithm was validated under two
operating conditions, NEDC and DST, with MAE values of 0.018% and 0.28%, respectively,
demonstrating the accuracy and feasibility of the proposed method.

For future work, additional sensor data, such as temperature, will be incorporated
into the model. This will involve the development of a temperature-dependent model that
accounts for real-time temperature variations. By introducing a temperature compensation
mechanism, based on the dynamic characteristics of the battery’s thermal behavior, the aim
is to further enhance the accuracy and reliability of SOC estimation.
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Nomenclature
BMS Battery management system NEDC New European Driving Cycle
SOC State of charge DST Dynamic stress test
SOH State of health OCV Open-circuit voltage
KF Kalman filter 2RC Second-order RC
UKF Unscented Kalman filter RMSE Root mean square error
HKF Hybrid Kalman filter MAE Mean absolute error
EKF Extended Kalman filter ME Mean error

AUKF Adaptive unscented Kalman filter FO-MIST
Fractional-order multiple innovation
strong tracking

HPPC Hybrid pulse power characterization
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