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Abstract: This research article investigates a tripled system of nonlinear fractional differential equa-
tions with n terms. The study explores this novel class of differential equations to establish existence
and stability results. Utilizing Schaefer’s and Banach’s fixed point theorems, we derive sufficient
conditions for the existence of at least one solution, as well as a unique solution. Furthermore, we
apply Hyers—Ulam stability analysis to establish criteria for the stability of the system. To demonstrate
the applicability of the main results, a detailed example is provided.

Keywords: tripled system; nonlinear fractional differential equations; n-term equations; fixed point;
stability analysis; functional derivative

1. Introduction

In many crucial situations, the behavior of dynamical systems is best described by
fractional differential equations (FDEs), as ordinary differential equations (ODEs) may
fail to capture these dynamics. Systems of differential equations are referred to as single,
coupled, tripled, or m-systems of DEs, depending on the number of DEs involved. Each
type of system has numerous applications and is important for mathematically modeling
various phenomena. Single and coupled systems of DEs have gained importance in various
applied problems, as seen in [1-8]. Numerous studies have investigated these systems,
contributing significantly to the literature (see [9-19]). In [20], Taieb and Dahmani studied
a coupled system of nonlinear DEs involving n-nonlinear terms, investigating the existence
of solutions. On the other hand, tripled systems of DEs are rarely considered. Applications
of tripled systems of DEs can be observed in gene regulatory networks, epidemiology,
the dynamics of hormones in endocrine systems, food chains involving three species,
three-stage life cycles, microbial community dynamics, etc. Recently, Madani et al. [21]
investigated a tripled system of NFDEs. Motivated by these applications of tripled DE
systems, this article investigates a tripled system of NFDEs with n-nonlinear terms. We
establish existence and stability results for this system, which is described by
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DAx() + Y filt x(8),y(8),2(1), DPx(8) DEy(H) Do2(t)) = 0; te [0,1],n €N,
i=1

CD/g'y(t) + igi(t,x(t),y(t),z(t)f D‘Sx(t),c Déy(t),c D%z(t))=0; te[0,1],n €N,
i=1

DY2() + Y hilt,x(1), y(1), 2(0) DOx(1) S Diy(S D°2(t)) = 0 te (01 nen, D
i=1

x(0) =x0, y(0)=yo, z(0)=zp,

x'(0) = x"(0) = ¥'(0) = y"(0) =2'(0) = 2" (0) = 0,

K"(0) = JPx(g), y"(0)=Jy(e), Z"(0) =]"2(7),

where the functions f;, g;, h; : [0,1] x R® — R are continuous for eachi = 1,2,...,n, °D-
represents the Caputo derivative, with fractional orders a, 8,y € (3,4), 4,&,0 € (0,3) and
6,0,1€(0,1),]J7,]J7and J" denote Riemann-Liouville (R-L) integrals, and xo, 1o, zo € R.

The considered problem contains n-term DEs, which are of great interest in various
scientific and engineering fields. In fact our considered problem is the generalization of the
coupled system given in [20] to the tripled system of DEs. To the best of our knowledge,
such problems have not yet been studied as a tripled system of DEs.

The rest of the paper is organized as follows. In Section 2, preliminary results are given.
In Section 3, an auxiliary result is proved. In Section 4, main results about the solution’s
existence are given. In Section 5, stability results are derived. In Section 6, the derived
results are applied to a general problem to validate the results. In Section 7, the conclusion
is given.

2. Basic Results

The following definitions and lemmas are recalled from [1,20,22].

Definition 1. Let 6 : [0, T| — R is a continuous function. Then, the fractional-order integral of 6
in the Riemann—Liouville sense is defined by

J46(t) = r(loo /Ot(t —5)*lg(s)ds, a>0,t>0, @)

where T (a) = [ e"u®"'du.

Definition 2. Let 6 : [0,T] — R is a continuous function. Then, the Caputo fractional-order
derivative of 0 is given by

1

D) = gy [ (6= syre16 s)as,

wherem —1 < a <m;me N,

Definition 3 ([23,24]). The set G is equi-continuous if for any € > 0 there exists { > 0 such that
ifxe G neN, t,ty € (ty_1,ta] and |t; — ta] < , we have |x(t1) — x(t2)] < €.

Definition 4 ([25]). A bounded linear operator T acting from a Banach space X into another space
Y is called completely continuous if T maps weakly convergent sequences in X to norm convergent
sequences in Y.

The following lemma is adopted from [1,20,22].

Lemmal. IfB > a > 0,and 0 € L'([a, b)), then:
DJPO(t) = JP"0(t),
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In addition, “D*6(t) = 0, iff the function 0 is constant.
The following lemma is adopted from [1,20,22].
Lemma 2. Assume that & > 0, then forall ¢; € R, (i =1,2,...,m — 1), we have
J*D*0(t) = 0(t) + g+ c1t + o2 + - - - + 1", 3)

where m = [«] + 1 is the lowest integer; [«] is a floor function which represents the integer part of
a.

The following lemma is adopted from [1,20,22].

Lemma 3.
]“]ﬁﬂ(t) = ]’”/56(15), ‘D*J*0(t) = 6(t), t € a,b].

Theorem 1 ([26]). (Schaefer’s fixed point theorem). Let S be a norm-linear space, and let W be its
convex subset with 0 € W. Assume that N' : W — W is a completely continuous operator. Then,
either the set

Z={0eW:0=C(N0,0<<1}

is unbounded or N has a fixed point in W.

3. Auxiliary Result

In this section, an auxiliary result is proved, and it is followed by the main results. We
proceed with proving a Lemma that follows.

Lemma 4. Let F; : [0,1] = R; (i = 1,2,...,n) be given continuous functions. Then, the
problem

‘D*w(t)+ ) Fi(t) =0, te[0,1,3<a<4nel, @
i=1

w(0) =wy, w'(0)=w"(0)=0, w"(0)=JPw(g), p>0,¢€(01),

has the solution

=)t L(p+4)r ( Lo[e (g —s)tt wog? ) (5)
Fi(s)d / Fi(s)ds — ,
M@ 7O aw rpr )\ Bk e 0% TR
where gPT3 —T'(p +4) # 0.
Proof. We have -
‘Dw(t) = =) Fi(t). (6)
i=1
By applying Lemma 2, we have:
st 2 3
w(t) = ;/O W}}(s)ds—co—clt—czt —c3t’, (7)
where ¢, ¢1, ¢, c3 € R. Applying Lemma 3, we have
n
JPw(t) = — Z]”‘“’Fi(g) —JPey — c1JPt — o JP12 — e3P 3. (8)
i=1

Using the given conditions, we obtain ¢y = —wy, ¢; = ¢z = 0. Therefore, we have
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PPa(t) = — Y P Fi(e) — JPwo — ea]P P, ©)

i=1
Using w'”’(0) = JPw(g), we obtain

I'(p+4) ( wog?
6(cP3 —T(p+4)\I'(p+1) |

™=

C3 =

¢ (Q _ S)DH»P*] '
/0 1"(0c+p)Fl(S)dS>' (10)

Il
MR

Putting the values of ¢, ¢1, ¢, c3, we obtain (5). O

Corollary 1. Let (x(t), y(t), z(t)) represent the solution to the tripled system of DEs (1); then,

by Lemma 4, we have

‘xO‘Z/ f}é% fit,x (1), y(8), 2(8),F D*x(£),€ Doy (1), D z(t))ds

(p+4 )3 (
6(cP3 —T(p+4))

yo—Z/ r(s

) g (H—p : ¢ ¢ c o X Qp
' z;/o "‘+P SFra oy St x (O (8),2(6) Dx (), Dy(t), D7z(1))ds - F(PO+ 1))’

gl (t,x(1), y(1),2(t), Dx(1),f Doy (t), D7z (t))ds

v

q+4 t3 ﬁn Q _S /3+q ! c Mo c e c o yOQq (11)
st (L L gy s, v, D0 Dy D()ds - 0T ),
() =201 [ e x0)00) 207 D)2 DRy )7 D7zl
7’+4 t3 n 'y+r 1 . . ¢ o ZoTr
6(Tr+3 lg/o ’y+r) it x(8), y(t), z(t), Dtsx(t)r Dé]/(t)/ DYz(t))ds — r(’”+1)>’

where gP*3 —T(p+4) #0,013 —T(qg+4) #0, 73 —T(r+4) #0.
Now, we introduce the space
V= {(x,y,z) :x,y,z € C([0,1],R), °D°x° D%y D’z ¢ C([O,l],R)} (12)
with the norm
1(x,y,2)llv = max(llx[l, [yl Iz, 1D, 1Dy, <Dz}, (13)
where

x| = sup |x(t)], iyl = sup |y()l, izl = sup |z(1)], [°D’x| = sup [‘D’x(t)],
te[0,1] te[0,1] te[0,1] te[0,1]
1Dyl = sup [‘D¢y(t)|, [|°Dz| = sup |°D"z(t)|.
tel0,1] te[0,1]
Then, (V, ||.]|v) is a Banach space.

4. Main Results

In this section, we give our main results regarding the solution’s existence. For the
analysis of the main results, we need to impose the following assumptions:

Hypothesis 1. Assume that the functions f;, g;, h; : [0,1] x R® — R are continuous for each
i=1,2,...,n
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Hypothesis 2. Assume that there exist non-negative and continuous functions 4);, ¢§, 19; with

i=12,...

,6andi =1,2,...,n such that for any t € [0,1], and every (vy, vy, v3,v4, Vs, Vg),

(wy, wa, w3, wy, ws, we) € RC, the following relation holds

|fi(t/vl/02/v3lv4105106) fl(t w1, W, W3, Wy, W5, We | < Z(P] |'U _w]|
=
6 .
|gi(t1 01,02,03,04, 05, 06) - gi(t/ w1, W, W3, W4, W5, ZU6)‘ S Z (P;(t”v] - w]|
j:l

|hi(t,01,02,03,04,05,06) — hi(t, w1, Wy, w3, wy, ws, we)| < 219 )|vj — wjl,
j=1

with pi = supycjo@i(t), P = sup;cioq (1), 7} = sup,eoq9i(t) for j = 1,2,...,6, and
i=1,2,...,n.

Hypothesis 3. Assume that there exist non-negative functions {;(t), &;(t), vi(t) € C([0,1],R)
such that

|fi(t,01,02,03,04,05,06)| < Ci(t), [8i(t v1,02,03,04,05,06)| < Gi(t), |hi(t,v1,02,03,04,05,06) < 7i(t),

with L; = supte[oll]gi(t), M; = supte[o,l]gi(t), N; = Supte[o,u%(t)/ i=1,2,...,n

We introduce the notions assuming that the denominators are different from zero:

C2 =

C3 =

C4 =

C5 =

C6 =

wn
iy

53 =

Q1

Qs

= |X0| +
= |Zo| +

= |yo| +

B 1 T(p+4)g*t?
CT(a+1)  6|cPt3 —T(p+4)T(a+p+1)
1 N T(q+4)ofta
I(p+1)  6[e75 ~T(q+4)T(B+q+1)
1 [(r+4)t7t"
I(y+1) * 6|T 3 —T(r+4)|T(y+r+1)
1 N T(p+4)c"*?
Tl@—d+1)  2[gr3 —T(p+4)T(4-0)I(a+p+1)
1 N T(q+4)ofta
F(B—¢+1) 20" -T(qg+4)T(4-T(B+q+1)
1 [(r+4)t7t"

F(y—c+1)  2oP—T(r+4[(E—oT(y+r+1)’

n

=Y (A ph s+ + b+ pb), Sa=Y (04 + o+ + ol + o5 + oh),

2

i=1 i=1

n . . . . . .

Zl(ni + 175 4 15+ 11y 75 4 17g),

b

(p+3)(p+2)(p+1)[xolg”
6|cPT3 —T(p+4)|

(r+3)(r+2)(r+1)|zo|t"
6B —T(r+4)

(9+3)(g+2)(q+1)|yolo”

2|13 —T(q+4)T(4—¢)’

(q+3)(g+2)(q+1)|yole”
6l01t —T(q+4) '
(p+3)(p+2)(p+1)|xolc”
2|gh3 —T(p+4)T(4—0)’
(r+3)(r+2)(r+1)|zo|t"
21T —T(r+4)T(4—7n)

, Q2= yo| +

Q4 := |xo| +

= |zo| +

Before going to the fixed point results, we define the integral operator Z : V. — V by

Z(x,y,2)(t) := (Z1(x,y,2) (1), Za(x,,2) (1), Z3(x,y,2) (8)), £ € [0,1], (14)
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such that
2100200 = 50— 32 [ 0,500, (0) 20007 D)7 DEy(0)7 D0

3 _ gyetpe X
+6(@"’+§’P+41ﬂt+4 (2/ £ L S (1, (), (1), 2(8), DOx() DEy(t)¢ D2(t))ds — — 2 )

I'(a+p) I'(p+1)
20 =0~ 3 [ L 00, 00,2007 D) DAyt D720
6(Qq+§”’ : 4);1 . ( 3 st X)) 2007 D07 Doy D72~ )
and
20 == 3 [ L 0,900,200 D) D02 D)

7 3 n T _ +r—1 701"
+ _+r4<)f+4>> (E/o %hf<f'x<”'y<t>'z<”f D) DAY Del0)ds— )

where ;P2 —T(p+4) #0,0172 —T(g+4) #0, 73 —T(r+4) #0.

Next, we investigate uniqueness of the solution for the proposed problem which is
based on the Banach fixed point theorem.

Theorem 2. Let (Hypothesis 1) and (Hypothesis 2) hold. If the inequality
max (C151,C252, C383,C451,CsSo, C653) <1 (15)

is satisfied for the notions defined, then the integral operator Z : V- — V has a unique fixed point in
Banach space V, defined by (12).

Proof. For the required result, it is necessary to show that Z is contractive.
Let (x1,y1,21), (x2,2,22) € V;then, foreacht € [0,1], we have, after the triangle inequality,

|Z1(x1,y1,21)(t) — Z1(x2, ¥2,22) (1)]

< - tfs)lx ! 5 c ¢ c o
upicion 2 ) gy 5191 (6) 2157 D 5) Dy 41 D721 )

— fi(s,x2(s),y2(s), 22(s), D°x2(5),° Dfya(s)," D z2(s))|ds

+4 3 —5 +P 1
+ 377 Z/ (g
6lcP —T(p+4)| I'(a+p)

fils,x1(5),y1(5),21(5), D*x1(s), DEya(s),S D7z1(s))

— fils, x2(5),92(5), 22(5), D°x2(s),S Dya(s), D7za(s)) |ds

(16)

< filt, 21 (5),y1(8),21(8),€ D°x1 (1), Déya (1), Dz (1))

1 n
F(D{+1 SupteOl ;

it 1a(8),y2(6), z2(8) € DPxa (), Dy (0)¢ D”zm)'

T(p+4)c“? -
+ 6|cPt3 —T(p+4)T(a+p+1) SUPtefo] D

i=

it x1(8),y1(8), 21(£),€ D21 (£),€ Doy (£),€ D721 (1))

— fit, 2 (), y2(t), z2(t),F DOx2(t),S DEya (), Dz (1))|,
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By using (Hypothesis 2), (16) implies that, according to definition (13), we have

1Z1(x1,¥1,21) — Z1(x2, 2, 22) |

n
o 1
1 1 1 1 1

S Lt ) (T g g T

K
aX(HXl =22l + lly1 = wall + ll21 — 22|l + [°D%x1 = D’xa| + [|°D°y1 = Dy + D%z —° D‘522H),

D(p+4)c*t? )

Hence,

1Z1(x1,y1,21) — Z1(x2,y2,22) || < C1S1||(x1 — %2, 41 — y2,21 — 22) [|v- (17)
Similarly,

1Z2(x1,y1,21) — Z2(x2,y2, 22) | < C2Sa||(x1 — x2, 41 — Y2, 21 — 22) [|v, (18)

1Z3(x1,y1,21) — Z3(x2,y2, 22) | < C3S3|(x1 — %2, 41 — Y2, 21 — 22) [lv (19)
On the other side,

‘D°Zy(x1,y1,21) () = Dézl(x21y2/22)(t)’

1 n
< T s e X b a1 (05, 51(0 D (0 Dy (1) D (1)
I'(a—0+1)

= filt, xa(t), y2(1),22(4), D°xa (1), Dy (1), D”Zz(f))‘

N r(p+4)gtx+p (20)
2/gP3 —T(p+4)|T(4 -8 (a+p+1)

fi(t, x1(t),y1(t),z1(8),° D‘le(t),c Déyl(t),c Dz4(t))

n
X SUPeio) 2

= filt,x2(8), ya(t), 22(1), D xa(t),€ DEya(#),€ D Zz(t))‘

Consequently,

1°D°Zy (x1,y1,21) = D°Z1(x2, Y2, 22) |

n . . . . . . 1 F(p+4)g“+p
< 1 1 1 1 1 1
S Lt it s+ Mt B 1) | TG 51y T 2l ST (p 1 ITE = 9T p 1)

aX(Hxl — x|l + ly1 — y2ll + llz1 — zo|| + |°D°x1 =€ D°xo| + [|°D°y1 = Dya | + [|°D°zy =€ D522H>-

(21)

X

Therefore,

1°D°Zy (x1,y1,21) = D°Z1(x2, Y2, 22) || < CaS1ll(x1 — x2,y1 — Y2,21 — 22)||v- (22)

Similarly, we get

I°D¢ Za(x1,y1,21) = D Za(x2,y2,22) || < CsSall(x1 — x2,y1 —y2, 21 — 22) lv. (23)
and

‘D7 Z3(x1,y1,21) = D7 Z3(x2,y2,22) || < C6S3l[(x1 — x2,y1 —y2,21 — 22)[lv.  (24)

According to the norm || ||y defined by (13), we have:
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1Z(x1,y1,21) — Z(x2,y2,22)[|v

< max <||Zl(x1/1/1/21) — Z1(x2,y2,22) ||, I°D°Z1 (x1,y1,21) = D°Z1 (22,92, 22) |,

(25)
1Z2(x1,y1,21) — Za(x2,y2,22) ||, |° D¢ Z2 (%1, y1,21) —€ D¢ Za(x2,y2,22) ||,
1Z3(x1,y1,21) — Z3(x2,y2,22) ||, [|“D? Z3(x1, y1,21) —¢ DUZs(Xzfyzfzz)H)-
Using (17)—(19) and (22)—(24), we have
1 Z(x1,y1,21) — Z(x2,y2,22) [|v
(26)

< max <C151,C252/ C353,C451,CsSy, C653) | (1 — x2,y1 — Y2, 21 — 22) || v

Thus, Z is contractive by using (15) and therefore it has a unique fixed point. Conse-
quently, the proposed problem solution is a unique one. [

In the next theorem, we prove that the proposed problem solution is at least one. This
is a very important result because demonstrating the existence of a solution guarantees that
the problem is solvable, which is essential for mathematical modeling. This result provides
a basis for further mathematical analysis, such as that for uniqueness, and stability.

Theorem 3. Let Hypothesis 1 and 3 be satisfied and let operator Z be well-defined. Then, there is at
least one confirmed solution for problem (1).

Proof. The proof of the theorem is based on Schaefer’s fixed point theorem [26]. By (H;),
the functions f;, g;, h; are continuous and hence the operator Z is continuous. To show that
Z is completely continuous, it is necessary that the following is true:

(I) It maps bounded sets of V into bounded sets of V;
(II) Ttis equi-continuous.

To prove (I), we take the finite set D = {(x,y,z) € V : ||(x,y,2)||y, < A}. For (x,y,2) €
D, and for each t € [0,1], we have

1Z1(x,y,2) (1)]

ot t—s)
< |xo] 4 sup;epo 2/0 TTh)

i=1

I(p+4) / ¢ —s)xtrl
+
6|cPT3 — p+4|2 T(a+p)

(p+3)(p+2)(p + 1|xo|g” 1 z
+ SUpio 1] 6lcr® —T(p+4)] < |xo| + msupte[o,l] l;

fz(s x(s),y(s), 2(s)," D°x(s), D¥y(s), D7z(s)) |ds

fils, x(s),y(s),2(s), D°x(s),* Dy(s), D z(s)) | ds

filt,x(£),y(1), z(t),S D°x(t), Dy(t), D7z(t))

[(p+4)g-tr !
sup
7 — T (p+ 4)|Fa T p 1) P &

(p+3)(p+2)(p+1)[xolg”
6lgP —T(p+4)|

filt,x(8),y(8),2(£), Dx(1), Dy(), Dz(1)) ’

+

(27)

By using (H3), we have

1Z1(x,y,2)

<YL < T(p+4)e"™? >+x0|+(P+3)(P+2)(P+1)x0|€’7 (28)
I\ T+ 1) 6P —T(p+ 4T+ p+1) 6lcPt —T(p+4)
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Therefore,
n
1Z1(x,y,2)| < C1 ) Li+Q1, (29)
i=1
Similarly,
n
||Zz(x/}/r2)|| <G Z M; + Q2/ (30)
i=1
n
1Z3(x,y,2) < C3 ) N; +Qs. (31)
i=1
On the other side,
°D°7, (x, y,z)(t)‘
1 n
< - - , c Mo ¢ e c o
S Ta—s 51y Pren) l; filt, x(t),y(t),z(t),  D°x(t)," Dy(t)," D7z(t))
32)
T(p+4)c"*P - 5 ¢ - (
+ sup £i(t, x(8),y(8), 2(8)F DOx(£),£ DEy(£)  D7=(1))
A= T(p+ DI = BT+ p 1) Preon & |f
(p+3)(p+2)(p+1)|x0lc”
2[ght3 —T(p+4)[F(4—0)
Consequently,
. 1 D(p+4)c*+?
‘D°Zi(x,y,2)|| < ¥ L; [ +
D2 (o2 < L Li| T =550 ¥ 317 —T(p+ 9 T4 — 9T @+ p+ 1) )
L (p3)(p+2)(p+1)|xolc”
2[gh*3 —T(p+4)[T(4-0)
Therefore,
n
1°D°Z1(x,y,2)[| < Ca Y Li+ Qu. (34)
i=1
Similarly,
n
1°D¢Zy(x,y,2)[| < Cs Y M; + Qs, (35)
i=1
n
1°D7Z3(x,y,2)|| < Ce Y N+ Qe, (36)
i=1
By using (29)—(31), (34)-(36), we write
n n n
1Z(x,y,2)[lv < max <C1 Y Li+Q1,C ) M+ Q,C3) N+ Qs
i=1 i=1 i=1 37
n n n ( )
Cy) Li+QsCs5) Mi+Qs5Cs) N+ Q6>/
i=1 i=1 i=1
Consequently,
1Z(x,y,2)[lv < oo. (38)

Hence, we prove that Z(V) is bounded. Thus, it is proof of (I). In the next section, we

prove (II): that Z; is equi-continuous.

Forany 0 < t; < t; <1, we consider
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|Z1(x,y,2)(t2) — Z1(x,y,2) (t1)]
< 1((f2—t1) (5 >)sup Z
) 2~ te[0,1]

“T(ae+1

l 14
Tat1) ((tz —t) >Supte[0,1] l;
T(p+4)(5 —£)g"P
6lcPr3 —T(p+4)T(a+p+1

(p+3)(p+2)(p+ 1) — £)|xo|c”
6|cP*3 —T(p +4)| '

filt,x(8), y(8), 2(£), D°x(£), DEy(t) ¢ D"Z(t))‘

+

6,0, y(0) 207 Dox(0) DRy () D=(0)| )

filt,x(1),y(1),z(8), D°x(1), Dy (t) | D”Z(t))'

n
SUPic(o,1] Z
) =

+

By using Hypothesis 3 and taking supremum, we have

—# 2 —t)" T(p+4)6"P (85— 8)
I2a(52)00) = By 001 < Rty + )+ G T e T) o)
(P+3)(p+2)(P+1)€”|xol(t3—f?)
6[cPt3 —T(p+4)| '
Similarly,
n B _ B 3_43
(=t 2 —th)P T(q+4)0P™1(5 — 1)
1Z2(x,y,2)(t2) — Za(x,y,2) (1) < 12M1<1“([5+1) T(B+1) 6|Q’4+3—F(q—|—4)|r(ﬁ+q+1)) )
(9+3)(q+2)(q +1)e"yol (B - )
6/¢7"3 —T(q+4)] '
and
=t | 2(tk—h) L(r+4)77 (5 - £)
Iza(s2)02) = 7ty 001 < Ny + RS+ e o ro s i ) @)
(r+3)(r +2)(r + 1)t |20/(5 — 1)
6|3 —T(r+4)|
On the other side, we have
D7y (x,y,2)(t) —¢ D°Z4 (x, y,z)(tl)‘
< F(_l(m) ((tz — ) (1 tm)supte[o,n X 0 (0910 200 Dx(0) Dy 1) D”z(f))\
b X1 X(0)00) 2007 D)2 DAy 1) D7=(0)| w

3—-6 3 0y ~a+ n
e S supcy L e x(0, 900,20 Dx(1) Dy ) D)

(p+3)(p+2)(p+1)(5° —£7)|xolg?
2|cP+3 —T(p+4)|T(4-9)

Consequently,
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1°D°Z1 (x,,2) (t2) — D’ Zy(x,y,2) (1)
(B0 — 170 2ty — )20 T(p+4)(57° — 60" )

E < I(a—d+1) + Fa—041) 2|¢gP—T(p+4)T(4—6)T(a+p+1) (44)
L (P43 +2)(p+ (B~ ) |xole”
2|grt3 —T(p+4)IT(4-0)
Similarly,
1°D¢ Z5(x,y,2) (t2) —° D¢ Za(x,y,2) (1) |
< Yo' (t ©- 07 2 - )P Dlg+ 45— £ 5)eb )
- I(p- é‘+1) T(B=C+1)  2(¢"3 —T(q+4) T4 - (B+q+1) (45)
L 0+3)(g+2) @+ 1) (65— 57 lyole’
2073 —T(q+4)[T(4 - C) '
and
1°D?Z3(x,y,2)(t2) = D7 Z3(x,y,2) (1) ||
- (b "=t 2t —H)TC T(r+4)(B77—# )"
Z ( T(y-— (T+1) I(y—0c+1) 2|T7+3—F(r+4)|F(4—(T)F('y+r+1)> (46)
3420+ D Bl
+ 2T —T(r+4)|T'(4—0) ’
Looking at the inequalities, (40)—(42), and (44)-(46), we observe that
1Z(x,y,2)(t2) — Z(x,y,2)(t1)|lv = 0, asty — ta. (47)

Combining (I), (II) and applying the Arzela—Ascoli theorem [23,24], we have that Z
is a completely continuous operator.
Now, it remains necessary to show that the set defined by

B={(xy,z) e V:(xyz2) =«xZ(x,y,2z),0 <x <1},

is bounded. Let (x,y,z) € %. Then, by definition, (x,y,z) = xZ(x,y,z). Explicitly, we
write x(t) = xZ1(x,y,2)(t), y(t) = kZp(x,y,2)(t) and z(t) = xZ3(x,y,z)(t). Thus, we have

1
;x(t) = |Z1(x,y,2)(t)]

<|xo|+suptd012 JE—— t‘s | s, 2051, (), 2(5) DPx(s) 7 Doy ), D7) s ”
+4 ﬂ¢+p1 c Cc c [
b T L / e A6, 5(6)2(6) DP9 Dyl D2(5)) s
From (28), we write
1
() =121z y,2)]
<i ( C(p +4)c™*? ) g 1 @+ 2P+ Dlxole? )
S5\t T Tt ) 6l ~T(p+4)]
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Therefore,
1 n n
;x(t) <Cr ) Li+ Q= x| §K<C1 ZLi+Q1>, (50)
i=1 i=1
Similarly,
n
Iyl < x(ca )M+ 0a), 61
i=1
n
2] < K<C32Ni+Q3). (52)
i=1
On the other side, we obtain
. n
D% < x(Ci YL+ ), 69
i=1
n
1Dyl < x <C5 Y M+ Qs), (54)
i=1
n
|°D7z[| < K<C62Ni+Q6>- (55)
i=1
The results (50)-(55), imply that
n n n
[(x,y,2)[lv < xmax (Cl Y Li+0Q1,C ) Mi+Q5Cs) Ni+Qs,
i=1 i=1 i=1
Cs) Li+Q4Cs5) Mi+Qs5Cs) N+ Qé) < oo.
i=1 i=1 i=1

Hence, the set % is bounded. Therefore, by Theorem 1, there is one or more solutions
to problem (1). O

5. Hyers-Ulam (H-U) Stability

In this section, we perform Hyers-Ulam stability analysis for tripled systems of DEs (1).
Let €1, €3, €3 > 0. Then, for some t € [0, 1], we construct the set of inequalities in unknowns
x(t),y(t), and z(t), as:

‘DR(t) + iﬁ(f/f(f)r?(t)ff(f)f D°X(t), DF(1), D7z(t))| < ey,
i=1

n

‘DY(t) + ;gi(tff(f)/

(1),Z(1),f D°%(1),S DG (1), DUZ(1))| < e, (57)

<

‘Dz(t) + i hi(t, % (1), 7(1),2(¢), DX(1), DY (t),° DZ(1)) | < e,
i=1

(%,7,2) € V= {(f,y,z) :%,7,Z € C([0,1],R), D% D%y, Dz € C([0, 1},R)}. (58)
From [27], we adopt the following definitions of H-U stability.

Definition 5. The tripled system of DEs (1) is said to be H-U stable if there exists a positive real
number « such that for any solution (X,7,Zz) of the inequality (57), there exists a unique solution

(x,y,z) of (1) satisfying

|(%,7,2) — (x,y,2)| <xe, t€]0,1],
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where € = max(e1, €2, €3).

Definition 6. The tripled system of DEs (1) is said to be generalized H-U stable if there exists a real
function F € C(R4,Ry.), with F(0) = 0, such that for any solution (X, 7, z) of the inequality (57),
and a unique solution (x,y,z) of (1), the following condition satisfies

|(%9,2) = (v, y,2)| < Fle), t € [0,1].

We make the following remark to obtain the corresponding perturbed problem with
small perturbation functions. It is used to establish bounds on the perturbation’s effect on
the system, and to quantify the relationship between the perturbation and the resulting
change in the system’s behavior.

Remark 1. (X,7,Z2) is a solution of the inequality (57), if there exist functions vq,v,,v3 €
C([0,1], R) which are dependent of X, 7, Z, respectively, such that for €1, €, €3 > 0, we have
() [or(8)] < ex, loa(t)] < €2, [oa(H) < €5, £ [0,1],

(if)
‘D(t) = — gfi(W(t),y(f),Z(f)/c D°x(t),° D*y(t),° D7z(t)) + 01 (t),
‘Dy(t) = Iégi(f/X(f),y(t),Z(f)f D°X(t), D¥F(1), D7z(t)) +va(t),  (59)
‘D*z(t) = — ihi(t,f(t),y(t),z(t),c D°x(t),° D¢y(t),f DZ(t)) + v3(t).

Il
-

By Remark 1, we have the following problem with small perturbation functions

“DE(t) = — Y £t T (), 7(6),2(6),C (1), D(t) £ DUE(1)) + o1 (1),
i=1
“Dry(H) = — igiu,x(t),y(t),z(t)f DO%(+),€ DE(8),€ DUE(H)) + va(h),
“Drz(t) = — ihxnx(t),y(t),z(t)f DOE(0)S DF(1) S DU2(H) +os() )
7(0) =%, 7(0) =7, 2(0) =7,
(0) = 7(0) = 7(0) = 7(0) = £(0) = 2(0) = 0,
F(0) = JPE(c), 7"(0) = (o), Z"(0) = J'(x).

Corollary 2. Let (x(t),y(t),z(t)) represent the solution to the tripled system of perturbed
DEs (60). Then, by Lemma 4, we have
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n t _o\a—1
o) =70~ 1 [ R A0, 500,20 D) D) Do)
(p+4)P e (G =) P N 2y € o € () € Xog?
+6(gp+3 (p+4)) (21/0 e £t % (1), 5(), 2(8),° D% (t),© DSG(t),€ DUZ(t))ds — F(p—l—l))
! (t L(p+4)r N () i
O Gt e O
4 t( s)ﬂ ! 0= ¢ e c o=
y(t) =7 - Z’{/O () gi(t,x(1),y(t),Z(t), D°x(t),“ D*y(t), D7Z(t))ds
3 n —S /3+q 1 = 0
qu+2:4 Eiﬁ N gﬁAﬂLﬂwﬂme%UVD%GVD%UWﬁ—F&ﬁn)f (61)
(t—s)P! (q+4)F ¢ (g—s)Ptat
e e A T U
Z(t) =2 — il/ot (tr(‘?;lh (t,%(t),7(t),Z(t),F D°%(t),° D¢¥(t),° DZ(t))ds
r 3 n —3 r—1 Zot"
ety (L (e 50,500 2007 D) D) D2(0))ds = 2 )
E(t—s)r1 F(r+4)t3 T (1 —s)rtr1
+/o T'(7y) Z)3(15)(15—1—6('L'r+~°’—1ﬂ(r—|—4))/o T(y+7) vs(t)ds
where ¢P+3

~T(p+4) #0077 ~T(q+4) #0, 7

Theorem 4. Let (Hy) and (H,) hold and let cP*+3
T3 —T(r +4) # 0. If the inequality

max (C151,C252, C353,C451,Cs5y, C653>

Proof.
|x(t) — x(t)]
_rwinwmwﬂ;fﬂwmﬂmamfwum%ﬁmv 2(t)

— fi(t, x(),y(b), 2(t), D°x (1), DEy(t),f D‘Tz(t))‘ + r(«x1+1)
T(p+4)c™tr n -
F(Z +4))gf(rx 1) P ; filt, (1), y(t

= (0, (0), (0 DPx(0) Dy(0) D°2(0) | + s

+ 6|gp+3 _

—T(p+4) #0,07°

is satisfied, then the proposed problem is H-U stable and consequently it is generalized H-U stable

—T(r+4)#0.

I'(g+4) #0,and

(62)

(63)

On using (Hy), (63) implies that
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1% — x|
oo 1 T(p+4)ctH?
< 1 1 + 1 _|_ 1 _|_ 1 _|_ 1 ( _|_
= 1:21(;”1 + Mo+ 3ty s I’lé) F(oc—i—l) 6|gp+3 —F(p+4)|1"(zx+p+1)
X maX(Ilf* x|+ 17 =yl + |z = 2|l + [|°D°x —° D|| + ||°D’y —° D’y + ||°D’z —¢ D‘SEII)
T(p+4)c*t?
+ €1+ €1,
Fa+D)™ 6l —T(p+4)Tatp+1)
Hence,
[x = x| <G5 - %y —y,z—z)|lv + Cier (64)
Similarly,
17—yl < CS2f|(x = x, ¥ — v, 2 = 2)[[v + Caer, (65)
|z —z|| < C3S3||(X—x,7—y,Z—z)||v + Caes. (66)
On the other hand, we obtain
||CD57 _c D(SXH
T M(p+4)g+7 |
< 1 1 1 1 1 1
S Lt s s ) | Ty Y g T e T p )
(67)
< max (% — x| + 7yl + £~ 2]l + D% — D7 + DG — DAy + Dz —< D'z
i €1 I F(P+4)g“+p c
Ta—6+1)  2/cPB—T(p+4HTA—-0)T(a+p+1) -
Therefore,
1°D°% —¢ D?x|| < C4S1||(X — x,§ — v,Z — 2)||v + Caér. (68)
Similarly,
1D’y =€ D°yl| < C5S:|(X — %, 5 — y,Z = 2) |v + Cser, (69)
[°D%Z —€ D°z|| < CS3|(X — %, 7 — y,Z — 2)||v + Cees. (70)
By the norm ||||y defined in (13), we have
HY—%?—%f—ﬂv=HMX@Y—HHW—WLW—ZWWD%—‘U%WWD@—ﬁD@WWD%—”ﬁﬂD- (71)

Using (64)—(66), (68)—(70), we have

[X=xy-yz-z|v

< max (C]Sl, C,S5,,C353,C451,C5S,, C6S3) ||§ —-X,y—y,z— Z”V + max (Cl, Cy,C3,Cy, Cs5, C6> €,
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where € = max (61, €, 63) . This implies that

X =xy-yz-zlv

max (Cl, Cy,C3,Cy,Cs5, C6>

< € := Qe.

1 — max (C151, C25,,C353,C451,C55,, C6SS>

where
max (Clr CZ/ C3/ C4/ C5/ C6>

Q= > 0.

1 — max <C151,C252, C353,C451,CsSy, C653)

By Definition 5, the H-U stability criteria are satisfied. Therefore, the proposed problem
is H-U stable. O

Corollary 3. If we set
[X(t) —x(B)lr < Fle), (72)

where F € C(R, R, ), with F(0) = 0, then in this case the tripled system (1) is generalized
H-U stable.

6. Application

In this section, we apply the main results to the following general problem to illustrate

their applicability.
Example 1.
1
CD%x(t) =78 e <COS x(t) + cos® D%x(t) + siny(t) + sin® D%y(t) +sinz(t) + sin® D%z(t) +In(1+ t))

[x(8)| + [y(8)| + |2(8)] + D2x(t) +° D3y(t) +° Diz(t) ,
(613 +40) (e=5 + |x(£)| + [y(£)| + |z(£)| +¢ D2x(t) +¢ D3y(t) +¢ D3z(t))
epteo 1 Jx(t)] ly(®)] 2(1)] H°Dix(t)
D¥y() = gy (e o * @) T+ 0D * 7 1 fDix
DIy, PIDi()] >
A2(1+[D3y(1)])  m2(1+ |*D3z(1)])

|
)

1 = 12 "
t (sinx(t) +5 sin27°D3 x(t) + siny(t) + = sin27°D2y(t) + sinz(t) + - sinanDiz(t)> (73)
DY a(t) = et x(t)|cos(t)] , ry(B)lcos(t)] , _psz(t)|cos(t)] °D? cos(x)|
10 2420 3t3 +30 5t4 4 40 212 + 28
D cos(y)| | |°D2 cos(z)]
6t3 + 30 5t4 + 45
et (x(t) y(t)  z(t) 5 3 1
+ —— 5"+ 55+ = +°D2x(t) +°D? t—|—CDZZt>,
NCGETASE 7 () y(t) (1)

5
x(0) = V5,y(0) = V3,2(0) = V4,%'(0) = 2”(0) = y/(0) = y/(0) = 2/(0) = 2(0) =,

3.1 4
3

X1(0) = 3(5), ¥"(0) =]
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, . Clearly, we have
(D283 -T2 +4) £0,(
We set the functions

(cos U1 + cos v + sin vz + sin vy + sin vs + sin vg + In(1 + t)),

1
t,v1,0p,03,04,05,0 e S—
f(123456)73+t2

[01] + [v2] + |v3| + |v4] + |v5] + |vs|
(613 +40) (e + [v1] + |v2| + |v3] + [v4] + |vs| + |vg])

fZ(tl 01,02,03,04, 05, 06) =
So, for (v1,va,v3,04, s, 0s), (W1, Wa, w3, Wy, ws, we) € RC and t € [0,1], we have
‘fl (t/ 01,02,03,04,05, 06) _fl(t/ w1, Wz, w3, W4, Ws, w6)|

1
< W(Wl —wi| + [v2 — wa| + |03 — w3| + [vg — W[ + |05 — ws| + |06—w6|>,

‘f2(t/ 01,02,03,04, 05, 06) _fZ(t/ w1, W, w3, W4, W5, w6)|

5(6t3i4o)<|Ul_W1|+|U2_WZ|+|U3_w3|+|U4—w4|+|U5—W5|+|vé—w6|>.
We take
#1(0) = 93(6) = 93(8) = 4h(1) = 91() = 94(1) = 55—,
23(0) = g3(0) = 03(0) = ¢3(0) = 03() = 62 = Tz
#%=ﬂ%=u%=ui=ﬂ%=u%=%,
#%=#%=#§=uﬁ:y%=#%=%-

Similarly, we set

gl (t/ 01,02,03,04,05, 06)

_ 1 ( LN 1 jos] t4]04] t|os| £2|vs] )
2B+ \A+or])  Atlo2]) (At os]) 7+ [oa]) 721+ os]) 72 (1+[o6]) )

3 2 5

t t
22(t,v1,02,03,04,05,06) = (smvl + — 9.3 5 sin(27tv) + sinvs + p sin(27tvy) + sinvs + — 5 s1n(27'cv6)>

18¢—F

So, for (v1,v2,v3,v4,Us, V), (W1, Wa, W3, Wa, W5, We) € Réandt e [0, 1], we have

|g1 (t/ 01,02,03,04, 05, 06) - gl (t/ w1, W, w3, W4, W5, w6) |

1 1 1 t4
< = o — iy — s — S P
S ssE 0 Tl gm0 Wl gy s — wal + g E e e
¢ 3
* ) T Yl gy 06~ el
Here, we take
1 tt t 3

P1(t) = pa(t) = 93(t) = mrq)};(ﬂ = m/(l’%(t) = mrq’%(f) = ®2B+1)
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The corresponding supremum values are given by
1 1 1
1_ 1 1_ 1 1 1_ .1 _
PL=P2=P3= 50 P4~ 5573 P5=FP6= 553
Similarly, from
|82(t, 01,02, 03,04, 05, 06) — g2(t, W1, W, W3, Wa, w5, w)|
< oy — w1+ ———Jos — w0a] + — [0 — w] + —— o — 0y
18—t 16273¢—t 18et 187e~t
+;|v —w \+L|v —w |>
1880 T g O O )
we have
1 B p t2 P p
200N — 208y — 201) — 200 — —B 2 200y bt
p1(t) = @3(t) = @5(t) = T80 P’ p(t) = T3¢ y(t) = . —5 P6(t) = 904
The corresponding supremum values are:
2_ 2 _ 2_ ¢ 2_ ¢ 2_ ¢ 2_ ¢
PL=MB =B =15 P27 1m8 P~ 18 P67 94
We set the functions
4 el
vi]cos(t)]  _,vp|cos(t)|  _;svs|cos(t)|  |°D2 cos vyl
h t/ 7 7 7 7 s = T5 /D | AN A2 1 AN
1(£01,02,03,04,95,06) = 75 + Zp 5 35 1 30 5t4+40 | 212128
|CD% cos vs| \CD% Cos vg|
613 + 30 5t4+45 '
et vy vy U3
h t/ 7 7 ’ ’ 7 = T ~ = .
2(t, 1,02, 03,04, 05, 0g) 60+t3(3+7+5+v4+v5+v6>
So, for (v1,va,v3,04, s, 0s), (W1, Wa, w3, Wy, w5, we) € RC and t € [0,1], we have
|h1(t, 01,02, 03,04,05,06) — h1(t, w1, wo, w3, wy, ws, we)|
< o — w1+ [0y — Wa| + ————— |03 — W3]+~ |0s — w
=220t T et r30) P T T s pag) 0 Y T 2228 T
+#|U —w |+$|v — W
65 +30 0 5 pa5le T ek
We have
1 1 1 1
o=, N)=——) )=, )=,
1 1
0(t) = ——r, Ot = o
SO =grra0r %W =55

The associated supremum values are:

=

From
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‘hZ(t/ 01,02,03,04, 05, 06) - hZ(t/ w1, Wz, w3, W4, Ws, w6) |

2
1

e

+ -
5v/60 + t3

R(t) =

—t

e—t

3v60 + 13

|v3 — w3| +

et et
< ——— o —wy |+ —— vy — W
3\/6O+t3| 1wl 7\/60+t3’

—t —t —t

e e e
vy — wy| + ——— |05 — w5| + ——=|v6 — W|,
Veor B Tl gt T sl g e~ el
we have
B = — R — () = () = () =
2 7Veo+B 0 560+ * > 6 V60 + B

The associated supremum values are:

e =, =, ety
17 6v15 % 14v15T P 10v/150 P

It follows that
max <C151, Cy5,,C353,C451,C55,, C653> < 1.

Therefore, by Theorem 2, we conclude that the solution to the tripled system (73) is a unique
one. Also, the requirements of Theorem 4 are fulfilled. Therefore, it is H-U stable.

7. Conclusions

In this research, we investigated a tripled system of n-term NFDEs. We explored this
novel class of differential equations, focusing on existence and stability results. We deter-
mined sufficient conditions for the existence of at least one unique solution by applying
Schaefer’s and Banach’s fixed point theorems, respectively. Furthermore, by employing
Hyers—-Ulam stability analysis, we established criteria for the system’s stability. The ap-
plicability of these main results is illustrated through a self-explanatory example. Tripled
systems of n-term NFDEs have a wide range of applications. Notably, they can be applied to
gene regulatory networks, epidemiology, the dynamics of three hormones in an endocrine
system, three-species food chains, three-stage life cycles, microbial community dynamics,
and so on.
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