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Abstract: This paper investigates the design and stability of Traub–Steffensen-type iteration schemes
with and without memory for solving nonlinear equations. Steffensen’s method overcomes the
drawback of the derivative evaluation of Newton’s scheme, but it has, in general, smaller sets of
initial guesses that converge to the desired root. Despite this drawback of Steffensen’s method, several
researchers have developed higher-order iterative methods based on Steffensen’s scheme. Traub
introduced a free parameter in Steffensen’s scheme to obtain the first parametric iteration method,
which provides larger basins of attraction for specific values of the parameter. In this paper, we
introduce a two-step derivative free fourth-order optimal iteration scheme based on Traub’s method
by employing three free parameters and a weight function. We further extend it into a two-step
eighth-order iteration scheme by means of memory with the help of suitable approximations of the
involved parameters using Newton’s interpolation. The convergence analysis demonstrates that the
proposed iteration scheme without memory has an order of convergence of 4, while its memory-based
extension achieves an order of convergence of at least 7.993, attaining the efficiency index 7.9931/3 ≈ 2.
Two special cases of the proposed iteration scheme are also presented. Notably, the proposed methods
compete with any optimal j-point method without memory. We affirm the superiority of the proposed
iteration schemes in terms of efficiency index, absolute error, computational order of convergence,
basins of attraction, and CPU time using comparisons with several existing iterative methods of
similar kinds across diverse nonlinear equations. In general, for the comparison of iterative schemes,
the basins of iteration are investigated on simple polynomials of the form zn − 1 in the complex plane.
However, we investigate the stability and regions of convergence of the proposed iteration methods
in comparison with some existing methods on a variety of nonlinear equations in terms of fractals
of basins of attraction. The proposed iteration schemes generate the basins of attraction in less time
with simple fractals and wider regions of convergence, confirming their stability and superiority in
comparison with the existing methods.

Keywords: nonlinear equations; iteration methods with-memory; order of convergence; efficiency
index; fractal analysis; basins of attraction

MSC: 65H05; 65D05; 65B99

1. Introduction

Several real-life problems in engineering and applied sciences involve nonlinear equa-
tions of the form ϕ(ω) = 0, where ϕ : I ∈ R → R and I is an open interval. The solution of
these nonlinear equations is the basic aim of this research, which has a simple zero, say α.
Since the roots of a nonlinear equation cannot always be determined accurately, we have to
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find a numerical solution by using numerical methods. For this purpose, iteration methods,
like Newton’s method, are frequently used [1–3]. Traub [3] classified these iterative meth-
ods into two categories; one-point (one-step) iterative methods and multi-point (multi-step)
iterative methods. Newton’s method [1] and Steffensen’s method [4] are famous examples
of one-step, one-point iterative methods, given by (1) and (2), respectively.

ωj+1 = ωj −
ϕ(ωj)

ϕ′(ωj)
, j ≥ 0, (1)

χj = ωj + ϕ(ωj), j ≥ 0,

ωj+1 = ωj −
ϕ(ωj)

ϕ[ωj, χj]
, (2)

where ϕ[ωj, χj] =
ϕ(ωj)−ϕ(χj)

ωj−χj
.

The investigation of the dynamical behavior of iterative methods using basins of
attraction provides information about the regions of convergence and the selection of initial
guesses for which a method converges or fails to converge. To investigate the regions of
convergence of an iteration scheme for solving a nonlinear equation ϕ(z) = 0, we plot its
basins of attraction, i.e., the set of initial guesses for which the iteration scheme converges to
the roots [5,6], as follows. We chose an initial guess z0 from a grid of 500× 500 points within
the rectangle D ⊂ C, which contains all of the roots of ϕ(z) = 0, each allocated by a unique
color. Starting with an initial point in D, an iteration method may either converge to one of
the roots or diverge after a specified number of iterations ‘20’, usually marked with the color
black. For more details regarding basins of attraction, one should refer to [6,7]. For instance,
we plot the basins of attraction of ϕ(z) = z3 − 1 for Steffensen’s method (2), which has
three roots—1,−0.5 − 0.866025ι, and −0.5 + 0.866025ι—contained in D = [−3, 3]× [−3, 3]
and represented by cyan, magenta, and yellow, respectively. Figure 1 represents the basins
of attraction of ϕ(z) = z3 − 1 using Newton’s method (1) and Steffensen’s method (2) with
1335 and 226, 616 black points, respectively, from a total of 251, 001 points in the region.
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Figure 1. Basins of attraction of ϕ(z) = z3 − 1 using Newton’s method (1) and Steffensen’ method (2).

Steffensen’s method overcomes the difficulty of derivative calculation in Newton’s
scheme, but, in general, it has smaller sets of initial guesses that converge to the desired
roots (basins of attraction) as shown in Figure 2. In recent years, several researchers
have developed higher-order variants of Steffensen’s scheme despite this drawback of
Steffensen’s method. Traub [3] introduced a free parameter in Steffensen’s scheme (2) to
obtain the first parametric derivative free iteration method, which provides larger basins
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of attraction for specific values of the parameter. Traub [3] further presented an iteration
method with memory by using a suitable approximation of the free parameter β j as follows:

χj = ωj + β jϕ(ωj), β j ̸= 0,

ωj+1 = ωj −
ϕ(ωj)

ϕ[ωj, χj]
, j ≥ 0, (3)

where ω0, β0 are given, ϕ[ω, χ] = ϕ(ω)−ϕ(χ)
(ω−χ)

denotes the divided difference of first order

and β j =
−1

N′
1(ωj)

, j ≥ 1, where N1 = ϕ(ωj) + (ω − ωj)ϕ[ωj, χj] is the first degree of New-

ton’s interpolation polynomial. The iterative scheme with memory given by (3) has a
convergence order of 2.41. Figure 2 represents the basins of attraction of ϕ(z) = z3 − 1
using Traub’s method (3) for β0 = 0.01 and β0 = 0.001 with 5825 and 2177 black points, re-
spectively.
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Figure 2. Basins of attraction of ϕ(z) = z3 − 1 using Traub’s method (3).

The concept of an optimal root finding method was stated by Kung and Traub [8],
that a multi-step iterative method without memory using j + 1 function evaluations per
iteration has an order of convergence of 2j (optimal method). Ostrowski [2] defined the
efficiency index, i.e., EI = ρ1/j, to compute the efficiency of a root-finding iteration scheme,
where ρ and j denote the order of convergence and the total number of function evaluations
used by an iterative scheme per iterative step, respectively. For an optimal j-step iterative
method (based on j + 1 function evaluations) without memory, the efficiency index is

EI = lim
j→∞

2
j

ρ+1 = 2. For instance, the efficiency index of the two-step optimal fourth order

King’s method [9] is 4
1
3 ≃ 1.587 (and requires three functional evaluations).

Since multi-step (multi-point) methods have advantages over the one-step (one-point)
iteration methods in terms of the efficiency index and convergence order, several optimal
multi-step (multi-point) iteration methods without memory for solving nonlinear equations
have been derived in recent years (see, for example, [10–18]).

Traub [3] pointed out that in some cases, the convergence order and efficiency index
EI of an iteration scheme can be improved without using additional functional evaluations
based on the approximation of an accelerating parameter, which appears in its error term
by using an interpolating polynomial, which passes through the available points at current
and previous iterations. Such iteration methods are defined as methods with memory [3].
Inspired by this idea, in recent years, several two- and three-step iterative methods with
memory have been developed by employing free parameters [19–30]. Recently, Abdul-
lah et al. [30] have developed a two-point iterative method with-memory by using Hermite
interpolation polynomials in an existing sixth-order method without memory. They im-
proved the R−order of convergence of a sixth-order method to 7.2749 and the efficiency
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index from 1.37 to 1.64. For more details regarding the improvement of convergence order
by means of memory, one should see, e.g., [14,24].

In this paper, we present a family of two-step iterative root-finding methods with
memory with a convergence order of 7.993 ≃ 8 and an efficiency index of 7.9931/3 ≃ 2,
which is equal to an efficiency index of an j−point optimal method without memory
of order 2j. In addition, the proposed methods possess wider regions of convergence,
illustrated in terms of basins of attraction. The remaining contents of the paper proceed as
follows. In Section 2, based on Traub’s scheme (3) and the second step of King’s method [9]
and by using a parametric approximation of a derivative along with a weight function, we
obtain a new optimal fourth-order derivative-free iteration scheme. In Section 3, we employ
three self-accelerating parameters in the new optimal fourth-order scheme such that the
convergence order is improved from 4 to 8 without using additional functional evaluations
(i.e., using only three functional evaluations). It is necessary to remark that the efficiency
index of the fourth-order method is improved from 1.587 to 2. Section 4 is devoted to
presenting some particular cases of the proposed family and weight functions. In Section 5,
some numerical examples and real-life applications are reported to test the efficiency and
performance of proposed methods and to justify the theoretical results. Section 6 presents
an extensive analysis and comparison of proposed methods with existing ones in terms of
fractals of basins of attractions in the complex plane on a variety of nonlinear functions.
Finally, some concluding remarks are given in Section 7.

2. Two-Step Traub-Steffensen Type Iterative Scheme

In this section, we design a derivative-free two-step fourth-order optimal iteration
scheme without memory. We introduce a free parameter q in Traub’s method without
memory and combine it with the second step of King’s scheme [9] as follows:

χj = ωj + pϕ(ωj), p ̸= 0, j ≥ 0,

ωj+1 = ωj −
ϕ(ωj)

ϕ[ωj, χj] + qϕ(ωj)
,

ωj+1 = zj −
ϕ(zj)

ϕ′(ωj)

ϕ(ωj) + λϕ(zj)

ϕ(ωj) + (λ − 2)ϕ(zj)
, λ ∈ R. (4)

By approximating ϕ′(ωj) with ϕ[zj, χj] + qϕ(χj) + s(zj − χj)(zj − ωj) in the second step of
the scheme (4), the following derivative-free two-step iteration scheme is obtained:

zj = ωj −
ϕ(ωj)

ϕ[ωj, χj] + qϕ(χj)
, χj = ωj + pϕ(ωj), j ≥ 0,

ωj+1 = zj −
ϕ(zj)

ϕ[zj, χj] + qϕ(χj) + s(zj − χj)(zj − ωj)

ϕ(ωj) + λϕ(zj)

ϕ(ωj) + (λ − 2)ϕ(zj)
, (5)

where the scalars p ̸= 0, q and s are free parameters. With the help of Taylor series
expansions, one can obtain the following error equation for the iteration scheme (5):

ej+1 = −(c2 + q)2(1 + pc1)
2e3

j ,

where ej = ωj − α (ωj and α being approximate and exact roots, respectively) is the error

at jth iteration and ck = ϕk(α)
k!ϕ′(α) . Note that the scheme (5) is not optimal as it provides

convergence order 3 by using three functional evaluations. To make it optimal, we use a

real valued weight function G(tj) (where tj =
ϕ(zj)

ϕ(ωj)
) in (5) and achieve the following family

of optimal fourth-order methods:
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zj = ωj −
ϕ(ωj)

ϕ[ωj, χj] + qϕ(χj)
, χj = ωj + pϕ(ωj), j ≥ 0,

ωj+1 = zj − G(tj)
ϕ(zj)

ϕ[zj, χj] + qϕ(χj) + s(zj − χj)(zj − ωj)

ϕ(ωj) + λϕ(zj)

ϕ(ωj) + (λ − 2)ϕ(zj)
. (6)

The subsequent theorem demonstrates the conditions on the weight function G(tj) to obtain
optimal fourth-order convergence of the scheme (6).

Theorem 1. Let α ∈ I be a simple root of a sufficiently differentiable nonlinear function ϕ such
that ϕ : I ⊆ R → R, where I ⊆ R is an open set. Let an initial approximation ω0 be close enough
to α and if G(0) = 1, G′(0) = −1 and G′′(0) < ∞, then the iteration scheme (6) has convergence
order 4 with the error equation as follows:

ej+1 = − 1
2c1

(1 + pc1)
2(c2 + q)(−4λq2 pc2

1 + G′′(0)q2 pc2
1 + 2q2 pc2

1

−8λqc2 pc2
1 + 4qc2

1c2 p + 2G′′(0)qc2 pc2
1 − 4λc2

2 pc2
1 + G′′(0)c2

2 pc2
1

+2c2
2 pc2

1 − 4c1λq2 + c1G′′(0)q2 + 2c1q2 − 8c1λqc2 + 2c1G′′(0)qc2

−4c1λc2
2 + 2c1c3 − 2c1c2

2 + c1G′′(0)c2
2 − 2s)e4

j , (7)

where λ ∈ R, p ̸= 0, q and s are free parameters, c1 = ϕ′(α) and ck =
ϕ(k)(α)
k!ϕ′(α) , k ≥ 2.

Proof. Let the error at jth iteration be ej = ωj − α. By using Taylor’s series expansions of
the function ϕ in the jth iteration, the proof is similar to those given in [14,19,21]. Hence, it
is omitted.

Remark 1. Theorem 1 demonstrated that convergence order of the iteration scheme (6) is 4 and it’s
efficiency index is 4

1
3 ≈ 1.587.

Remark 2. If we chose p = − 1
c1

and q = −c2, then error Equation (7) becomes

ej+1 =
−c2

1c2
2c2

3 + sc1c2
2c3

c2
1

e7
j + O(e8

j ). (8)

Further, by choosing s = c1c3, the obtained method has a convergence order of 8. Therefore, it is
concluded from the error analysis that the free parameters p, q and s in (7) perform a significant
role in the with-memorization of the method without memory (6). These parameters are called
self-accelerating parameters. Hence, the scheme (6) is extendable to a novel method with memory
with an accelerated order of convergence 8 and a very high-efficiency index 2.

3. Two-Step Tri-Parametric Iterative Scheme With-Memory

In this section, without requiring any additional functional evaluations, we extend the
Traub–Steffensen type fourth-order tri-parametric iteration scheme (6) to an eighth-order
iteration scheme with memory. To achieve this goal, we employ Newton’s interpolation
polynomials of an appropriate degree to recursively determine the self-accelerating param-
eters p, q, and s utilizing the already saved points at the current and previous iterations.
We select the associated parameters p, q, and s in a manner that increases the fourth order
of convergence of the scheme (6), as previously discussed.

If we choose p = − 1
c1

=, q = −c2 and s = c1c3, the order of the scheme (6) increase

up to eight. Since the root α and consequently the values of ϕ′(α), ϕ′′(α) and ϕ′′′(α) are
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not known, we approximate the self-accelerators p, q, and s in (6) recursively by using
Newton’s interpolation polynomials of an appropriate degree at each iterative step as:

p = pj = − 1
N′

9(ωj)
≈ − 1

ϕ′(α)
,

q = qj = −
N′′

10(χj)

2N′
10(χj)

≈ −c2,

s = sj =
N′′′

11(zj)

6
≈ c1c3. (9)

where N9(ξ) = N9
(
ξ, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3

)
is a ninth degree

Newton’s interpolation polynomial that passes through the points ωj, zj−1, χj−1, ωj−1, zj−2,
χj−2, ωj−2, zj−3, χj−3, ωj−3, for any j ≥ 3, given by:

N9
(
ξ, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3

)
= ϕ(ωj) +

(
ξ − ωj

)
ϕ
[
ωj, zj−1

]
+
(
ξ − ωj

)(
ξ − zj−1

)
ϕ
[
ωj, zj−1, χj−1

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)
ϕ
[
ωj, zj−1, χj−1, ωj−1

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)
ϕ
[
ωj, zj−1, χj−1, ωj−1, zj−2

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)
ϕ
[
ωj, zj−1, χj−1, ωj−1, zj−2, χj−2

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)
ϕ
[
ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)
ϕ
[
ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)(
ξ − zj−3

)
ϕ
[
ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3

]
+
(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)(
ξ − zj−3

)(
ξ − χj−3

)
ϕ
[
ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3

]
. (10)

N10(ξ) = N10(ξ, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3) is a tenth degree
Newton’s interpolation polynomial that passes through the points, χj, ωj, zj−1, χj−1, ωj−1,
zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3, for any j ≥ 3, given by:

N10(ξ, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3)

= ϕ
(
χj
)
+
(
ξ − χj

)
ϕ
[
χj, ωj

]
+
(
ξ − χj

)(
ξ − ωj

)
ϕ
[
χj, ωj, zj−1

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)
ϕ
[
χj, ωj, zj−1, χj−1

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1, zj−2

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)(
ξ − zj−3

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3

]
+
(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)(
ξ − zj−3

)(
ξ − χj−3

)
ϕ
[
χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3

]
. (11)

N11(ξ) = N11(ξ, zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3) is an eleventh
degree Newton’s interpolating polynomial that passes through the points, zj, χj, ωj, zj−1,
χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3, for any j ≥ 3, given by:
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N11(ξ, zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3)

= ϕ
(
zj
)
+
(
ξ − zj

)
ϕ
[
zj, χj

]
+
(
ξ − zj

)(
ξ − χj

)
ϕ
[
zj, χj, ωj

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)
ϕ
[
zj, χj, ωj, zj−1

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)
ϕ
[
zj, χj, ωj, zj−1, χj−1

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)
(ξ − vn−1)

(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)(
ξ − zj−3

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3

]
+
(
ξ − zj

)(
ξ − χj

)(
ξ − ωj

)(
ξ − zj−1

)(
ξ − χj−1

)(
ξ − ωj−1

)(
ξ − zj−2

)(
ξ − χj−2

)(
ξ − ωj−2

)(
ξ − zj−3

)(
ξ − χj−3

)
ϕ
[
zj, χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3

]
. (12)

Finally, we present the following two-step tri-parametric family of iterative methods with-
memory, i.e., by replacing the parameters p, q, and s in the scheme (6) with self-accelerators
pj, qj, and sj, given in (9):

zj = ωj −
ϕ(ωj)

ϕ[ωj, χj] + qjϕ(χj)
, χj = ωj + pjϕ(ωj), j ≥ 0,

pj = − 1
N′

9
(
tj
) , qj = −

N′′
10
(
χj
)

2N′
10
(
χj
) , sj =

N′′′
11
(
χj
)

6
,

ωj+1 = zj − G(tj)
ϕ(zj)

ϕ[zj, χj] + qjϕ(χj) + sj(zj − χj)(zj − ωj)

ϕ(ωj) + λϕ(zj)

ϕ(ωj) + (λ − 2)ϕ(zj)
. (13)

It is worth mentioning that the initial values p0, q0, and s0 could be taken as very small
positive values. Additionally, the self-accelerator pj is to be computed exactly before the
start of each iteration, qj is computed after χj, and sj is computed after the computation
of zj.

The following theorem demonstrates that the newly presented iterative scheme with-
memory (13) has a convergence order of 7.993 with a computational efficiency index of
1.999 ≃ 2.

Theorem 2. Let ω0 be an initial guess near enough to the simple zero α of a sufficiently differentiable
function ϕ. If self-accelerators pj, qj, and sj are iteratively computed by using the formulae given
in (9), then the R−order of convergence of the proposed iterative scheme with memory (13) is at
least 7.993 with an efficiency index of 1.999 ≃ 2.

Proof. The R-order of convergence of the iteration method (13) is ascertained using the
Herzberger’s matrix method [31]. The lower bound of convergence order of one-step
m−point method with memory

ωj = ψ
(
ωj−1, ωj−2, · · · , ωl−m

)
,
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is the spectral radius of its associated matrix Q(m) =
(
li,j
)
, 1 ≤ i, j,≤ m, with follow-

ing elements:

l1,j = number of functional evaluations evaluated at point ωl−j where j = 1, 2, · · · , m,

li,i−1 = 1, for i = 2, 3, · · · , m,

li,j = 0, elseways.

Whereas, the spectral radius of Q1 · Q2 · · · · · Qm is defined as the lower bound of
the order of an m−step iterative method ψ = ψ1 ◦ ψ2 ◦ · · · ◦ ψm, where the matrices Qt
correspond to the iteration steps ψt, 1 ≤ t ≤ m.

According to the scheme (13), we obtain the corresponding matrices as follows:

ωj+1 = ψ1

(
zj, χj, ωj, zj−1, χj−1, ωj−1, ωj−2, zj−2, χj−2, zj−3, χj−1, ωj−3

)

→ Q1 =



1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



,

zj = ψ2

(
χj, ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3, zj−4

)

→ Q2 =



1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



,

χj = ψ1

(
ωj, zj−1, χj−1, ωj−1, zj−2, χj−2, ωj−2, zj−3, χj−3, ωj−3, zj−4, χj−4

)

→ Q3 =



1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



,
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Hence, we obtain:

Q(3) = Q1 · Q2 · Q3 =



4 4 4 4 4 4 4 4 4 4 0 0
2 2 2 2 2 2 2 2 2 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0



.

The above matrix Q(3) has the eigenvalues: 0, 0, 0, 0, 0, 0, 0, 0, 7.993145621,−0.687271071,
−0.152937275 + 0.8394933233i,−0.152937275 − 0.8394933233i. As a result, the matrix’s
spectral radius Q(3) is ρ

(
Q(3)

)
= 7.993145621. Hence, we conclude that the order of

convergence of the proposed two-step iterative scheme with memory (13) is at least 7.993
with an efficiency index of 1.999 ≃ 2.

4. Special Cases

One can obtain several special cases of iteration scheme with memory (13) by choos-
ing the weight functions G(tj), such that the conditions of Theorem 1, i.e., G(0) = 1,
G′(0) = −1, G′(0) < ∞ are satisfied. Here, we present two simple special cases of our
iteration scheme (13) as follows.

Case 1: By choosing G(tj) = 1 − tj (where tj =
ϕ(zj)

ϕ(ωj)
) in the scheme (13), we achieve

the following specific method using the memory represented by SM1:

zj = ωj −
ϕ(ωj)

ϕ[ωj, χj] + qjϕ(χj)
, χj = ωj + pjϕ(ωj), j ≥ 0,

pj = − 1
N′

9
(
tj
) , qj = −

N′′
10
(
χj
)

2N′
10
(
χj
) , sj =

N′′′
11
(
χj
)

6
,

ωj+1 = zj −
(

1 −
ϕ(zj)

ϕ(ωj)

)
ϕ(zj)

ϕ[zj, χj] + qjϕ(χj) + sj(zj − χj)(zj − ωj)

×
ϕ(ωj) + λϕ(zj)

ϕ(ωj) + (λ − 2)ϕ(zj)
. (14)

Case 2: By taking G(tj) =
1

1 + tj
(being tj =

ϕ(zj)

ϕ(ωj)
) in the scheme (13), we obtain

another method with-memory denoted by SM2, given as follows:

zj = ωj −
ϕ(ωj)

ϕ[ωj, χj] + qjϕ(χj)
, χj = ωj + pjϕ(ωj), j ≥ 0,

pj = − 1
N′

9
(
tj
) , qj = −

N′′
10
(
χj
)

2N′
10
(
χj
) , sj =

N′′′
11
(
χj
)

6
,

ωj+1 = zj −
ϕ(ωj)

ϕ(ωj) + ϕ(zj)

ϕ(zj)

ϕ[zj, χj] + qjϕ(χj) + sj(zj − χj)(zj − ωj)

×
ϕ(ωj) + λϕ(zj)

ϕ(ωj) + (λ − 2)ϕ(zj)
. (15)
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5. Numerical Experiments and Applications

In this section, we test our two-step tri-parametric methods with-memory (14) and
(15) denoted by (SM1) and (SM2), respectively, with the help of different nonlinear func-
tions given by Examples 1–7. To avoid the loss of significant digits and to achieve high
accuracy, we have used the arbitrary precision arithmetics with 1000 significant digits in
the programming package Maple 18. The formula to compute the computational order of
convergence (COC) is given as follows [32]:

COC ≈
log
∣∣ϕ(ωj+1

)
/ϕ
(
ωj
)∣∣

log
∣∣ϕ(ωj

)
/ϕ
(
ωj−1

)∣∣ . (16)

For all the comparisons, we have chosen σ1,j = σ2,j = σ3,j = δ1,j = δ2,j = δ3,j =
pj = qj = sj = 0.01 to start the iterations. We compare the accuracy and efficiency of
our proposed iteration schemes (SM1) for λ = 2 and (SM2) for λ = 1 with the existing
two-step methods with-memory of Abdullah et al. [30] denoted by (SH), Zafar et al. [27]
denoted by (FZ), Zaka Ullaha et al. [28] denoted by (ZK), Wang et al. [33] denoted by
(XW), Choubey et al. [19] denoted by (NC), and Choubey et al. [20] denoted by (JN),
described as follows:

Method SH:

wj = ωj −
ϕ(ωj)

ϕ′(ωj)− Ljϕ(ωj)
, j ≥ 0,

ωj+1 = wj −
2ϕ(wj)ϕ

′(wj)

2ϕ′2(wj)− ϕ(wj)Tϕ(wj)
, (17)

where

Tϕ(wj) =
1

wj − ωj

(
ϕ′(ωj) + 2ϕ′(wj) + 3

ϕ(ωj)− ϕ(wj)

wj − ωj

)
(18)

and

Lj =
2ϕ[ωj, ωj, wj−1]− (2ϕ[ωj, wj−1, ωj−1, ωj−1](ωj − wj−1)− 4ϕ[ωj, ωj, wj−1, ωj−1])

2ϕ′(ωj)
. (19)

Method FZ:

χj = ωj + σ1,lϕ
(
ωj
)
, σ1,l = − 1

N′
3
(
ωj
) , j ≥ 0,

rj = ωj −
ϕ
(
ωj
)

ϕ
[
ωj, χj

]
+ σ2,lϕ

(
χj
) , σ2,l = −

N′′
4 (χj)

2N′
4
(
χj
) ,

ωj+1 = rj −
(

1
1 + k j

)
1(

1 − ϕ(rj)
ϕ(ωj)

)2

ϕ(rj)

ϕ[χj, rj] + σ2,lϕ
(
χj
)
+ σ3,l(rj − χj)(rj − ωj)

,

(20)

k j =
ϕ
(
rj
)

ϕ
(
ωj
) , σ3,l =

1
6

N′′′
5
(
rj
)
,

where, for j ≥ 1,

N3(ξ, ωj, rj−1, χj−1, ωj−1) = ϕ(ωj) + (ξ − ωj)ϕ[ωj, rj−1] + (ξ − ωj)(ξ − rj−1)ϕ[ωj, rj−1, χj−1]

+ (ξ − ωj)(ξ − rj−1)(ξ − χj−1)ϕ[ωj, rj−1, χj−1, ωj−1],
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N4(ξ, χj, ωj, rj−1, χj−1, ωj−1) = ϕ(χj)+ (ξ −χj)ϕ[χj, ωj] + (ξ −ωj)(ξ −χj)ϕ[χj, ωj, rj−1]

+ (ξ − χj)(ξ − ωj)(ξ − rj−1)ϕ[χj, ωj, rj−1, χj−1]

+ (ξ − χj)(ξ − rj−1)(ξ − ωj)(ξ − χj−1)ϕ[χj, ωj, rj−1, χj−1, ωj−1],

and

N5(ξ, rj, χj, ωj, rj−1, χj−1, ωj−1) = ϕ(rj) + (ξ − rj)ϕ[rj, χj] + (ξ − χj)(ξ − rj)ϕ[rj, χj, ωj]

+ (ξ − ωj)(ξ − χj)(ξ − rj)ϕ[rj, χj, ωj, rj−1]

+ (ξ − rj−1)(ξ − ωj)(ξ − χj)(ξ − rj)ϕ[rj, χj, ωj, rj−1, χj−1]

+ (ξ − χj−1)(ξ − rj−1)(ξ − ωj)(ξ − χj)(ξ − rj)ϕ[rj, χj, ωj, rj−1, χj−1, ωj−1].

Method ZK:

sj = ωj + δ1,lϕ
(
ωj
)
, δ1,l = − 1

N′
6
(
ωj
) , j ≥ 0,

dj = ωj −
ϕ
(
ωj
)

ϕ
[
ωj, sj

]
+ δ2,lϕ

(
sj
) , δ2,l = −

N′′
7 (sj)

2N′
7
(
sj
) ,

ωj+1 = dj −
ϕ(dj)

ϕ[ωj, dj] + ϕ
[
sj, ωj, dj

](
dj − ωj

)
+ δ3,l(dj − ωj)(dj − sj)

, (21)

δ3,l =
N

′′′

8
(
dj
)

6
,

where, for j ≥ 2, N6(ξ) is a sixth degree interpolation polynomial passing through
ωj, dj−1, ωj−1, sj−1, dj−2, sj−2, ωj−2, N7(ξ) is a seventh degree interpolation polynomial
passing through sj, ωj, dj−1, ωj−1, sj−1, dj−2, sj−2, ωj−2, and N8(ξ) is an eighth degree inter-
polation polynomial passing through dj, sj, ωj, dj−1, ωj−1, sj−1, dj−2, sj−2, ωj−2.

Method NC:

χj = ωj −
f (ωj)

f ′(ωj)− Lj f (ωj)
,

ωj+1 = χj −
f (χj)p1(ωj, χj)

2p2
1(ωj, χj)− f (χj)p2(ωj, χj)

,
(22)

where, p1(ωj, χj) = 2
(

ϕ(χj)−ϕ(ωj)
χj−ωj

)
− ϕ′(ωj), p2(ωj, χj) =

2
χj−ωj

(
ϕ(χj)−ϕ(ωj)

χj−ωj
− ϕ′(ωj)

)
.

Method JN:

χj = ωj −
f (ωj)

f ′(ωj)− Lj f (ωj)

ωj+1 = χj −
2 f (ωj) f ′(χj) f (χj)

2 f (ωj) f ′(χj)2 − f ′(ωj)2 f (χj) + f ′(ωj) f ′(χj) f (χj)
,

(23)

For methods with-memory SH, NC and JN, the values associated with the parameter
Lj have been recorded as:

Formula 1:

Lj =
H

′′
2 (ωj)

2ϕ′(ωj)
, (24)

where H2(ω) = ϕ(ωj) + ϕ[ωj, ωj](ω − ωj) + ϕ[ωj, ωj, χj−1](ω − ωj)
2 and H

′′
2 (ωj) = 2ϕ

[ωj, ωj, χj−1].
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Formula 2:

Lj =
H

′′
3 (ωj)

2ϕ′(ωj)
, (25)

where H3(ω) = H2(ω)+ϕ[ωj, ωj, χj−1, ωj−1](ω−ωj)
2(ω−χj−1) and H

′′
3 (ωj) = 2ϕ[ωj, ωj,

χj−1, ωj−1](ωj − χj−1) + 2ϕ[ωj, ωj, χj−1].
Formula 3:

Lj =
H

′′
4 (ωj)

2ϕ′(ωj)
(26)

where H4(ω) = H3(ω) + ϕ[ωj, ωj, χj−1, ωj−1, ωj−1](ω − ωj)
2(ω − χj−1)(ω − ωj−1) and

H
′′
4 (ωj) = 2ϕ[ωj, ωj, χj−1]− (2ϕ[ωj, χj−1, ωj−1, ωj−1](ωn − χj−1)− 4ϕ[ωj, ωj, χj−1, ωj−1]).

Method XW:

χj = ωj −
ϕ(ωj)

ϕ′(ωj) + Ljϕ(ωj)

rj = χj −
ϕ(ωj)

2ϕ[ωj, χj]− ϕ′(ωj) + Ljϕ(χj)

ωj+1 = rj − [1 +
3
2
(aj − b3

j )]
(β + ξ)ϕ(rj)

2ξϕ[χj, rj] + (β − ξ)(ϕ′(ωj) + Tϕ(rj))

(27)

where aj =
ϕ(rj)

ϕ(ωj)
, bj =

ϕ(χj)

ϕ(ωj)
, β = χj − ωj, ξ = rj − ωj and T ∈ R.

For the method with-memory XW, the parameter value Lj is recorded as:
Formula 1:

Lj =
H

′′
2 (ωj)

2ϕ′(ωj)
, (28)

where H2(ω) = ϕ(ωj) + ϕ[ωj, ωj](ω − ωj) + ϕ[ωj, ωj, rj−1](ω − ωj)
2 and H

′′
2 (ωj) = 2ϕ[ωj,

ωj, rj−1].
Formula 2:

Lj =
H

′′
3 (ωj)

2ϕ′(ωj)
, (29)

where H3(ω) = H2(ω)+ϕ[ωj, ωj, rj−1, χj−1](ω −ωn)2(ω − rj−1) and H
′′
3 (ωj) = 2ϕ[ωn, ωj,

rj−1] + 2ϕ[ωj, ωj, rj−1, χj−1](ωj − rj−1).

Formula 3:

Lj =
H

′′
4 (ωj)

2ϕ′(ωj)
, (30)

where H4(ω) = H3(ω) + ϕ[ωj, ωj, rj−1, ωj−1](ω − ωj)
2(ω − rj−1) + ϕ[ωj, ωj, rj−1, ωj−1,

ωj−1](ω − ωj)
2(ω − rj−1)(ω − χj−1) and H

′′
4 (ωj) = H

′′
2 (ωj) + 2ϕ[ωj, ωj, rj−1, χj−1](ωn −

rj−1) + 2ϕ[ωn, ωn, rj−1, χj−1, ωj−1](ωj − rj−1)(ωj − χj−1)].
Formula 4:

Lj =
H

′′
5 (ωj)

2ϕ′(ωj)
, (31)

where H5(ω) = H4(ω) + ϕ[ωj, ωj, rj−1, χj−1, ωj−1, ωj−1](ω − ωj)
2(ω − rj−1)(ω − ωj−1)

(ω−ωj−1) and H
′′
5 (ωj) = H

′′
4 (ωj)+ 2ϕ[ωj, ωj, rj−1, χj−1, ωj−1, ωj−1](ωj − rj−1)(ωn −χj−1)

(ωn − ωj−1).

Example 1. Location of maximum energy distribution:
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Planck’s radiation law is given by

α =
8πkuδ−5

eku/δpϕ − 1
, (32)

where α is energy density, δ is wavelength radiation, ϕ is absolute temperature, u is Plank’s constant,
p is Boltzmann’s constant, and k is the speed of light. To maximize the energy density and determine
the wavelength, we first evaluate

dα

dδ
=

8πkuδ−5

eku/δpϕ − 1

(
−5 +

ku/δpϕeku/δpϕ

eku/δpϕ − 1

)
. (33)

The terms on the left side of the parentheses are zero in the limits as δ → 0, and δ → ∞, although
energy density gives minima in both cases. The maximum we are seeking arises when the terms
inside the parentheses are zero. This happens when

1 − ku
5δmax pϕ

= e−ku/δmax pϕ, (34)

where δmax being the wavelength to maximize the energy density. For ω = ku/δmax pϕ, the above
equation reduces to

1 − ω

5
= e−ω. (35)

Now we can define the following non-linear expression,

ϕ1(ω) = e−ω − 1 +
ω

5
. (36)

The problem is to solve the nonlinear equation (36), which has two roots, 4.965114232 and 0. We take
the exact root α = 0 and initial approximation ω0 = −2.5. The computational results are depicted
in Table 1, where, 4.35 (−1) denotes 4.35 × 10−1. It is observed that the accuracy, computational
order of convergence (COC), and efficiency index (EI) of our proposed schemes SM1 and SM2 are
better than the others for the test problem ϕ1(ω).

Example 2. Vertical stress:
Boussinesq’s formula computes the vertical stress (s) within an elastic material induced at a

specific point beneath the edge of a rectangular strip footing subjected to a uniform pressure q given
as follows:

σs =
q
π

ω + Cos(ω)Sin(ω). (37)

To determine the value of ω, where the vertical stress (s) is equal to 25 percent of the applied
footing stress q, we have to find the value of z at first. To find the point at which the footing stress q
is equal to a quarter, we have to solve the following equation:

ϕ2(ω) =
ω + Cos(ω)Sin(ω)

π
− 1

4
. (38)

The exact root of Equation (38) is 0.415856.... We take an initial guess for this root as ω = 1.1 to
obtain the numerical results shown in Table 2.

Example 3. We take the standard nonlinear test equation as follows:

ϕ3(ω) = eω2−3ωsin(ω) + ln(ω2 + 1). (39)

For the above non-linear function, we take α = 0 as the exact root and ω0 = −0.5 as an initial
guess. The computational results are shown in Table 3, which illustrate that our proposed schemes
SM1 and SM2 perform better in terms of convergence speed and efficiency.
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Example 4. We consider another standard nonlinear test equation as follows:

ϕ4(ω) =
1

ω4 − ω2 − 1
ω

+ 1. (40)

Here, we take the exact root α = 1 and initial approximation ω0 = 0.2. The numerical results for
comparison are illustrated in Table 4, which show that computational order of convergence (COC)
and efficiency index (EI) of proposed schemes SM1 and SM2 are better than the earlier known
schemes SH, NC, JN, XW, FZ and ZK.

Example 5. In addition, we pick another standard non-linear test problem, including trigonomet-
ric function:

ϕ5(ω) = (ω − 2 tan(ω))
(

ω3 − 8
)

. (41)

The above equation has 3 real roots 0, 2 and −4.274782271. We take α = 0 as the exact root and
ω0 = −1.5 as an initial guess for this problem. The computational results of the function ϕ5(ω)
are shown in Table 5, from which it is seen that the proposed iterative schemes SM1 and SM2 have
a faster convergence speed and better efficiency than the iterative schemes SH, NC, JN, XW, FZ
and ZK.

Example 6. We take one more standard nonlinear equation, as follows:

ϕ6(ω) = ω3 + ω2 − 3ω − 3. (42)

Here, we take α = 1.732050807... as an exact root. The comparison results by taking the initial
guess ω0 = 3.5 are shown in Table 6. It is observed from Table 6 that the schemes SM1 and SM2
perform better than the existing schemes FZ and ZK in terms of convergence and efficiency.

Example 7. Blood rheology model:
Blood rheology refers to the study of how blood flows and behaves in the circulatory system.

Modeling blood rheology is important for understanding various physiological and pathological
conditions related to blood flow. Numerical iterative methods are commonly used to solve the
mathematical equations governing blood rheology. Blood rheology is a branch of medicine that
focuses on the physical and flow properties of blood. Since blood is a non-Newtonian fluid, it is
categorized as a Caisson fluid. According to this concept, flow in a tube behaves like a plug with little
deformation, and a velocity gradient develops close to the wall. We take into account the following
nonlinear equation.

ϕ7(ω) =
ω8

441
− 8

63
ω5 − 5714285714

100000000000
ω4 +

16
9

ω2 − 3624489796
1000000000

ω +
36
100

. (43)

In order to examine the plug flow of Caisson fluid flow. Here, ω shows the plug flow of Caisson
fluid flow. The one of the solutions of ϕ7(ω) is 0.1046986515.... We choose ω0 = −2.5 as an initial
approximation to solve ϕ7(ω) = 0. Table 7 display the calculated results.

It is obvious from Tables 1–7 that the special cases SM1 and SM2 of our proposed
iterative scheme are reliable and efficient than the earlier iterative methods SH, NC, JN,
XW, FZ and ZK in terms of accuracy, computational order of convergence (COC) and
efficiency index (EI) for different test problems.

Furthermore, Figure 3 demonstrates the graphical comparison of proposed iterative
techniques SM1 and SM2 with other methods in terms of absolute error |ωk − α| while
Figure 4 shows the comparison in terms of computational order of convergence (COC),
efficiency index (EI), and CPU time, in the first three iterations for solving ϕ1(ω)–ϕ7(ω).
From Figures 3 and 4, it is observed that the proposed schemes SM1 and SM2 are more
robust than the others.
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Table 1. Numerical comparison of several iteration schemes with memory for ϕ1(ω).

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(24), L = 0.1 4.35 (−1) 1.64 (−5) 1.54 (−34) 1.23 (−34) 6.38 1.58 0.828
SH (17)–(25), L = 0.1 4.35 (−1) 5.11 (−5) 1.69 (−33) 1.35 (−33) 7.03 1.62 0.938
SH (17)–(26), L = 0.1 4.35 (−1) 1.85 (−6) 2.05 (−45) 1.64 (−45) 7.09 1.64 0.828
NC (22)–(24), L = 0.1 D D D D - - -
NC (22)–(25), L = 0.1 D D D D - - -
NC (22)–(26), L = 0.1 D D D D - - -
JN (23)–(24), L = 0.1 1.59 (−1) 3.99 (−5) 8.11 (−28) 8.11 (−28) 6.37 1.58 0.781
JN (23)–(25), L = 0.1 1.59 (−1) 1.91 (−5) 4.49 (−32) 3.59 (−32) 6.86 1.61 0.718
JN (23)–(26), L = 0.1 1.59 (−3) 2.34 (−5) 2.78 (−34) 2.23 (−34) 7.63 1.66 0.750
XW (27)–(28), L = 0.1, T = 2 8.68 (−1) 1.02 (−3) 1.71 (−23) 1.37 (−23) 6.23 1.57 0.812
XW (27)–(29), L = 0.1, T = 2 8.68 (−1) 1.24 (−3) 6.84 (−23) 5.47 (−23) 6.24 1.58 0.859
XW (27)–(30), L = 0.1, T = 2 8.68 (−1) 6.65 (−4) 4.70 (−25) 3.76 (−25) 6.30 1.59 0.844
XW (27)–(31), L = 0.1, T = 2 8.68 (−1) 8.95 (−4) 5.04 (−24) 4.03 (−24) 6.27 1.58 0.86
FZ (20) 3.27 (−4) 3.28 (−29) 4.61 (−220) 3.69 (−220) 7.63 1.96 0.446
ZK (21) 2.79 (−4) 2.38 (−30) 4.64 (−226) 3.45 (−226) 7.64 1.97 0.45
SM1 (14) 2.68 (−5) 3.34 (−26) 2.68 (−206) 2.15 (−206) 8.61 2.03 0.467
SM2 (15) 2.78 (−6) 5.75 (−33) 2.03 (−260) 1.62 (−260) 8.52 2.03 0.456

D stands for fails to converge.

Table 2. Numerical comparison of several iteration schemes with-memory for ϕ2(ω).

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(24), L = −0.5 1.90 (−3) 2.96 (−20) 5.22 (−133) 2.78 (−133) 6.70 1.60 0.969
SH (17)–(25), L = −0.5 1.90 (−3) 4.64 (−21) 1.10 (−144) 5.89 (−145) 7.01 1.62 0.875
SH (17)–(26), L = −0.5 1.90 (−3) 1.17 (−22) 3.18 (−162) 1.64 (−162) 7.26 1.64 0.89
NC (22)–(24), L = −0.5 1.05 (−2) 2.61 (−10) 2.87 (−45) 1.53 (−45) 4.59 1.66 0.766
NC (22)–(25), L = −0.5 1.05 (−2) 1.06 (−10) 1.83 (−49) 9.78 (−50) 4.84 1.69 0.813
NC (22)–(25), L = −0.5 1.05 (−2) 5.55 (−12) 3.73 (−58) 1.99 (−58) 4.97 1.70 0.844
JN (23)–(24), L = −0.5 2.16 (−3) 6.44 (−17) 2.04 (−96) 1.09 (−96) 5.87 1.55 0.890
JN (23)–(25), L = −0.5 2.16 (−3) 8.38 (−18) 1.52 (−107) 8.10 (−108) 6.22 1.57 0.891
JN (23)–(26), L = −0.5 2.16 (−3) 4.75 (−20) 3.36 (−127) 1.79 (−127) 6.43 1.60 0.829
XW (27)–(28), L = 0.5 , T = 2 2.69 (−3) 4.44 (−21) 2.37 (−163) 1.26 (−163) 8.00 1.68 0.876
XW (27)–(29), L = 0.5 , T = 2 2.69 (−3) 4.53 (−21) 2.77 (−163) 1.47 (−163) 8.00 1.68 0.859
XW (27)–(30), L = 0.5 , T = 2 2.69 (−3) 4.52 (−21) 2.71 (−163) 1.44 (−163) 8.00 1.68 0.907
XW (27)–(31), L = 0.5 , T = 2 2.69 (−3) 4.52 (−21) 2.71 (−163) 4.03 (−24) 8.00 1.68 0.875
FZ (20) 7.23 (−3) 2.65 (−17) 3.05 (−129) 1.62 (−129) 7.75 1.97 0.41
ZK (21) 8.43 (−3) 8.80 (−20) 6.64 (−158) 5.59 (−158) 7.90 1.99 0.610
SM1 (14) 3.30 (−5) 8.82 (−26) 1.57 (−144) 8.38 (−145) 7.77 2.00 0.608
SM2 (15) 7.80 (−10) 1.93 (−51) 3.65 (−247) 1.94 (−247) 8.00 2.00 0.588
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Table 3. Numerical comparison of several iteration schemes with memory for ϕ3(ω).

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(24), L = 0.5 9.40 (−2) 8.94 (−5) 5.36 (−26) 5.36 (−26) 6.81 1.61 0.859

SH (17)–(25), L = 0.5 9.40 (−2) 7.74 (−6) 1.77 (−34) 1.77 (−34) 6.85 1.61 0.859

SH (17)–(26), L = 0.5 9.40 (−2) 9.65 (−6) 3.04 (−36) 3.04 (−36) 7.47 1.65 0.844

NC (22)–(24), L = 0.5 D D D − − −
NC (22)–(25), L = 0.5 D D D − − −
NC (22)–(26), L = 0.5 D D D − − −
JN (23)–(24), L = 0.5 7.27 (−2) 2.00 (−4) 2.43 (−20) 2.43 (−20) 6.35 1.55 0.750

JN (23)–(25), L = 0.5 7.27 (−2) 2.38 (−4) 5.49 (−21) 5.49 (−21) 6.84 1.61 0.906

JN (23)–(26), L = 0.5 7.27 (−2) 2.57 (−4) 8.75 (−25) 8.75 (−25) 8.54 1.70 0.953

XW (27)–(28), L = 0.5 , T = 2 1.38 (−1) 7.04 (−4) 2.28 (−21) 2.28 (−21) 7.15 1.63 0.922

XW (27)–(28), L = 0.5 , T = 2 1.38 (−1) 8.47 (−4) 8.88 (−21) 8.88 (−21) 7.18 1.63 0.923

XW (27)–(30), L = 0.5 , T = 2 1.38 (−1) 7.96 (−4) 5.48 (−21) 5.48 (−21) 7.18 1.63 0.875

XW (27)–(31), L = 0.5 , T = 2 1.38 (−1) 8.22 (−4) 7.06 (−21) 7.06 (−21) 7.18 1.63 0.975

FZ (20) 1.90 (−3) 6.44 (−20) 1.17 (−142) 1.17 (−142) 7.45 1.95 0.496

ZK (21) 2.02 (−4) 4.93 (−22) 3.15 (−166) 1.32 (−166) 7.74 1.97 0.50

SM1 (14) 9.56 (−5) 1.48 (−24) 6.98 (−189) 6.98 (−189) 8.73 2.01 0.696

SM2 (15) 3.74 (−7) 4.32 (−34) 3.61 (−265) 3.61 (−265) 8.57 2.04 0.738

D stands for fails to converge.

Table 4. Numerical comparison of several iteration schemes with memory for ϕ4(ω).

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(24), L = 0.1 D D D D − − −
SH (17)–(25), L = 0.1 D D D D − − −
SH (17)–(26), L = 0.1 D D D D − − −
NC (22)–(24), L = 0.1 D D D D − − −
NC (22)–(25), L = 0.1 D D D D − − −
NC (22)–(26), L = 0.1 D D D D − − −
JN (23)–(24), L = 0.1 D D D D − − −
JN (23)–(25), L = 0.1 D D D D − − −
JN (23)–(26), L = 0.1 D D D D − − −
XW (27)–(28), L = 0.1, T = 2 D D D D − − −
XW (27)–(29), L = 0.1, T = 2 D D D D − − −
XW (27)–(30), L = 0.1, T = 2 D D D D − − −
XW (27)–(31), L = 0.1, T = 2 D D D D − − −
FZ (20) 7.50(−1) 1.92 (−2) 1.31 (−5) 6.57 (−5) 0.93 0.97 0.360
ZK (21) 2.30 (−4) 2.80 (−18) 4.25 (−144) 3.53 (−144) 7.94 1.99 0.341
SM1 (14) 3.72 (−4) 7.09 (−20) 3.27 (−152) 1.63 (−151) 8.25 2.01 0.452
SM2 (15) 3.65 (−5) 1.33 (−27) 5.13 (−214) 2.56 (−213) 8.30 2.09 0.488

D stands for fails to converge.
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Table 5. Numerical comparison of several iteration schemes with memory for ϕ5(ω).

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(17), L = −0.2 D D D D − − −
SH (17)–(17), L = −0.2 D D D D − − −
SH (17)–(17), L = −0.2 D D D D − − −
NC (22)–(24), L = −0.2 D D D D − − −
NC (22)–(25), L = −0.2 D D D D − − −
NC (22)–(26), L = −0.2 D D D D − − −
JN (23)–(24), L = −0.2 D D D D − − −
JN (23)–(25), L = −0.2 D D D D − − −
JN (23)–(26),L = −0.2 D D D D − − −
XW (27)–(28), L = −0.2 , T = 5 8.79 (−1) 7.95 (−2) 2.53 (−11) 2.02 (−10) 7.19 1.63 0.735
XW (27)–(29), L = −0.2 , T = 5 8.79 (−1) 8.62 (−2) 5.15 (−12) 4.12 (−11) 7.96 1.68 0.829
XW (27)–(30), L = −0.2 , T = 5 8.79 (−1) 2.66 (−2) 1.34 (−15) 1.07 (−14) 7.40 1.64 0.733
XW (27)–(31), L = −0.2 , T = 5 8.79 (−1) 3.06 (−1) 4.66 (−6) 3.73 (−5) 6.86 1.61 0.72
FZ (20) 1.23(−1) 4.60 (−9) 9.47 (−67) 7.57 (−66) 7.76 1.98 0.52
ZK (21) 3.17 (−4) 3.32 (−16) 2.54 (−168) 2.15 (−167) 7.92 1.99 0.601
SM1 (14) 2.54 (−4) 7.28 (−19) 1.56 (−183) 1.25 (−182) 10.12 2.16 0.52
SM2 (15) 4.08 (−5) 1.73 (−26) 9.31 (−260) 7.44 (−259) 10.91 2.21 0.606

D stands for fails to converge.

Table 6. Numerical comparison of several iteration schemes with memory for ϕ6(ω).

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(24), L = 0.1 3.86 (−2) 1.17 (−13) 3.56 (−94) 3.37 (−93) 6.98 1.62 0.593

SH (17)–(25), L = 0.1 3.86 (−2) 1.80 (−15) 2.24 (−135) 2.12 (−134) 8.98 1.62 0.562

SH (17)–(26), L = 0.1 3.86 (−2) 1.80 (−15) 2.24 (−135) 2.12 (−134) 8.98 1.73 0.609

NC (22)–(24), L = 0.1 9.66 (−2) 1.12 (−6) 2.03 (−29) 1.92 (−28) 4.63 1.66 0.672

NC (22)–(25), L = 0.1 9.66 (−2) 3.28 (−7) 1.29 (−34) 1.22 (−33) 5.03 1.71 0.672

NC (22)–(26), L = 0.1 9.66 (−2) 3.28 (−7) 1.29 (−34) 1.22 (−33) 5.03 1.71 0.578

JN (23)–(24), L = 0.1 2.00 (−2) 1.24 (−17) 1.87 (−66) 1.77 (−65) 5.95 1.56 0.626

JN (23)–(25), L = 0.1 2.00 (−2) 8.62 (−14) 2.17 (−93) 2.05 (−92) 7.00 1.62 0.625

JN (23)–(26), L = 0.1 2.00 (−2) 8.62 (−14) 2.17 (−93) 2.05 (−92) 7.00 1.62 0.673

XW (27)–(28), L = 0.1, T = 2 3.85 (−2) 1.73 (−10) 1.50 (−77) 1.42 (−76) 8.04 1.68 0.625

XW (27)–(29), L = 0.1, T = 2 3.85 (−2) 1.46 (−10) 3.86 (−78) 3.65 (−77) 8.03 1.68 0.594

XW (27)–(30), L = 0.1, T = 2 3.85 (−2) 1.46 (−10) 3.86 (−78) 3.65 (−77) 8.03 1.68 0.578

XW (27)–(31), L = 0.1, T = 2 3.85 (−2) 1.46 (−10) 3.86 (−78) 3.65 (−77) 8.03 1.68 0.687

FZ (20) 9.96 (−8) 3.46 (−40) 1.31 (−219) 2.16 (−218) 7.55 1.96 0.401

ZK (21) 6.94 (−8) 4.22 (−45) 1.56 (−238) 2.58 (−237) 7.90 1.99 0.410

SM1 (14) 2.46 (−9) 1.12 (−51) 5.48 (−247) 5.19 (−246) 8.10 2.00 0.404

SM2 (15) 4.56 (−11) 4.19 (−63) 1.04 (−287) 9.91 (−287) 8.10 2.00 0.401

D stands for fails to converge.
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Table 7. Numerical comparison of several iteration schemes with memory for ϕ7(ω)

Methods |ω1 − α| |ω2 − α| |ω3 − α| f (ω3) COC EI CPU

SH (17)–(24), L = −0.7 4.30 (−1) 1.47 (−7) 3.56 (−51) 1.25 (−50) 6.64 1.60 0.610
SH (17)–(25), L = −0.7 4.30 (−1) 1.80 (−5) 1.47 (−37) 4.80 (−37) 7.17 1.63 0.719
SH (17)–(26), L = −0.7 4.30 (−1) 6.26 (−6) 8.05 (−41) 2.61 (−40) 7.07 1.63 0.720
NC (22)–(24), L = −0.7 D D D D − − −
NC (22)–(25), L = −0.7 D D D D − − −
NC (22)–(26), L = −0.7 D D D D − − −
JN (23)–(24), L = −0.7 1.43 1.01 (−1) 6.08 (−16) 1.97 (−15) 5.46 1.52 0.609
JN (23)–(25), L = −0.7 1.43 5.50 (−2) 5.29 (−11) 1.72 (−10) 5.30 1.51 0.688
JN (23)–(26), L = −0.7 1.43 2.94 (−3) 4.46 (−18) 1.45 (−17) 5.01 1.49 0.656
XW (27)–(28), L = −0.7 , T = 2 5.08 (−1) 5.88 (−5) 7.55 (−34) 2.45 (−33) 7.14 1.63 0.641
XW (27)–(29), L = −0.7 , T = 2 5.08 (−1) 1.82 (−5) 6.50 (−38) 2.11 (−37) 7.12 1.63 0.718
XW (27)–(30),L = −0.7 , T = 2 5.08 (−1) 6.45 (−5) 1.60 (−33) 5.20 (−33) 7.14 1.63 0.781
XW (27)–(31), L = −0.7 , T = 2 5.08 (−1) 2.40 (−5) 5.84 (−37) 1.89 (−36) 7.13 1.68 0.797
FZ (20) 3.35 (−2) 5.16 (−16) 6.68 (−116) 2.17 (−115) 7.58 1.96 0.47
ZK (21) 2.51 (−6) 5.22 (−38) 3.55 (−190) 2.17 (−189) 7.92 1.99 0.442
SM1 (14) 2.51 (−7) 2.69 (−40) 5.15 (−199) 1.67 (−198) 8.00 2.00 0.434
SM2 (15) 2.41 (−8) 6.17 (−47) 1.41 (−225) 4.61 (−225) 8.00 2.00 0.457

D stands for fails to converge.
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Figure 3. Comparisons of various iterative methods with-memory in terms of absolute error |ωj − α|
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Figure 4. Comparisons of various iterative methods with-memory in terms of COC, EI, and CPU
time for ϕ1(ω)− ϕ7(ω) respectively.

6. Fractals of Basins of Attraction

In this section, we investigate the comparison of fractal behavior of the proposed
iteration method (14) for different values of λ with the iterative schemes SH (17), FZ (20),
ZK (21), and NC (22) discussed in Section 5. We compare their fractal behavior in terms
of basins of attraction in the complex plane, which helps us to better understand their
stability and convergence. Let ϕ be a nonlinear function to be solved by an iterative
algorithm; we know that, in general, the the boundary between the basins of attraction
for distinct zeros of ϕ represents a complex fractal form. By assigning a specific color to
each basin, we generally obtain very beautiful fractals, which illustrate the performance of
iterative methods. Initially, Stewart [5] and Varona [6] presented a graphical comparison
between some classical iterative methods in 2001 and 2002, respectively. After that, it
is a common practice to compare iteration methods graphically with the help of fractal
images of basins of attraction. The book of Kalantari [34] provided several artistic fractal
pictures of different polynomials. More recently, this kind of comparison has been studied
in the papers [7,25,35–37]. All of these papers present a comparison of the methods by
plotting basins of attraction for simple polynomials of the form zn − 1 in the complex plane.
We investigate convergence regions of different methods by representing their basins of
attractions on the variety of nonlinear equations, including real-life problems discussed in
Section 5.

To plot fractals of basins of attraction, we chose an initial guess z0 from a grid of
500 × 500 points within a square D contained in C such that it contains all of the roots of
ϕ(z) = 0, each allocated by a unique color. For a given initial point in D, an iteration scheme
within 25 iterations either converges to one of the roots, painted with a color assigned to
that root, or diverges, usually marked with the color black. The brighter color of the basins
indicates that a few iterations required for a method to converge to the root.
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Basins of attraction of of ϕ1(z) = 0 are shown in Figure 5, which has two roots
0, 4.96511 contained in D = [−5, 5]× [−5, 5], represented by colors—cyan and magenta,
respectively. Due to the limited space, we have written reduced significant digits of the
roots. Figure 5 illustrates that the methods ZK and SM(λ = 0.1) show wide basins of
attraction as compared to those of SH(L0 = 0.1), FZ, NC(L0 = 0.1) and SM(λ = 2, 1)
while fast convergence is obtained by SH and SM(λ = 0.1).

For the nonlinear function ϕ2(z), which has the root 0.415856, we take D = [−2, 2]×
[−2, 2] and assign color cyan to each initial point in D for which the method converges to
0.415856. Fractals of basins for this problem are represented in Figure 6, which illustrate that
all the methods possess similar regions of convergence except the method NC(L0 = 0.1)
with several black regions. The method SM(λ = 0.1) has fast convergence for initial points
near the root since its basins are brighter than those of ZK and NC(L0 = 0.1).

Similarly, we take D = [−2, 2]× [−2, 2], for ϕ3(z) = 0, which has the root 0. We assign
color cyan to each initial point in D for which an iteration method converges to 0. Figure 7
represents the fractals of basins for this problem which illustrate that the proposed methods
SM(λ = 1), SM(λ = 0.5), SM(λ = 0.1) provide wide basins of attractions and have fast
convergence for initial points near the root than those of FZ, ZK and NC(L0 = 0.1).

We take D = [−2, 2]× [−2, 2], for the nonlinear function ϕ4(z), which has six roots;
1,−1.40360,−0.454979 − 0.649504i,−0.454979 + 0.649504i, 0.656780 − 0.837592i, 0.656780 +
0.837592i, represented by green, cyan, yellow, orange, red and magenta, respectively.
Fractals of basins for ϕ4(z) = 0 are represented in Figure 8, which illustrates that the
methods SM(λ = 0.1) and SH(L0 = 0.1) are the best since they produce simple and wide
regions of convergence as compared to other methods.

Fractal images of basins of attraction of ϕ5(z) = 0 are shown in Figure 9, which has
three real roots; 0, 2, 4.27478 contained in D = [−5, 5] × [−5, 5], represented by cyan,
magenta and yellow, respectively. Figure 9 illustrates that all the methods produce
wide regions of divergence (black regions); however, the methods SM(λ = 0.1, 0.5) and
SH(L0 = 0.1) have comparatively better performances in terms of speed and regions of
convergence.

For the nonlinear function ϕ6(z), which has roots −1,−1.73205, 1.73205, we take
D = [−5, 5]× [−5, 5] and assign the colors magenta, cyan and yellow to each initial point
in D, for which the method converges to −1,−1.73205 and 1.73205, respectively. Fractals
of basins for ϕ6(z) = 0 are represented in Figure 10, which illustrates that the proposed
method SM(λ = 0.1) provide fast convergence with simple fractals and wide regions of
convergence as compared to others except the methods SH(L0 = 0.1) and NC(L0 = 0.1).

Basins of attraction of ϕ7(z) = 0 are shown in Figure 11, which has eight roots
contained in D = [−5, 5] × [−5, 5]; 0.104698, 3.82238,−2.27869 − 1.98747i,−2.27869 +
1.98747i,−1.23876 − 3.40852i,−1.23876 + 3.40852i, 1.55391 − 0.940414i, 1.55391 + 0.940414i,
represented by colors, cyan, green, orange, yellow, red, magenta, pink and brown respec-
tively. Figure 11 illustrates that the proposed method SM(λ = 0.1, 0.5) is the best one
among all others, yielding fast convergence and simple fractals and wide regions of con-
vergence. However, none of the methods converge to the roots 1.553919 − 0.940414i and
1.55391 + 0.940414i.

It is observed that for all of the problems, the proposed iteration scheme SM for
λ = 0.1 provides wider and brighter basins of attraction with simple fractals which yields
its stability and robustness. Furthermore, the smaller values of the parameter λ result in
wider basins of attraction for the proposed iteration schemes.
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Figure 5. Basins of attraction of ϕ1(z) using several iteration methods without memory.
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Figure 6. Basins of attraction of ϕ2(z) using several iteration methods without memory.
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Figure 7. Basins of attraction of ϕ3(z) using several iteration methods without memory.
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Figure 8. Basins of attraction of ϕ4(z) using several iteration methods without memory.
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Figure 9. Basins of attraction of ϕ5(z) using several iteration methods without memory.
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Figure 10. Basins of attraction of ϕ6(z) using several iteration methods without memory.
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Figure 11. Basins of attraction of ϕ7(z) using several iteration methods without memory.

7. Conclusions

In this manuscript, we have introduced derivative-free two-step iteration methods of
optimal orders four and eight without memory and with-memory, respectively, for solving
nonlinear equations. The suggested techniques are higher-order two-step variants of
the one-step Traub’s method of optimal order two. It is to be remarked that the eighth-
order convergence of the proposed iteration technique with memory is achieved by using
only three functional evaluations. The proposed two-step technique’s efficiency index is
7.9931/3 ≈ 2, making it the highest in the literature and better than the efficiency of several
multi-step iteration schemes with-memory. The proposed two-step iteration methods with-
memory compete with any j-point optimal method without memory since its efficiency
index equals 2. To evaluate the effectiveness of the suggested iterative techniques and to
support the theoretical findings, several numerical examples and real-world applications
are given. The numerical outcomes of the proposed methods are presented in terms of
absolute error, computational order of convergence (COC), and CPU time (sec). Further, we
have investigated the fractal behavior and comparison of different iteration methods using
fractals of basins of attraction on several nonlinear equations, including real-life problems.
The fractals of basins of attractions illustrate the robustness and superiority of the proposed
iteration methods without memory. The stability of the proposed iteration methods without
memory is affirmed by the simple fractals defined by their wider basins of attraction in
comparison with existing iteration methods. Additionally, the numerical tests illustrate that
the proposed two-step Traub–Steffensen type iteration schemes with memory outperform
existing multi-step iteration schemes with and without memory in many situations. Further
research can be conducted to explore general criteria for the selection of free parameters.
The current study focuses on the solution of univariate nonlinear equations, while its
extension to multivariate equations is left for future research.
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