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Abstract: In this paper, we introduce a new class of contractions in normed spaces, referred to
as generalized enriched Kannan contractions. These contractions expand the familiar enriched
Kannan contractions to three-point versions, broadening the scope of Kannan contractions. These
mappings are typically discontinuous, except at the fixed points, where they exhibit continuity,
similar to enriched Kannan mappings. However, through suitable examples, we demonstrate that
these two classes of mappings are distinct from one another. We present new results for generalized
enriched Kannan contractions. Additionally, by incorporating conditions of continuity and asymptotic
regularity, we extend the class of operators to which fixed-point methods can be applied. Additionally,
we derive two more results for generalized enriched Kannan contractions in normed spaces, without
the requirement that they be Banach spaces. Finally, we use our main result to demonstrate the
existence of solutions for a boundary value problem involving a fractional differential equation.

Keywords: perimeters of triangles; generalized Kannan operator; Krasnoselskii iterations; fixed point;
G-enriched Kannan operators; boundary value problem; fractional differential equation
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1. Introduction

In 2022, Argyros [1] worked on different iteration methods and presented several
applications. Recently, Argyros et al. [2] presented recent advancements in theory and
applications related to contemporary algorithms. The main result given by Banach is of
profound significance in metric fixed-point theory. This theorem is essential in mathematics
for solving both linear and nonlinear ordinary differential equations, as well as integral
equations. Additionally, it has significant applications in related areas such as physics,
fractal theory, biology, image processing and engineering. It is elegantly enumerated below:

Theorem 1. Suppose a mapping 𭟋o : Q → Q on a complete metric space (Q, ρ) for which
∀κo, µ ∈ Q, and the inequality ρ(𭟋oκo,𭟋oµ) ≤ βρ(κo, µ) holds, where 0 ≤ β < 1. Then,
the fixed point of 𭟋o is unique in Q.
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The Banach theorem has been studied extensively and expanded using a variety of
approaches. These approaches include expanding the domain of the mapping and introduc-
ing more generalized criteria for contraction mappings. Nadler investigated multivalued
contraction mappings, while Kannan pioneered results on fixed points with his renowned
Kannan contractions. Dominguez et al. [3] investigated generalizations of the Kannan
theorem in K-metric spaces. Jleli and Samet [4] developed a new extension of the Ba-
nach contraction principle. Ahmad et al. [5] examined fractals connected to generalized
Θ-Hutchinson operators. Shioji et al. [6] explored Kannan mappings with metric com-
pleteness. Abbas et al. [7] investigated generalized enriched cyclic contractions applied
to iterated function systems (IFSs). Almalki et al. [8] examined the novel generalizations
of Perov type results. Shukla and Radenović [9] investigated Prešić–Boyd–Wong the-
orems. Tarafdar [10] presented a new result in uniform spaces. Ilić et al. [11] offered
iterative approximations of fixed points for Prešić mappings in partial metric spaces. War-
dowski and Dung [12] established fixed points for F-weak contractions. Din et al. [13]
concentrated on Perov results for F-contraction mappings. Berinde and Păcurar [14] ap-
proximated the fixed points of enriched contractions in Banach spaces. Anjum et al. [15]
explored fractals associated with two types of enriched Hutchinson–Barnsley transforma-
tions. Din et al. [16] also examined generalized Sehgal–Guseman-like contractions and
their applications. Additionally, Anjum et al. [17] investigated applications to activation
functions using symmetric contractions.

In [18], Kannan established a result regarding the fixed point for discontinuous map-
pings. Let 𭟋o : Q → Q be a mapping on a complete metric space (Q, ρ) such that

ρ(𭟋oκo,𭟋oµ) ≤ θ[ρ(κo,𭟋oκo) + ρ(µ,𭟋oµ)], (1)

where 0 ≤ θ < 1
2 and κo, µ ∈ Q. In this case, 𭟋o has a unique fixed point. If ∃0 ≤ θ < 1

2 , for
which the inequality (1) holds for all κo, µ ∈ Q, then 𭟋o is referred to as a Kannan mapping.

Subrahmanyam [19] demonstrated that Kannan’s result offers a characterization of
metric completeness. Every Kannan-type mapping on Q possesses a fixed point if and
only if metric space Q is complete. It is crucial to observe that Banach contractions do not
provide a characterization of completeness. For example, there are metric spaces Q that are
incomplete, yet every contraction mapping on Q still possesses a fixed point, as demon-
strated in [20]. For a thorough comparison between Banach contractions and Kannan-type
mappings, consult the following studies. Suzuki [21] investigated the differences between
contractive and Kannan contractions, while Kikkawa and Suzuki [22] explored the similari-
ties between these two types of contractions. Berinde [23,24] approximated the fixed points
of weak contractions using the Picard iteration method. In [25], Petrov introduced a novel
type of mapping characterized by its ability to contract the perimeters of triangles. In [26],
he applied this concept to construct generalized Kannan-type mappings. Berinde and
Păcurar [27] explored enriched Kannan operators and their applications to split feasibility
and variational inequality problems.

In [25], an innovative mapping approach was proposed, distinguished by its ability to
contract the perimeters of triangles.

Definition 1. Let (Q, ρ) with |Q| ≥ 3 be a metric space. We define a mapping 𭟋o : Q → Q as
one that contracts the distances between the vertices of any triangle, provided ∃β ∈ [0, 1), for which
the following inequality is valid for all distinct points κo, µ, and ϖ in Q:

ρ(𭟋oκo,𭟋oµ) + ρ(𭟋oµ,𭟋oϖ) + ρ(𭟋oκo,𭟋oϖ) ≤ β(ρ(κo, µ) + ρ(µ, ϖ) + ρ(κo, ϖ)). (2)

Remark 1. It is important to note that requiring κo, µ, ϖ ∈ Q to be pairwise distinct is crucial.
Without this condition, the definition would be analogous to that of a standard contraction mapping.
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A theorem on fixed points has been proven for these mappings. Although the proof
utilizes ideas from Banach’s classic theorem, it differs fundamentally in that it deals with
three points in the space rather than two. Furthermore, an additional assumption is imposed
to prevent these operators from having periodic points with prime period 2. It is important
to highlight that ordinary contraction mappings are a notable subset of these mappings.

Building on [25], Petrov [26] proposed the extended version of Kannan-type mappings,
defined as follows:

Definition 2. Suppose that (Q, ρ) with |Q| ≥ 3 be a metric space. A mapping 𭟋o : Q → Q is
called a generalized Kannan mapping if ∃0 ≤ θ < 2

3 , for which the following inequality holds:

ρ(𭟋oκo,𭟋oµ) + ρ(𭟋oµ,𭟋oϖ) + ρ(𭟋oκo,𭟋oϖ) ≤ θ(ρ(κo,𭟋oκo) + ρ(µ,𭟋oµ) + ρ(ϖ,𭟋oϖ)) (3)

for all three distinct points κo, µ, ϖ ∈ Q.

In recent studies, many researchers have focused on extending classical contractions
to a three-point analogue, which involves contracting the perimeters of triangles formed
by three distinct points. In [28], Pacurar and Popescu transformed the Chatterjea contrac-
tion into a three-point analogue, while Bisht and Petrov, in [29], explored a three-point
extension of Chatterjea’s fixed-point theorem, proving the existence of at most two fixed
points. Recently, Zhou and Petrov [30] extended classical Banach and Kannan contractions
to k-polygons, further generalizing the concept of three-point analogues. They exam-
ined the connections between Banach contractions, generalized Kannan-type mappings,
and mappings that contract the perimeters of k-polygons.

In 2020, Berinde and Păcurar [14] presented a new and expansive category of contrac-
tion operators termed enriched contractions. Such a category of operators includes not only
Banach contractions but also a variety of other non-expansive operators described in the
literature. Their research showed that every enriched contraction operator owns a unique
fixed point, that can be approximated through a suitable Krasnoselskii iteration method in
normed spaces.

Definition 3. Suppose a normed space (Q, | · |) and operator 𭟋o : Q → Q. The operator 𭟋o is
said to be an enriched operator if ∃s ≥ 0 and κ ∈ [0, s+ 1), for which the following holds:

|s(κo − µ) +𭟋oκo −𭟋oµ| ≤ κ|κo − µ|, κo, µ ∈ Q. (4)

Enriched contraction mappings are highly significant because they include both non-
expansive mappings and the contraction operators. Non-expansive mappings do not
always guarantee fixed points, as their existence is not assured for every mapping. However,
enriched contraction mappings uniquely ensure the existence of a single fixed point for
each mapping. This assurance of uniqueness distinguishes enriched contraction mappings
from non-expansive ones. It is noteworthy that the sets of fixed points for 𭟋o and 𭟋o

κ are
identical, if κ ∈ (0, 1].

Using the enriched technique, Berinde and Păcurar [27] proposed the novel concept of
enriched Kannan operators as follows:

Definition 4. Consider a normed space (Q, || · ||) and operator 𭟋o : Q → Q. The operator 𭟋o is
referred to as an enriched Kannan operator if there exist parameters θ ∈ [0, 1

2 ) and s ∈ [0, ∞), for
which the following inequality is satisfied:

||s(κo − µ) +𭟋oκo −𭟋oµ∥ ≤ θ(∥κo −𭟋oκo∥+ ∥µ −𭟋oµ∥), ∀κo, µ ∈ Q. (5)



Fractal Fract. 2024, 8, 701 4 of 22

Inspired by Petrov’s work [25,26] on mappings that contract the perimeters of triangles
formed by three distinct points, and by Berinde and Păcurar’s study [14,27] on enriched
contractions, we introduced the concept of generalized enriched Kannan mappings. This
new category extends the idea of enriched Kannan mappings [27] to a three-point ana-
logue, merging these foundational studies to advance the theory of fixed-point mappings.
The generalized enriched Kannan mappings represent a notable advancement in fixed-
point theory by extending the established concept of enriched Kannan mappings to a
three-point analogue and also extending the generalized Kannan contractions [26]. This
new class of mappings offers a deeper insight into the relationship between continuity and
discontinuity, as they generally exhibit discontinuity but preserve continuity at fixed points,
much like enriched Kannan mappings. By developing a fixed-point theorem for these gen-
eralized operators and incorporating conditions of continuity and asymptotic regularity, we
significantly expand the scope of mappings to which fixed-point theorems can be applied.
Building on the foundational research of Berinde and Păcurar, our results introduce two
additional fixed-point theorems that extend the theory to normed spaces, going beyond the
limitations of Banach spaces. At the end, we apply these results to establish the existence of
solutions for a boundary value problem involving a fractional differential equation. This
research presents a novel class of mappings that greatly broadens the scope of fixed-point
theory, offering robust tools for investigating problems across diverse mathematical and
applied domains. By broadening fixed-point results to more general settings, this work
enhances the theoretical foundation while also increasing the practical applicability of fixed-
point theorems. These developments create new opportunities for addressing a variety
of equations and systems, emphasizing their significance in both theoretical progress and
practical applications.

2. Main Results

In the following sections, we present our main definitions and results, which offer
new insights into the properties of generalized enriched Kannan operators.

Definition 5. Suppose that (Q, || · ||), with |Q| ≥ 3 being a normed space. A self mapping 𭟋o

on Q is referred to as a generalized enriched Kannan operator if there are parameters s ≥ 0 and
β ∈ [0, 2

3 ) such that

||s(κo − µ) +𭟋oκo −𭟋oµ||+ ||s(µ − ϖ) +𭟋oµ −𭟋oϖ||+ ||s(κo − ϖ) +𭟋oκo −𭟋oϖ||
≤ β(||κo −𭟋oκo||+ ||µ −𭟋oµ||+ ||ϖ −𭟋oϖ||) (6)

meets for all the mutually distinct points κo, µ, ϖ ∈ Q.

To emphasize the constants in (6), we will refer to it as a generalized (s, β) enriched
Kannan mapping. To illustrate the relationship between the generalized Kannan map-
pings [26] and generalized enriched Kannan mappings (Definition 5), consider the follow-
ing example. Note that any generalized Kannan mapping is a generalized (0, β) enriched
Kannan mapping, as it meets the condition with s = 0.

Example 1. Any generalized Kannan mapping qualifies as a generalized (0, β) enriched Kannan
mapping. Specifically, it satisfies the condition (3) with s = 0. This indicates that every generalized
Kannan mapping is a special case within the broader category of generalized enriched Kannan
mappings, where s takes on the value of zero.

However, the converse of the above example is not generally true; that is, not every
generalized enriched Kannan mapping is necessarily a generalized Kannan mapping, as can
be seen in the following example.
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Example 2. Let Q = {κo, µ, ϖ} with ||κo − µ|| = 1, ||µ − ϖ|| = 4, ||κo − ϖ|| = 4. Define
𭟋o : Q → R such that 𭟋oκo = κo,𭟋oµ = µ and 𭟋oϖ = 2κo − ϖ. Then, being non-self
mapping, 𭟋o cannot be a generalized Kannan mapping, but for s = 1, we obtain κ = 1

2 and the
mapping 𭟋o

κ : Q → Q given by 𭟋o
κκo = κo,𭟋o

κµ = µ, and 𭟋o
κϖ = κo. It is straightforward

to observe that inequality (6) holds with β = 1
2 . Thus, 𭟋o is a generalized (1, 1

2 ) enriched
Kannan operator.

In the following, we demonstrate that the families of enriched Kannan operators [27]
and generalized enriched Kannan operators are different from each other.

Example 3. Consider Q = [0, 1] and || · || as a usual norm on Q. Take an operator 𭟋o : Q → Q by
𭟋o(κo) = 2κo−mκo

m , for some m > 1. If we choose s = 1, then κ = 1
2 , so we obtain 𭟋o

1
2
(κo) = κo

m .
Without restricting generality, consider κo ≥ µ; using (5) for this mapping, we obtain

κo

m
− µ

m
≤ β(κo − κo

m + µ − µ
m )

=⇒ κo − µ ≤ β(m − 1)(κo + µ). (7)

It is noted that (7) only holds for κo ≥ µ if β(m− 1) ≥ 1. Let us consider the system of inequalities:{
0 ≤ β < 1

2 ,
β(m − 1) ≥ 1.

Then, we obtain
1

m − 1
≤ β <

1
2

.

So that 𭟋o is an enriched Kannan contraction if m > 3.
Next, suppose, without restricting generality, that κo > µ > ϖ ∈ Q, and using the inequality

(6) for all mutually distinct points κo, µ, ϖ ∈ Q:

1
m
(κo − µ +κo − ϖ + µ − ϖ) ≤ β(1 − 1

m )(κo + µ + ϖ)

=⇒ (2κo − 2ϖ) ≤ β(m − 1)(κo + µ + ϖ)

=⇒ (κo − ϖ) ≤ β
2 (m − 1)(κo + µ + ϖ) (8)

It is worth noting that (8) is applicable only for κo > µ > ϖ iff β
2 (m − 1) ≥ 1. If we take the

system of inequalities {
0 ≤ β < 2

3 ,
β(m − 1) ≥ 2.

Then, we obtain
2

m − 1
≤ β <

2
3

. (9)

Hence, 𭟋o is a generalized enriched Kannan operator if m > 4. Thus, for m ∈ (3, 4], the operator
𭟋o is an enriched Kannan operator and not a generalized enriched Kannan operator.

In the subsequent discussion, we investigate the connection between generalized
enriched Kannan operators and enriched Kannan operators that contract the perimeters of
triangles. Furthermore, we present an example of a discontinuous generalized enriched
Kannan operator.
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Proposition 1. Every enriched Kannan operator for β ∈ [0, 1
3 ) on a normed space (Q, || · ||) with

|Q| ≥ 3 is also a generalized enriched Kannan operator.

Proof. By using the inequality (5), for the pairs µ, ϖ and κo, ϖ, we obtain

||s(µ − ϖ) +𭟋oµ −𭟋oϖ|| ≤ β(||µ −𭟋oµ||+ ||ϖ −𭟋oϖ||), (10)

||s(κo − ϖ) +𭟋oκo −𭟋oϖ|| ≤ β(||κo −𭟋oκo||+ ||ϖ −𭟋oϖ||). (11)

Adding the inequalities (5), (10) and (11), we obtain

||s(κo − µ) +𭟋oκo −𭟋oµ||+ ||s(µ − ϖ) +𭟋oµ −𭟋oϖ||+ ||s(κo − ϖ) +𭟋oκo −𭟋oϖ||
≤ 2β(||κo −𭟋oκo||+ ||µ −𭟋oµ||+ ||ϖ −𭟋oϖ||).

Thus, the proof is concluded.

Proposition 2. Let 𭟋o : Q → Q be a generalized enriched Kannan operator with β ∈ [0, 2
3 ).

If 𭟋o is continuous at κo and κo is an accumulation point in Q, then the following inequality
must be fulfilled:

||s(κo − µ) +𭟋oκo −𭟋oµ|| ≤ β

(
||κo −𭟋oκo||+ ||µ −𭟋oµ||

2

)
, ∀µ ∈ Q. (12)

Proof. Suppose κo ∈ Q is an accumulation point of Q and let µ ∈ Q be any other element.
If κo = µ, then (12) obviously holds. So, let κo ̸= µ. Due to the accumulation point of κo,
there exists a sequence of distinct points ϖn ∈ Q such that ϖn → κo, where ϖn ̸= κo and
ϖn ̸= µ. Hence, using inequality (6), we have

||s(κo − µ) +𭟋oκo −𭟋oµ||+ ||s(µ − ϖn) +𭟋oµ −𭟋oϖn||+ ||s(κo − ϖn) +𭟋oκo −𭟋oϖn||
≤ β(||κo −𭟋oκo||+ ||µ −𭟋oµ||+ ||ϖn −𭟋oϖn||), ∀n ∈ N. (13)

Given that ϖn → κo and 𭟋o is continuous at κo, so 𭟋oϖn → 𭟋oκo. Therefore, letting
n → ∞ in (13), we obtain (12).

In the next corollary, we provide a sufficient condition for a generalized enriched
Kannan operator to be an enriched Kannan operator, which implies the connection between
both operators.

Corollary 1. Consider a normed space (Q, || · ||) and operator 𭟋o : Q → Q, which is a continuous
generalized enriched Kannan operator with all points in Q being accumulation points. Then, 𭟋o is
an enriched Kannan operator.

Proof. Based on Proposition (2), inequality (12) is satisfied. Thus, the following inequality
also holds:

||s(κo − µ) +𭟋oκo −𭟋oµ|| ≤ β

(
||µ −𭟋oµ||+ ||κo −𭟋oκo||

2

)
. (14)

From inequalities (12) and (14), we obtain

||s(κo − µ) +𭟋oκo −𭟋oµ|| ≤ 3β

4
(||κo −𭟋oκo||+ ||µ −𭟋oµ||).

where 3β
4 belongs to the interval [0, 1

2 ) given that β is within [0, 2
3 ). This concludes the

proof.
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Proposition 3. Consider a normed space (Q, || · ||) with |Q| ≥ 3 and the operator 𭟋o : Q → Q

as an enriched mapping that contracts the perimeters of triangles for any 0 ≤ β < 1
4 . Then, 𭟋o is a

generalized enriched Kannan operator for the norm ∥ · ∥.

Proof. By iteratively using the triangle inequality on the right-hand side of (4), we derive

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
≤ β(||κo −𭟋o

κκo||+ ||𭟋o
κκo − µ||+ ||µ −𭟋o

κµ||+ ||ϖ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ||+ ||κo −𭟋o
κϖ||)

≤ β(||κo −𭟋o
κκo||+ ||𭟋o

κκo −𭟋o
κµ||+ ||𭟋o

κµ − µ||+ ||µ −𭟋o
κµ||+ ||𭟋o

κϖ −𭟋o
κµ||

+||𭟋o
κϖ − ϖ||+ ||ϖ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||+ ||𭟋o
κκo −κo||).

By rearranging the inequality, we obtain

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
≤ 2β

1−β (||κ
o −𭟋o

κκo||+ ||µ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ||)
=⇒ ||s(κo − µ) +𭟋oκo −𭟋oµ||+ ||s(µ − ϖ) +𭟋oµ −𭟋oϖ||+ ||s(κo − ϖ) +𭟋oκo −𭟋oϖ||

≤ 2β
1−β (||κ

o −𭟋o
κκo||+ ||µ −𭟋o

κµ||+ ||ϖ −𭟋o
κϖ||),

for all mutually distinct elements κo, µ, ϖ ∈ Q. Since β′ = 2β
1−β ∈ (0, 2

3 ), it follows that 𭟋o

qualifies as a generalized enriched Kannan operator.

In the example below, we establish that, in general, the generalized enriched Kannan
operators are discontinuous, as with enriched Kannan operators.

Example 4. Let Q = [0, 1] with the standard norm ∥ · ∥. Consider a mapping 𭟋o : Q → Q

defined by

𭟋o(κo) =

{
2κo−m1κo

m1
, κo ∈ [0, 1

2 ]
2κo−m2κo

m2
, κo ∈ ( 1

2 , 1],

where m1, m2 > 1 and m1 ̸= m2. It is evident that κo = 1
2 is a discontinuity point for the mapping

𭟋o. If we set s = 1, then κ = 1
2 and we obtain the following operator:

𭟋o
1
2
(κo) =

{
κo

m1
, κo ∈ [0, 1

2 ]
κo

m2
, κo ∈ ( 1

2 , 1],
.

Next, we demonstrate that there exist values of m1 and m2 such that inequality (6) is satisfied for all
distinct elements κo, µ, ϖ ∈ Q, for some β where 0 ≤ β < 2

3 . This implies that 𭟋o qualifies as a
generalized enriched Kannan operator. To address this, assume κo > µ > ϖ without restricting
generality. Clearly, we only need to examine the following four scenarios:

1. κo, µ, ϖ ∈ [0, 1
2 ];

2. κo, µ, ϖ ∈ ( 1
2 , 1];

3. µ, ϖ ∈ [0, 1
2 ],κ

o ∈ ( 1
2 , 1];

4. ϖ ∈ [0, 1
2 ], µ,κo ∈ ( 1

2 , 1].

From the previous Example (3), we observe that cases 1 and 2 lead to the restrictions given by
inequality (9) and

2
m2 − 1

≤ β <
2
3

. (15)

Next, for simplicity, let us assume m1 > m2 and use the inequality (6) for case 3:(
κo

m2
− µ

m1
+

κo

m2
− ϖ

m2
+

µ

m1
− ϖ

m1

)
≤ β

(
κo − κo

m2
+ µ − µ

m1
+ ϖ − ϖ

m1

)
.
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So that,

0 ≤ κo
[

β − β

m2
− 2

m2

]
+ µ

[
β − β

m1

]
+ ϖ

[
β − β

m1
+

2
m1

]
. (16)

For case 4, using the inequality (6), we have

(
κo

m2
− µ

m2
+

κo

m2
− ϖ

m1
+

µ

m2
− ϖ

m1

)
≤ β

(
κo − κo

m2
+ µ − µ

m2
+ ϖ − ϖ

m1

)
.

Hence,

0 ≤ κo
[

β − β

m2
− 2

m2

]
+ µ

[
β − β

m2

]
+ ϖ

[
β − β

m1
− 2

m1

]
. (17)

Clearly, for every 0 ≤ β < 2
3 , there exist very large values of m1 and m2 with m1 ̸= m2, such that

inequalities (15), (16), and (17) are satisfied simultaneously. This shows that 𭟋o is a discontinuous
generalized enriched Kannan operator.

Recall that a point κo ∈ Q is referred to as a periodic point of period q for a mapping
𭟋o if 𭟋oq(κo) returns κo. The smallest positive integer q for which 𭟋oq(κo) = κo is
known as the prime period of the point κo. Indeed, a point κo has a prime period of 2 if
𭟋o2(κo) = 𭟋o(𭟋o(κo)) = κo but 𭟋o(κo) ̸= κo.

Remark 2. For a generalized enriched Kannan operator 𭟋o, and any κ ∈ [0, 1], the operator
𭟋o

κ cannot possess periodic points with a prime period of 3. In particular, if for some κo ∈ Q,
𭟋o

κ(κo) = µ, µ ̸= κo,𭟋o
κ(µ) = ϖ, ϖ ̸= µ ̸= κo,𭟋o

κ(ϖ) = κo. Then, we obtain the
following equation:

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||

= ||κo −𭟋o
κκo||+ ||µ −𭟋o

κµ||+ ||ϖ −𭟋o
κϖ||,

which contradicts inequality (6).

Next, we stated our first fixed point theorem as follows:

Theorem 2. Let (Q, || · ||) be a Banach space with |Q| ≥ 3. Suppose the mapping 𭟋o : Q → Q

fulfills the following assumptions:

(i) 𭟋o
κ lacks periodic points with a prime period of 2, where κ = 1

s+1 ;
(ii) 𭟋o is a generalized enriched Kannan operator on Q.

In this case, 𭟋o must have a fixed point, and there can be no more than two fixed points.

Proof. From assumption (ii), we can write for all mutually distinct elements κo, µ, ϖ ∈ Q

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||

≤ β(||κo −𭟋o
κκo||+ ||µ −𭟋o

κµ||+ ||ϖ −𭟋o
κϖ||). (18)

Let κo
0 ∈ Q and consider the iterative sequence defined by κo

q+1 = 𭟋oκo
q = (1 −

κ)κo
q + κ𭟋oκo

q = 𭟋o
κκo

q, ∀q ∈ N. Let κo
q be such that it is not a fixed point of

𭟋o for all q = 0, 1, . . .. Since κo
q−1 is not a fixed point, it implies that κo

q−1 ̸= κo
q

because κo
q = 𭟋o

κ(κo
q−1). Based on assumption (i), κo

q+1 = 𭟋o
κ(𭟋o

κ(κo
q−1)) ̸= κo

q−1.
Furthermore, because κo

q is not a fixed point of operator 𭟋o, this yields κo
q ̸= κo

q+1,
where κo

q+1 = 𭟋o
κ(κo

q). Therefore, κo
q−1, κo

q, and κo
q+1 are all distinct from one

another. Put x = xq−1, y = xq, z = xq+1 in (6). Then,
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||𭟋o
κκo

q−1 −𭟋o
κκo

q||+ ||𭟋o
κκo

q −𭟋o
κκo

q+1||+ ||𭟋o
κκo

q−1 −𭟋o
κκo

q+1||
⩽ β

(
||κo

q−1 −𭟋o
κκo

q−1||+ ||κo
q −𭟋o

κκo
q||+ ||κo

q+1 −𭟋o
κκo

q+1||
)

and
||κo

q −κo
q+1||+ ||κo

q+1 −κo
q+2||+ ||κo

q+2 −κo
q||

⩽ β
(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||+ ||κo

q+1 −κo
q+2||

)
.

Hence,
(1 − β)||κo

q+1 −κo
q+2||

⩽ β
(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||

)
− ||κo

q −κo
q+1|| − ||κo

q+2 −κo
q||.

Using the triangle inequality ||κo
q+1 − κo

q+2||⩽ ||κo
q − κo

q+1|| + ||κo
q+2 − κo

q||, we
obtain

(1 − β)||κo
q+1 −κo

q+2|| ⩽ β
(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||

)
− ||κo

q+1 −κo
q+2||.

In addition,

(2 − β)||κo
q+1 −κo

q+2|| ⩽ β
(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||

)
,

=⇒ ||κo
q+1 −κo

q+2|| ⩽ β
2−β

(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||

)
and

||κo
q+1 −κo

q+2|| ⩽
2β

2 − β
max

{
||κo

q−1 −κo
q||, ||κo

q −κo
q+1||

}
.

Let θ = 2β
2−β . Since β ∈

[
0, 2

3
)
, we therefore obtain θ ∈ [0, 1). Additionally,

||κo
q+1 −κo

q+2|| ⩽ θ max
{
||κo

q−1 −κo
q||, ||κo

q −κo
q+1||

}
. (19)

Consider bq = ||κo
q−1 −κo

q||, q = 1, 2, . . ., and let b = max{b1, b2}. So, by (19), we have

b1 ⩽ b, b2 ⩽ b, b3 ⩽ θb, b4 ⩽ θb, b5 ⩽ θ2b, b6 ⩽ θ2b, b7 ⩽ θ3b, . . .

Since θ < 1, it is obvious that the inequalities

b1 ⩽ b, b2 ⩽ b, b3 ⩽ θ
1
2 b, b4 ⩽ θb, b5 ⩽ θ

3
2 b, b6 ⩽ θ2b, b7 ⩽ θ

5
2 b, . . .

also hold. That is,
bq ⩽ θ

π
2 −1b (20)

for q = 3, 4, . . . Let p ∈ N, p ⩾ 2. By the triangle inequality, for q ⩾ 3 we have

||κo
q −κo

q+p|| ⩽ ||κo
q −κo

q+1||+ ||κo
q+1 −κo

q+2||+ . . . + ||κo
q+p−1 −κo

q+p||

= bq+1 + bq+2 + · · ·+ bq+p ⩽ b
(

θ
q+1

2 −1 + θ
q+2

2 −1 + · · ·+ θ
q+p

2 −1
)

= bθ
q+1

2 −1
(

1 + θ
1
2 + · · ·+ θ

q−1
2

)
= bθ

q−1
2

1 −
√

θq

1 −
√

θ
.

Since, by assumption, 0 ⩽ θ < 1, then 0 ⩽
√

θq < 1 and ||κo
q − κo

q+p|| ⩽ bθ
q−1

2 1
1−

√
θ
.

Hence, ||κo
q − κo

q+p|| → 0 as q → ∞ for all p > 0. Therefore,
{
κo

q

}
forms a Cauchy

sequence. Given the completeness of Q, the sequence (κo
q) converges to κo∗ ∈ Q.

Remember that any three successive elements in (κo
q) are different from one another.

If κo∗ ̸= κo
k for all k ∈ {1, 2, . . .}, then inequality (6) is satisfied for the distinct points

κo∗, κo
q−1, and κo

q. Assume there is a smallest possible integer k ∈ {1, 2, . . .} for which
κo∗ = κo

k. Let m > k be such that κo∗ = κo
m. In this case, the sequence (κo

q) becomes
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cyclic initiating from index k and, consequently, it is not a Cauchy sequence. Therefore,
the points κo∗, κo

q−1, and κo
q remain mutually distinct, at least for q− 1 > k.

We aim to prove that 𭟋oκo∗ = κo∗. Assume there is an index k ∈ {1, 2, . . .} for which
κo

k = κo∗. If q− 1 > k, then applying the triangle inequality along with inequality (6),
we obtain

||κo∗ −𭟋oκo∗|| ⩽ ||κo∗ −κo
q||+ ||κo

q −𭟋oκo∗|| = ||κo∗ −κo
q||+ ||𭟋oκo

q−1 −𭟋oκo∗||
⩽ ||κo∗ −κo

q||+ ||𭟋oκo
q−1 −𭟋oκo∗||+ ||𭟋oκo

q−1 −𭟋oκo
q||+ ||𭟋oκo

q −𭟋oκo∗||
⩽ ||κo∗ −κo

q||+ β
(
||κo

q−1 −𭟋oκo
q−1||+ ||κo

q −𭟋oκo
q||+ ||κo∗ −𭟋oκo∗||

)
.

Hence,

||κo∗ −𭟋oκo∗||(1 − β) ⩽ ||κo∗ −κo
q||+ β

(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||

)
and

||κo∗ −𭟋o
κκo∗|| ⩽ 1

1 − β

(
||κo∗ −κo

q||+ β
(
||κo

q−1 −κo
q||+ ||κo

q −κo
q+1||

))
. (21)

As the distances on the right-hand side approach zero as q → ∞, we find that
∥κo∗ −𭟋o

κκo∗∥ = 0. Assume there are no fewer than three distinct fixed points: κo, µ,
and ϖ. Then, 𭟋o

κκo = κo,𭟋o
κµ = µ, and 𭟋o

κϖ = ϖ, which contradicts (6). Hence, there
can be at most two fixed points of 𭟋o

κ , and thus of 𭟋o as well.

Remark 3. Theorem 2 is not applicable for any β > 2
3 . Specifically, take β > 2

3 as an example. Let
Q = {κo, µ, ϖ, t} with the following distances:
∥κo − µ∥ = ∥µ − ϖ∥ = ∥ϖ − t∥ = ∥t − κo∥ = p and ∥κo − ϖ∥ = ∥µ − t∥ = r. It is
simple to check that (Q, ∥ · ∥) forms a Banach space for 0 < r ≤ 2p. Define 𭟋o : Q → R by
𭟋oκo = 2µ −κo,𭟋oµ = 2ϖ − µ,𭟋oϖ = 2t− ϖ and 𭟋ot = 2κo − t. Then, for s = 1, we have
κ = 1

2 and 𭟋o
κκo = µ,𭟋o

κµ = ϖ,𭟋o
κϖ = t, and 𭟋o

κt = κo. Consider inequality (6) for the set
of points {κo, µ, ϖ}:

p + p + r ⩽ β(p + p + p).

Hence,
2p + r

3p
⩽ β. (22)

Clearly, for every β > 2
3 , there exists a sufficiently small r for which inequality (22) is satisfied.

Note that applying inequality (22) to the point triplets {µ, ϖ, t}, {ϖ, t,κo}, and {t,κo, µ} yields
inequality (22). So, for each β > 2

3 , there must exist a Banach space Q and a mapping 𭟋o : Q → Q

for which the following holds:

1. The inequality (6) is satisfied with the coefficient β for all sets of three distinct points in the
space Q;

2. 𭟋o
κ lacks periodic points with a prime period of two;

3. 𭟋o
κ and 𭟋o do not have any fixed points.

Remark 4. Considering all the conditions of Theorem 2, the operator 𭟋o has the fixed point κo∗,
that is the limit of sequence defined iteratively by κo

q+1 = (1 − κ)κo
q + κ𭟋oκo

q = 𭟋o
κκo

q,
where κo

q ̸= κo∗ for all q = 1, 2, . . .. In this situation, κo∗ must be the unique fixed point.
To demonstrate this, assume that 𭟋o has an additional fixed point κo∗∗ ̸= κo∗. It is evident that
κo

q ̸= κo∗∗ for all q = 1, 2, . . .. Therefore, the points κo∗, κo∗∗, and κo
q are distinct from each
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other for all q = 1, 2, . . ..
Evaluate the expression,

Rq =
||𭟋o

κκo∗ −𭟋o
κκo∗∗||+ ||𭟋o

κκo∗ −𭟋o
κκo

q||+ ||𭟋o
κκo∗∗ −𭟋o

κκo
q||

||κo∗ −𭟋o
κκo∗||+ ||κo

q −𭟋o
κκo

q||+ ||κo∗∗ −𭟋o
κκo∗∗||

=
||κo∗ −κo∗∗||+ ||κo∗ −κo

q+1||+ ||κo∗∗ −κo
q+1||

||κo
q −κo

q+1||
.

Since ||κo∗ − κo
q+1|| → 0, ||κo∗∗ − κo

q+1|| → ||κo∗∗ − κo∗||, and ||κo
q − κo

q+1|| → 0 as
n → ∞. Therefore, we find that Rq → ∞ as q → ∞. This contradicts the condition stated in (6).

Example 5. Let us illustrate with an example of a generalized enriched Kannan operator, 𭟋o, that
has exactly two fixed points. Let Q = {κo, µ, ϖ} with ||κo −µ|| = 1, ||µ−ϖ|| = 4, ||κo −ϖ|| =
4. Define 𭟋o : Q → R be such that 𭟋oκo = κo,𭟋oµ = µ and 𭟋oϖ = 2κo − ϖ. Then, for
s = 1, we obtain κ = 1

2 and the mapping 𭟋o
κ : Q → Q given by 𭟋o

κκo = κo,𭟋o
κµ = µ,

and 𭟋o
κϖ = κo. It is straightforward to observe that condition (i) of Theorem 2 is fulfilled and

inequality (6) holds with β = 1
2 . Note also that 𭟋o is not an enriched Kannan-type mapping since

inequality (5) fails to hold for any 0 ≤ β < 1
2 .

Example 6. Let us demonstrate that condition (i) of Theorem 2 is essential. Let the space (Q, || · ||)
be the same as in the previous example and define 𭟋o : Q → R such that 𭟋oκo = 2µ −κo,𭟋oµ =
2κo − µ and 𭟋oϖ = 2κo − ϖ. Then, for s = 1, we obtain κ = 1

2 and the mapping 𭟋o
κ : Q → Q

given by 𭟋o
κκo = µ,𭟋o

κµ = κo and 𭟋o
κϖ = κo. It is straightforward to verify that inequality

(6) is satisfied for any value of 1
3 ⩽ β < 2

3 but 𭟋o does not have any fixed point.

Proposition 4. The generalized enriched Kannan operators are always continuous at their
fixed points.

Proof. Suppose (Q, || · ||) be a Banach space with at least three elements. Suppose 𭟋o :
Q → Q is a generalized enriched Kannan operator, and let κo∗ be a fixed point of 𭟋o.
Consider a sequence (κo

q) where κo
q → κo∗, κo

q ̸= κo
q+1, and κo

q ̸= κo∗ for every q.
To prove the claim, first we show that 𭟋o

κκo
q → 𭟋o

κκo∗. By (6), we have

||𭟋o
κκo∗ −𭟋o

κκo
q||+ ||𭟋o

κκo
q −𭟋o

κκo
q+1||+ ||𭟋o

κκo
q+1 −𭟋o

κκo∗||
⩽ β

(
||κo∗ −𭟋o

κκo∗||+ ||κo
q −𭟋o

κκo
q||+ ||κo

q+1 −𭟋o
κκo

q+1||
)
.

Hence,

||𭟋o
κκo∗ −𭟋o

κκo
q||+ ||𭟋o

κκo
q −𭟋o

κκo
q+1||+ ||𭟋o

κκo
q+1 −𭟋o

κκo∗||
⩽ β

(
||κo

q −𭟋o
κκo

q||+ ||κo
q+1 −𭟋o

κκo
q+1||

)
.

By applying the triangle inequality, we obtain

||𭟋o
κκo∗ −𭟋o

κκo
q||+ ||𭟋o

κκo
q −𭟋o

κκo
q+1||+ ||𭟋o

κκo
q+1 −𭟋o

κκo∗||
⩽ β

(
||κo

q −κo∗||+ ||κo∗ −𭟋o
κκo

q||+ ||κo
q+1 −κo∗||+ ||κo∗ −𭟋o

κκo
q+1||

)
.

Further,

||𭟋o
κκo∗ −𭟋o

κκo
q||+

1
1 − β

||𭟋o
κκo

q −𭟋o
κκo

q+1||+ ||𭟋o
κκo

q+1 −𭟋o
κκo∗||

⩽
β

1 − β

(
||κo

q −κo∗||+ ||κo
q+1 −κo∗||

)
.
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Since ||κo
q −κo∗|| → 0 and ||κo

q+1 −κo∗|| → 0 as q → ∞,

||𭟋o
κκo∗ −𭟋o

κκo
q||+

1
1 − β

||𭟋o
κκo

q −𭟋o
κκo

q+1||+ ||𭟋o
κκo

q+1 −𭟋o
κκo∗|| → 0.

Hence, ||𭟋o
κκo∗ − 𭟋o

κκo
q|| → 0. Consider a sequence (κo

q) where κo
q → κo∗ and

κo
q ̸= κo∗ for all n. In this case, κo

q may be equal to κo
q+1. Let

(
κo

qk

)
be a subsequence

of (κo
q) formed by removing repeated elements, ensuring κo

qk ̸= κo
qk+1 for all k. It is

evident that κo
qk → κo∗. As demonstrated, 𭟋o

κκo
qk → 𭟋o

κκo∗ = κo∗. The difference
between 𭟋o

κκo
qk and 𭟋o

κκo
q is that 𭟋o

κκo
q can be deduced from 𭟋o

κκo
qk by adding

the appropriate repeating consecutive points. Thus, it follows that 𭟋o
κκo

q → 𭟋o
κκo∗.

Next, consider a sequence (κo
q) where κo

q = κo∗ for all q > N, with N being a natural
number. In this case, it is evident that 𭟋o

κκo
q → 𭟋o

κκo∗. Let (κo
q) represent any arbitrary

sequence such that κo
q → κo∗, but not in the manner described previously. Consider a

subsequence
(
κo

qk

)
derived from (κo

q) by removing any occurrences of κo∗ (if present).
Clearly, κo

qk → κo∗. It has been demonstrated that 𭟋o
κκo

qk → 𭟋o
κκo∗. Similarly, 𭟋o

κκo
q

can be derived from 𭟋o
κκo

qk by adding elements 𭟋o
κκo∗ = κo∗ in certain positions. Thus,

it is evident that 𭟋o
κκo

q → 𭟋o
κκo∗. Since 𭟋o is just a scaling and translation of 𭟋o

κ , it
follows that 𭟋o is also continuous at κo∗.

3. Asymptotic Regularity

Asymptotic regularity provides a way to expand the range of mappings to which fixed
point techniques can be applied.

Definition 6. Consider a metric space (Q, || · ||). A mapping 𭟋o : Q → Q is said to be asymptoti-
cally regular if it satisfies the following condition:

lim
q→∞

||𭟋oq+1(κo)−𭟋oq(κo)|| = 0, (23)

for all κo ∈ Q.

Remark 5. Let (Q, || · ||) be a metric space and consider a self-mapping 𭟋o defined on Q. Consider
a sequence {κo

q} defined by κo
q+1 = (1 − κ)κo

q + κ𭟋oκo
q = 𭟋o

κ(κo
q) for all q ∈ N, where

κ ∈ (0, 1] and κo
0 ∈ Q. If 𭟋o

κ exhibits asymptotic regularity and considering the sequence {κo
q}

has no fixed point of 𭟋o, then all points κo
q for q ≥ 0 are distinct. If the points κo

q were not
distinct, then the sequence {κo

q} would eventually become cyclic starting from some index, which
would contradict the condition (23).

Theorem 3. Consider a Banach space (Q, || · ||) with at least three elements, and let 𭟋o : Q → Q

be a mapping that qualifies as a generalized enriched Kannan operator. Assume there is a κ ∈ (0, 1]
for which the mapping 𭟋o

κ : Q → Q exhibits asymptotic regularity. In this situation, 𭟋o must
have at least one fixed point, and the number of fixed points cannot exceed two.

Proof. Define a sequence from initial point κo
0 ∈ Q by κo

q+1 = (1 − κ)κo
q + κ𭟋oκo

q =
𭟋o

κ(κo
q), ∀q ∈ N, where κ ∈ (0, 1]. Suppose that the sequence (κo

q) lacks a fixed point
for 𭟋o. We will show that (κo

q) is a Cauchy sequence. It is enough to demonstrate that
||κo

q − κo
q+p|| → 0 as q → ∞ for any p > 0. When p = 1, this is directly derived based

on the definition of asymptotic regularity. For p ≥ 2, Remark 5 indicates that the points
κo

q, κo
q+p−1, and κo

q+p are distinct from each other. Applying the triangle inequality
repeatedly, along with inequality (6) and the property of asymptotic regularity, we obtain
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||κo
q −κo

q+p|| ⩽ ||κo
q −κo

q+1||+ ||κo
q+1 −κo

q+p+1||+ ||xq+p+1 −κo
q+p||

⩽||κo
q −κo

q+1||+ ||κo
q+1 −κo

q+p+1||+ ||κo
q+p+1 −κo

q+p||+ ||κo
q+1 −κo

q+p||
⩽||κo

q −κo
q+1||+ β

(
||κo

q −𭟋o
κκo

q||+ ||κo
q+p −𭟋o

κκo
q+p||+ ||κo

q+p−1 −𭟋o
κκo

q+p−1||
)

=||κo
q −κo

q+1||+ β
(
||κo

q −κo
q+1||+ ||κo

q+p −κo
q+p+1||+ ||κo

q+p−1 −κo
q+p||

)
→ 0

as q → ∞, this implies that (κo
q) is a Cauchy sequence. The remaining part of the proof is

analogous to the argument presented in Theorem 2, as demonstrated in (21).

We will show that by assuming continuity for the mappings 𭟋o, we can extend
fixed-point theorems to a wider range of mappings beyond generalized enriched Kannan
mappings. This holds even when the coefficient factor β falls within the interval [0, 1).

We will now introduce a broader class of mappings, extending the concept of enriched
Kannan mappings. The following definitions will outline this more generalized form. We
start by introducing the class G, which consists of mappings G : R3

+ → R+ that meet the
following criteria, where R+ denotes the set of all nonnegative real numbers:
(g1): G(l̊, l̊, l̊) = 0 if l̊ = 0;
(g2): G is continuous at (0, 0, 0);
(g3): G satisfies the condition G(κκo, κµ, κϖ) ≤ κG(κo, µ, ϖ).

Definition 7. Consider a normed space (Q, || · ||) with |Q| ≥ 3. We call 𭟋o : Q → Q a
generalized G-enriched Kannan mapping if there exists s ∈ [0, ∞) and a function G ∈ G such that

||s(κo − µ) +𭟋oκo −𭟋oµ||+ ||s(µ − ϖ) +𭟋oµ −𭟋oϖ||+ ||s(κo − ϖ) +𭟋oκo −𭟋oϖ||
⩽ G(||κo −𭟋oκo||, ||µ −𭟋oµ||, ||ϖ −𭟋oϖ||) (24)

is satisfied for all three pairwise distinct points κo, µ, and ϖ in Q.

Theorem 4. Let (Q, || · ||) be a Banach space with |Q| ≥ 3, and let 𭟋o : Q → Q be a continuous
mapping that is generalized G-enriched Kannan. Assume there exists κ ∈ (0, 1] such that the
mapping 𭟋o

κ : Q → Q is asymptotically regular. Then, 𭟋o must have at least one fixed point,
and there can be no more than two fixed points in total.

Proof. Consider a sequence (κo
q) defined by κo

q+1 = (1 − κ)κo
q + κ𭟋oκo

q = 𭟋o
κ(κo

q),
where κ ∈ (0, 1] and κo

0 ∈ Q. Suppose that this sequence does not have a fixed point of
𭟋o. To demonstrate that (κo

q) is a Cauchy sequence, it is enough to show that ||κo
q −

κo
q+p|| → 0 as q → ∞ for any p > 0. When p = 1, this result is directly obtained based

on the definition of asymptotic regularity. For p ≥ 2, Remark 5 indicates that the points
κo

q, κo
q+p−1, and κo

q+p are not equal to each other. By utilizing the repeated triangle
inequality, inequality (24), and the concept of asymptotic regularity, one can deduce that

||κo
q −κo

q+p|| ⩽ ||κo
q −κo

q+1||+ ||κo
q+1 −κo

q+p+1||+ ||κo
q+p+1 −κo

q+p||
⩽||κo

q −κo
q+1||+ ||κo

q+1 −κo
q+p+1||+ ||κo

q+p+1 −κo
q+p||+ ||κo

q+1 −κo
q+p||

⩽||κo
q −κo

q+1||+ G
(
||κo

q −𭟋o
κκo

q||, ||κo
q+p −𭟋o

κκo
q+p||, ||κo

q+p−1 −𭟋o
κκo

q+p−1||
)

=||κo
q −κo

q+1||+ G
(
||κo

q −κo
q+1||, ||κo

q+p −κo
q+p+1||, ||κo

q+p−1 −κo
q+p||

)
→ 0

as q → ∞, it follows that (κo
q) is a Cauchy sequence. Since Q is complete, this sequence

must converge to some limit κo∗ ∈ Q. Therefore, we have
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||𭟋o
κκo∗ −κo∗|| ⩽ ||𭟋o

κκo∗ −κo
q||+ ||κo

q −κo∗|| = ||𭟋o
κκo∗ −𭟋o

κκo
q−1||+ ||κo

q −κo∗||.

Since 𭟋o is continuous, its translated and scaled mapping 𭟋o
κ is also continuous. Therefore,

taking q → ∞, we obtain 𭟋o
κκo∗ = κo∗. Hence, κo ∈ f ix𭟋o

κ (Q) = f ix𭟋o (Q). The subse-
quent steps of the proof align with the approach outlined in the proof for Theorem 2.

Let S be the set of functions α : [0, ∞) → [0, ∞) such that lim sup α(t) < ∞ and
α(κt) ≤ κα(t) for all κ > 0.

Definition 8. Let (Q, || · ||) be a Banach space with |Q| ≥ 3. A mapping 𭟋o : Q → Q is called
a generalized s-enriched Kannan mapping if there exists a non-negative constant s and functions
α1, α2, α3 ∈ S such that

||s(κo − µ) +𭟋oκo −𭟋oµ||+ ||s(µ − ϖ) +𭟋oµ −𭟋oϖ||+ ||s(κo − ϖ) +𭟋oκo −𭟋oϖ||
⩽ α1(||κo −𭟋oκo||)||κo −𭟋oκo||+ α2(||µ −𭟋oµ||)||µ −𭟋oµ||

+α3(||ϖ −𭟋oϖ||)||ϖ −𭟋oϖ|| (25)

holds for all three pairwise distinct points κo, µ, ϖ ∈ Q.

Corollary 2. Consider a normed space (Q, || · ||) with |Q| ≥ 3 where operator 𭟋o : Q → Q is
a continuous generalized s-enriched Kannan operator. Assume there exists κ ∈ (0, 1] such that
𭟋o

κ : Q → Q is an asymptotically regular mapping. In this case, 𭟋o has at most two fixed points.

Proof. Set G(κo, µ, ϖ) = α1(κo)κo + α2(µ)µ + α3(ϖ)ϖ. Then, G(0, 0, 0) = 0,
limκo ,µ,ϖ→0 G(κo, µ, ϖ) = 0 and G(κκo, κy, ) ≤ κG(κo, µ, ϖ), since αi(t) ∈ S for i = 1, 2, 3.
Thus, this result is a direct consequence of Theorem 4.

By choosing α1(t) = α2(t) = α3(t) = β ≥ 0 in Equation (25), we obtain a generalized
enriched Kannan operator with the parameter β ∈ [0, ∞). Consequently, we can directly
derive from the result given below.

Corollary 3. Let (Q, || · ||) be a Banach space with |Q| ≥ 3, and let 𭟋o : Q → Q be a continuous
generalized enriched Kannan mapping with a coefficient β ∈ [0, ∞). Assume there is a κ ∈ (0, 1]
such that the mapping 𭟋o

κ : Q → Q is asymptotically regular. Then, 𭟋o has a fixed point, with at
most two fixed points in total.

Remark 6. It should be emphasized that the continuity assumption for the mapping 𭟋o in
Corollary 3 is not strictly necessary. Corollary 3 remains valid if we replace the continuity condition
with any of the following: orbital continuity, κo

0-orbital continuity, almost orbital continuity, weak
orbital continuity, 𭟋o-orbital lower semi-continuity, or k-continuity.

The proposition given below is mostly straightforward.

Proposition 5. Consider a Banach space (Q, || · ||) with |Q| ⩾ 3, and let 𭟋o : Q → Q be a
generalized enriched Kannan mapping. Then, for some κ ∈ (0, 1], the mapping 𭟋o

κ : Q → Q is
an asymptotically regular mapping if and only if 𭟋o

κ lacks periodic points with a prime period of
n ≥ 2.

Proposition 5 and Corollary 3 lead to the following result.
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Corollary 4. Consider a finite Banach space Q, and let 𭟋o : Q → Q be an operator. If, for some
κ ∈ (0, 1], the mapping 𭟋o

κ lacks periodic points with prime period n ≥ 2, then 𭟋o must possess a
fixed point.

Proof. Since Q is complete and 𭟋o is continuous, and given that 𭟋o
κ is an asymptotically

regular mapping by Proposition 5, if 𭟋o has no fixed points, then 𭟋o
κ will also have no

fixed points. Thus, ||κo −𭟋o
κκo||+ ||µ −𭟋o

κµ||+ ||ϖ −𭟋o
κϖ|| ̸= 0 for all κo, µ, ϖ ∈ Q.

It is straightforward to verify that 𭟋o is a generalized enriched Kannan mapping with
the factor

β = max
κo ,µ,ϖ∈Q

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
||κo −𭟋o

κκo||+ ||µ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ|| ,

where the maximum is considered over all distinct triplets κo, µ, ϖ ∈ Q. Applying
Corollary 3 leads to a contradiction.

Since a fixed point corresponds to a periodic point with period n = 1, we can directly
deduce the following.

Corollary 5. Consider a finite normed space Q and let 𭟋o : Q → Q be an operator. Then, for some
κ ∈ (0, 1], the mapping 𭟋o

κ will have a periodic point. This assertion appears to be well known and
is also quite elementary.

Proof. Define a sequence from initial point κo
0 ∈ Q by κo

q+1 = (1 − κ)κo
q + κ𭟋oκo

q =
𭟋o

κ(κo
q), ∀q ∈ N, where κ ∈ (0, 1]. By the pigeonhole principle, there is at least one

integer q, where 1 ≤ q ≤ |Q|, such that κo
q matches a previous term in the sequence. Let k

be the smallest index for which this holds, and let i < k be an index such that κo
i = κo

k.
Then, κo

i is a periodic point with a prime period of k − i.

4. Sequences of Approximate Fixed Points and Generalized G-Enriched
Kannan Mappings

Let (Q, || · ||) be a normed space and 𭟋o : Q → Q. A sequence {κo
n} ⊂ Q is

referred to as an approximate fixed point sequence for 𭟋o if ||κo
n −𭟋oκo

n|| → 0 as n
approaches infinity.

In the example below, we notice that although 𭟋o
κ for κ ∈ (0, 1], does not meet the

condition of asymptotic regularity, 𭟋o
κ still has an approximate sequence of fixed points.

Example 7. Let Q = [0, 1] be equipped with the usual norm || · ||, and let 𭟋o : Q → Q be defined
by 𭟋o(κo) = 3 − 5κo for all κo ∈ [0, 1]. Choosing s = 2, we set κ = 1

3 , resulting in the mapping
𭟋o

1
3
= 1 − κo. It is crucial to highlight that 𭟋o

1
3

is not asymptotically regular. This is because

every point in Q is a periodic point with a prime period of two, except for the point κo = 1
2 , which

is a fixed point of 𭟋o. Nevertheless, the sequence κo
q = 1

2 + 1
q for q ≥ 2 acts as an approximate

fixed-point sequence for 𭟋o
1
3
. In particular,

||κo
q −𭟋o

1
3
κo

q|| =
∣∣∣∣1
2
+

1
q
−

(
1 −

(
1
2
+

1
q

))∣∣∣∣ = 2
q
→ 0

as q → ∞.

In the subsequent discussion, we explore mappings that might not demonstrate
asymptotic regularity but still satisfy the condition of being a generalized G-enriched
Kannan mapping.



Fractal Fract. 2024, 8, 701 16 of 22

Theorem 5. Consider a Banach space (Q, || · ||) with |Q| ≥ 3, and a continuous generalized
G-enriched Kannan operator 𭟋o : Q → Q. Furthermore, assume that 𭟋o

κ has an approximate
fixed-point sequence, meaning there exists a sequence

{
κo

q

}
⊂ Q such that ||κo

q−𭟋o
κκo

q|| → 0
as q → ∞. In that case, 𭟋o will have at least one fixed point, and the total number of fixed points
will be at most two.

Proof. Utilizing the triangle inequality along with the definition of a generalized G-
enriched Kannan mapping, we derive the following:

||κo
q −κo

q+p|| ≤ ||κo
q −𭟋o

κκo
q||+ ||𭟋o

κκo
q −𭟋o

κκo
q+p||+ ||𭟋o

κκo
q+p −κo

q+p||
≤ ||κo

q −𭟋o
κκo

q||+ ||𭟋o
κκo

q −𭟋o
κκo

q+p||+ ||𭟋o
κκo

q+p −𭟋o
κκo

q+p−1||
+ ||𭟋o

κκo
q+p−1 −𭟋o

κκo
q||+ ||𭟋o

κκo
q+p −κo

q+p||
≤ ||κo

q −𭟋o
κκo

q||+ G(||κo
q −𭟋o

κκo
q||, ||κo

q+p −𭟋o
κκo

q+p||, ||κo
q+p−1

−𭟋o
κκo

q+p−1||) + ||𭟋o
κκo

q+p −κo
q+p||

which implies ||κo
q − κo

q+p|| → 0 as q → ∞. Therefore, (κo
q) is a Cauchy sequence.

The remainder of the proof follows directly.

5. Fixed-Point Theorems in Incomplete Normed Spaces

In the following result, we remove the necessity for the normed space to be complete
and instead introduce two new conditions, (iii) and (iv).

Theorem 6. Let (Q, ∥ · ∥) be a normed space where |Q| ≥ 3. Consider a mapping 𭟋o : Q → Q

that fulfills these four conditions:
(i) 𭟋o is a generalized enriched Kannan operator on Q;
(ii) 𭟋o

κ lacks periodic points with a prime period of 2;
(iii) 𭟋o is continuous at κo∗ ∈ Q;
(iv) There is a point κo

0 ∈ Q such that the sequence of iterates κo
q = (1 − κ)κo

q−1 +
κ𭟋oκo

q−1 = 𭟋o
κ(κo

q−1) for q = 1, 2, . . ., which has a subsequence κo
qk that converges to κo∗.

Thus, κo∗ is a fixed point of 𭟋o. Moreover, the maximum number of fixed points for 𭟋o is two.

Proof. Given that 𭟋o is continuous at κo∗, it follows that 𭟋o
κ is also continuous at κo∗.

Given that κo
qk → κo∗, we have 𭟋o

κκo
qk = κo

qk+1 → 𭟋o
κκo∗. Observe that κo

qk+1 is a
subsequence of κo

q, even though it does not have to be a subsequence of κo
qk . Assume that

κo∗ is not equal to 𭟋o
κκo∗. Consider two balls A1 = A1(κo∗, s) and A2 = A2(𭟋o

κκo∗, s),
where s < 1

3∥κo∗ −𭟋o
κκo∗∥. Therefore, there exists a positive integer N such that for

i > N, it follows that
κo

qi ∈ A1 and κo
qi+1 ∈ A2.

Hence,
||κo

qi −κo
qi+1|| > s (26)

for i > N, if the sequence κo
q does not include a fixed point of the mapping 𭟋o

κ (or 𭟋o),
then the analysis provided in Theorem 2 can be applied. Based on (20), for q = 3, 4, . . ., it
follows that

||κo
q−1 −κo

q|| ⩽ θ
q
2 −1b,

where b = max{||κo
0 −κo

1||, ||κo
1 −κo

2||} and θ = 2β/(2 − β) ∈ [0, 1). Hence,

||κo
qi −κo

qi+1|| ⩽ β
qi+1

2 −1b.

However, since the the previous expression tends to 0 as i → ∞, this contradicts (26).
Therefore, it must be that 𭟋o

κκo∗ = κo∗. The fact that there can be at most two fixed points
is a consequence of the last paragraph of Theorem 2.
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Theorem 7. Consider a normed space (Q, ∥ · ∥) with |Q| ≥ 3, and let 𭟋o : Q → Q be a mapping.
Furthermore, assume that

(i) 𭟋o is a generalized enriched Kannan mapping on N, where N ⊆ Q is a set that is dense
everywhere in Q;

(ii) 𭟋o is continuous mapping;
(iii) 𭟋o

κ lacks periodic points with a prime period of 2;
(iv) There exists an element κo

0 ∈ Q such that the iterated sequence κo
q = 𭟋o

κκo
q−1 for

q = 1, 2, . . . contains a subsequence κo
qk that converges to κo∗.

Thus, κo∗ is a fixed point of 𭟋o. Furthermore, there can be at most two fixed points.

Proof. The proof will be completed using Theorem 6 if we can show that 𭟋o is a generalized
enriched Kannan mapping on Q. Let κo, µ, and ϖ be three distinct points in Q where
κo and µ are in M and ϖ is in Q \ N. Consider a sequence (dq) in N such that dq → ϖ,
dq ̸= κo and dq ̸= µ for all q, and di ̸= dj for i ̸= j. Then,

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
⩽ ||𭟋o

κκo −𭟋o
κµ||+ ||𭟋o

κµ −𭟋o
κdq||+ ||𭟋o

κdq −𭟋o
κϖ||+ ||𭟋o

κκo −𭟋o
κdq||

+||𭟋o
κdq −𭟋o

κϖ||
⩽ β(||κo −𭟋o

κκo||+ ||µ −𭟋o
κµ||+ ||dq −𭟋o

κdq||) + 2||𭟋o
κdq −𭟋o

κϖ||.

Using the inequality

||dq −𭟋o
κdq|| ⩽ ||dq − ϖ||+ ||ϖ −𭟋o

κϖ||+ ||𭟋o
κϖ −𭟋o

κdq|| (27)

in the above inequality, we obtain

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ|| ⩽ β(||κo −𭟋o
κκo||

+||µ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ||) + β||dq − ϖ||+ β||𭟋o
κϖ −𭟋o

κdq||+ 2||𭟋o
κdq −𭟋o

κϖ||.

Letting n → ∞ we obtain ||dq − ϖ|| → 0 and |𭟋o
κdq −𭟋o

κϖ|| → 0. Hence, inequality (6)
follows.

Let κo ∈ N, and µ, ϖ ∈ Q \ N. Consider sequences (bq) and (cq) in N such that
bq → µ and cq → ϖ. (Throughout, it is assumed that κo, µ, ϖ, and all elements of the
sequences converging to these points are pairwise distinct.) Then,

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
⩽ ||𭟋o

κκo −𭟋o
κbq||+ ||𭟋o

κbq −𭟋o
κµ||

+||𭟋o
κµ −𭟋o

κbq||+ ||𭟋o
κbq −𭟋o

κcq||+ ||𭟋o
κcq −𭟋o

κϖ||
+||𭟋o

κκo −𭟋o
κcq||+ ||𭟋o

κcq −𭟋o
κϖ||

⩽ β(||κo −𭟋o
κκo||+ ||bq −𭟋o

κbq||+ ||cq −𭟋o
κcq||) + 2||𭟋o

κbq −𭟋o
κµ||+ 2||𭟋o

κcq −𭟋o
κϖ||.

Using the following inequality

||bq −𭟋o
κbq|| ⩽ ||bq − µ||+ ||µ −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κbq|| (28)

and inequality (27) in the above expression, we obtain

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
⩽ β(||κo −𭟋o

κκo||+ ||µ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ||) + 2||𭟋o
κbq −𭟋o

κµ||+ 2||𭟋o
κcq −𭟋o

κϖ||
+β(||bq − µ||+ ||𭟋o

κµ −𭟋o
κbn||+ ||cq − ϖ||+ ||𭟋o

κϖ −𭟋o
κcq||).

Taking the limit as q → ∞, we obtain inequality (6).
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Now, let κo, µ, and ϖ be points in Q \ N, and let (aq), (bq), and (cq) be sequences in
N such that aq → κo, bq → µ, and cq → ϖ. Then,

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
⩽ ||𭟋o

κκo −𭟋o
κaq||+ ||𭟋o

κaq −𭟋o
κbq||+ ||𭟋o

κbq −𭟋o
κµ||+ ||𭟋o

κµ −𭟋o
κbq||

+||𭟋o
κbq −𭟋o

κcq||+ ||𭟋o
κcq −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κaq||
+||𭟋o

κaq −𭟋o
κcq||+ ||𭟋o

κcq −𭟋o
κϖ||

⩽ β(||aq −𭟋o
κaq||+ ||bq −𭟋o

κbq||+ ||cq −𭟋o
κcq||)

+2||𭟋o
κaq −𭟋o

κκo||+ 2||𭟋o
κbq −𭟋o

κµ||+ 2||𭟋o
κcq −𭟋o

κϖ||.

Using the following inequality

||aq −𭟋o
κaq|| ⩽ ||aq −κo||+ ||κo −𭟋o

κκo||+ ||𭟋o
κκo −𭟋o

κaq||, (29)

and inequalities (27) and (28) in the above expression, we obtain

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
⩽ β(||κo −𭟋o

κκo||+ ||µ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ||)
+2||𭟋o

κaq −𭟋o
κκo||+ 2||𭟋o

κbq −𭟋o
κµ||+ 2||𭟋o

κcq −𭟋o
κϖ||

+β(||aq −κo||+ ||𭟋o
κκo −𭟋o

κaq||+ ||bq − µ||+ ||𭟋o
κµ −𭟋o

κbq||
+||cq − ϖ||+ ||𭟋o

κϖ −𭟋o
κcq||).

Taking the limit as q → ∞, we derive inequality (6). Therefore, since 𭟋o is a generalized
enriched Kannan mapping on Q, the proof is concluded with the help of Theorem 6.

6. Application to Fractional Differential Equations

In this section, we use our main results to explore the existence of solutions for
boundary value problems concerning fractional differential equations that incorporate the
Caputo fractional derivative.

Suppose Q = C([0, 1],R) denotes the Banach space of all continuous function map-
pings from [0, 1] to R equipped with the norm

∥κo∥ = max
η∈[0,1]

|κo(η)|.

Now, we will review the following fundamental concepts that will be required later.

Definition 9 ([31]). For a function v defined on the interval [a, b], the Caputo fractional derivative
of order ζ > 0 is expressed as follows:(

cD
ζ
a+

)
v(η) =

1
Γ(m − ζ)

∫ η

a
(η − s)m−ζ−1v(m)(s)ds, (m − 1 ≤ ζ < m, m = [ζ] + 1), (30)

where [ζ] indicates the integer part of the positive real number ζ, and Γ refers to the gamma function.
Suppose the boundary value problem for a fractional order differential equation is defined as follows:

cD
ζ
0+(κ

o(η)) = h(η,κo(η)), (η ∈ [0, 1], 2 < ζ ≤ 3)

κo(0) = c0,κo ′(0) = c,κo ′′(1) = c1, (31)

where cD
ζ
0+ signifies the Caputo fractional derivative of order ζ, h : [0, 1] → R is a continuous

function, and c0, c, c1 are real constants.



Fractal Fract. 2024, 8, 701 19 of 22

Definition 10 ([32]). A function κo ∈ C3([0, 1],R) for which the ζ-derivative exists on [0, 1] is
considered a solution of (31) if it satisfies the equation cD

β
0+(κ

o(η)) = h(η,κo(η)) on [0, 1] along
with the conditions κo(0) = c0, κo ′(0) = c, and κo ′′(1) = c1.

The following lemma will be essential for the subsequent discussion.

Lemma 1 ([32]). Let 2 < ζ ≤ 3 and let v : [0, 1] → R be a continuous function. A function κo is
considered a solution of the fractional integral equation

κo(η) =
1

Γ(ζ)

∫ η

0
(η − s)ζ−1v(s)ds− η2

2Γ(ζ − 2)

∫ 1

0
(1− s)ζ−3v(s)ds+ c0 + c0η +

c1

2
η2 (32)

if κo is a solution to the fractional boundary value problem

cD
ζ
0+(κ

o(η)) = v(η)

κo(0) = c0,κo ′(0) = c,κo ′′(1) = c1, (33)

where

κo ′′(1) = 2c2 +
1

Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3v(s)ds = c1,

and c, c0, c1 and c2 are constants in R.

Next, we define the mapping 𭟋o : Q → Q by

𭟋oκo(η) =
1

Γ(ζ)

∫ η

0
(η − s)ζ−1h(s,κo(s))ds (34)

− η2

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3h(s,κo(s))ds + c0 + c∗0η +

c1

2
η2

where

c1 = 2c2 +
1

Γ(α − 2)

∫ 1

0
(1 − s)ζ−3h(s,κo(s))ds, ci, c∗0 ∈ R, (i = 0, 1, 2) are constant.

Then, for some κ ∈ [0, 1], we obtain

𭟋o
κκo(η) =

κ

Γ(ζ)

∫ η

0
(η − s)ζ−1h(s,κo(s))d s

− κη2

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3h(s,κo(s))ds + κ(c0 + c∗0η +

c1

2
η2) + (1 − κ)κo(η).

Clearly, the fixed points of mapping 𭟋o, as defined in (34), are the solutions of a boundary
value problem for a fractional order differential Equation (31).

Now, we state and prove our main result in this section.

Theorem 8. Suppose that for all κo
1,κo

2 ∈ I there exists 0 < λ < 1
4 such that ∀η ∈ [0, 1],

|h(η,κo
1(η))− h(η,κo

2(η))|

≤ λ[|κo
1(η)−𭟋oκo

1(η)|+ |κo
2(η)−𭟋oκo

2(η)|]−
1
2
(1 − κ)(κo

1(η)−κo
2(η)) (35)

where

0 < σ := 2λ

(
1

Γ(ζ + 1)
+

1
2Γ(ζ − 1)

)
< 1. (36)

Then, Equation (31) has at most two solutions in I.
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Proof. Inequality (6) can be equivalently expressed for κ = 1
1+s ≤ 1 and 0 ≤ β < 1

as follows:

||𭟋o
κκo −𭟋o

κµ||+ ||𭟋o
κµ −𭟋o

κϖ||+ ||𭟋o
κκo −𭟋o

κϖ||
≤ β(||κo −𭟋o

κκo||+ ||µ −𭟋o
κµ||+ ||ϖ −𭟋o

κϖ||), ∀κo, µ, ϖ ∈ Q.

Therefore, considering the following and using the given assumption in (35) and (36),
we obtain

|𭟋o
κκo(η)−𭟋o

κµ(η)|+ |𭟋o
κµ(η)−𭟋o

κϖ(η)|+ |𭟋o
κκo(η)−𭟋o

κϖ(η)|

=
κ

Γ(ζ)

∫ η

0
(η − s)ζ−1|h(s,κo(s))− h(s, µ(s))|d s

+
κη2

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3|h(s,κo(s))− h(s, µ(s))|ds + (1 − κ)(κo(η)− µ(η))

+
κ

Γ(ζ)

∫ η

0
(η − s)ζ−1|h(s, µ(s))− h(s, ϖ(s))|ds

+
κη2

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3|h(s, µ(s))− h(s, ϖ(s))|ds + (1 − κ)(µ(η)− ϖ(η))

+
κ

Γ(ζ)

∫ η

0
(η − s)ζ−1|h(s,κo(s))− h(s, ϖ(s))|ds

+
κη2

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3|h(s,κo(s))− h(s, ϖ(s))|ds + (1 − κ)(κo(η)− ϖ(η))

≤ κ

Γ(ζ)

∫ η

0
(η − s)ζ−1λ[|κo(η)−𭟋oκo(η)|+ |µ(η)−𭟋oµ(η)|]ds

+
κ

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3λ[|κo(η)−𭟋oκo(η)|+ |µ(η)−𭟋oµ(η)|]d s

+
κ

Γ(β)

∫ η

0
(η − s)ζ−1λ[|µ(η)−𭟋oµ(η)|+ |ϖ(η)−𭟋oϖ(η)|]ds

+
κ

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3λ[|µ(η)−𭟋oµ(η)|+ |ϖ(η)−𭟋oϖ(η)|]ds

+
κ

Γ(ζ)

∫ η

0
(η − s)ζ−1λ[|κo(η)−𭟋oκo(η)|+ |ϖ(η)−𭟋oϖ(η)|]ds

+
κ

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3λ[|κo(η)−𭟋oκo(η)|+ |ϖ(η)−𭟋oϖ(η)|]ds

=
2κλ

Γ(ζ)

∫ η

0
(η − s)ζ−1[|κo(η)−𭟋oκo(η)|+ |µ(η)−𭟋oµ(η)|+ |ϖ(η)−𭟋oϖ(η)|]ds

+
2κλ

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3[|κo(η)−𭟋oκo(η)|+ |µ(η)−𭟋oµ(η)|+ |ϖ(η)−𭟋oϖ(η)|]ds

≤ 2κλ

Γ(ζ)

∫ η

0
(η − s)ζ−1[∥κo(η)−𭟋oκo(η)∥+ ∥µ(η)−𭟋oµ(η)∥+ ∥ϖ(η)−𭟋oϖ(η)∥]ds

+
2κλ

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3[∥κo(η)−𭟋oκo(η)∥+ ∥µ(η)−𭟋oµ(η)∥+ ∥ϖ(η)−𭟋oϖ(η)∥]d s

=

[
2λ

Γ(ζ)

∫ η

0
(η − s)ζ−1ds +

2λ

2Γ(ζ − 2)

∫ 1

0
(1 − s)ζ−3ds

]
×[∥κo(η)−𭟋oκo(η)∥+ ∥µ(η)−𭟋oµ(η)∥+ ∥ϖ(η)−𭟋oϖ(η)∥]

≤ 2λ

(
1

Γ(ζ + 1)
+

1
2Γ(ζ − 1)

)
[∥κo(η)−𭟋oκo(η)∥+ ∥µ(η)−𭟋oµ(η)∥+ ∥ϖ(η)−𭟋oϖ(η)∥]

= σ[∥κo(η)−𭟋oκo(η)∥+ ∥µ(η)−𭟋oµ(η)∥+ ∥ϖ(η)−𭟋oϖ(η)∥].
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Hence, this implies that

∥𭟋o
κκo −𭟋o

κµ∥+ ∥𭟋o
κµ −𭟋o

κϖ∥+ ∥𭟋o
κκo −𭟋o

κϖ∥

≤ σ[∥κo −𭟋o
κκo∥+ ∥µ −𭟋o

κµ∥+ ∥ϖ −𭟋o
κϖ∥].

So, it follows that 𭟋o is a generalized (s, σ)-enriched Kannan operator. Also, 𭟋o
κ does not

possess periodic points with a prime period of 2. Hence, by Theorem 2, the problem (31)
has at most two solutions.

7. Conclusions

In this research, we introduced a novel class of mappings in linear normed spaces,
termed generalized enriched Kannan mappings. These mappings extend enriched Kannan
mappings to three-point analogues and simultaneously expand the framework of generalized
Kannan mappings. They are generally discontinuous, except at fixed points, where they
maintain a continuity similar to enriched Kannan mappings. Although similar, generalized
enriched Kannan mappings and enriched Kannan mappings represent distinct classes. We
formulated a fixed-point theorem for these generalized mappings and broadened the appli-
cability of fixed-point theorems by incorporating conditions of asymptotic regularity and
continuity. Furthermore, we established two additional fixed-point theorems applicable to
normed spaces, without the need for them to be Banach spaces. In this work, we addressed a
boundary value problem for fractional differential equations and used our main results to
establish the existence of solutions. Although the primary focus was on fractional differential
equations, the methods developed can also be extended to other types of equations, including
ordinary and partial differential equations, as well as integral equations. The underlying
principles of fixed-point theory provide a powerful framework, demonstrating its broad
applicability and potential for solving diverse mathematical problems.

A promising direction for future research involves utilizing three-point analogue tech-
niques to investigate how generalized enriched contractions can characterize the complete-
ness of normed spaces. This approach could provide valuable insights into the structural
properties of normed spaces and deepen the theoretical understanding of fixed-point the-
orems. Furthermore, the concept of cyclic representation can be applied to three-point
analogues to further generalize this work, making it a promising direction for future research.
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