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Abstract: We introduce a mathematical framework to characterize the hierarchical complexity of
AI-generated fractals within the finite resolution constraints of digital images. Our method analyzes
images produced by text-to-image models at multiple intensity thresholds, employing a discrete
level set approach and box-counting dimension estimates. By conducting experiments on fractals
created with the FLUX model at a resolution of 128 × 128, we identify a fully monotonic behavior in
the dimension sequences for various box sizes, with inter-scale correlations surpassing 0.95. Pattern-
specific dimensional gradients quantify how fractal complexity changes with threshold levels, offering
insights into how text-to-image models encode fractal-like geometry through dimensional sequences.

Keywords: fractal dimension analysis; digital image processing; level set theory; box-counting
dimension; text-to-image models; discrete mathematics; computer vision

1. Introduction

The analysis of fractal structures in digital images has gained significant importance
with the development of advanced text-to-image models capable of generating complex
mathematical visualizations [1]. These models have demonstrated remarkable success
in producing visually compelling fractals, operating on spaces of textual prompts and
digital images. Quantification of structural properties in AI-generated fractals is crucial to
understanding the capabilities and limitations of these models, as well as to improving our
understanding of how abstract mathematical concepts are encoded in machine learning
systems [2,3]. However, this analysis presents significant challenges, particularly due to
the discrete nature of digital representations and the finite resolution of the generated
images [4,5].

Traditional fractal analysis methods, often based on continuous mathematical formu-
lations or continuous feature vectors of AI models [6–9], are not directly applicable to the
pixel-based structure of digital images [10,11]. The finite resolution of these images imposes
fundamental limitations on the application of classical fractal dimension theory, which
typically involves limits as the scale approaches zero. Moreover, the potential introduction
of artifacts during the generation process requires a robust analytical framework capable
of capturing hierarchical organization while accounting for the discrete underlying repre-
sentation [12,13]. These challenges call for a novel approach that bridges the gap between
continuous fractal theory and the discrete nature of digital imagery [7,14].

To address these challenges, we introduce a novel dimensional analysis framework
based on discrete level sets, specifically tailored for digital images. Let P be the set of all
valid textual prompts and I = [0, 1]M×N be the space of normalized grayscale images.
Given a text-to-image model F : P → I that maps fractal prompts to grayscale images,
we analyze the generated image I = F(p) for any prompt p ∈ P through a sequence
of level sets Lk = {x ∈ Ω : I(x) ≥ tk}, defined on the pixel domain Ω for thresholds
tk = k/10, where k ∈ {0, . . . , 10}. This method offers a mathematical technique to break
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down the image’s structure into various intensity levels, all while maintaining the discrete
characteristics of the pixel grid.

Our primary theoretical contribution lies in developing a novel approach to measure
fractal properties in digital images through discrete box-counting analysis. Rather than
directly applying traditional continuous fractal mathematics, we introduce a framework
specifically tailored for pixel-based representations. This approach systematically analyzes
level sets at various intensity thresholds, employing multiple box sizes that align with
the image’s inherent resolution constraints. By carefully considering the discrete nature
of digital images, we derive dimension estimates using robust statistical regression tech-
niques in logarithmic space. The resulting dimensional measure captures the hierarchical
complexity at different intensity levels. A key theoretical result demonstrates that these
dimension values exhibit a natural monotonic decrease in successive threshold levels, re-
flecting the nested structure of the level sets. This property provides a crucial validation of
our framework’s consistency with both classical fractal theory and the discrete geometry of
digital images. Our formulation bridges the gap between continuous mathematical ideals
and practical computational requirements, offering a stable and interpretable measure of
fractal-like characteristics in AI-generated patterns.

To validate our theoretical framework, we conducted systematic experiments using
the FLUX model [15], analyzing the fractals generated at a resolution of 128 × 128 pixels.
Our experimental protocol employs multiple fixed box sizes (4 × 4, 8 × 8, and 16 × 16
pixels) for dimension calculations, ensuring a comprehensive multi-scale analysis of the
fractal properties while maintaining computational feasibility. The resulting dimensional
sequences offer a novel characterization of how text-to-image models encode and interpret
fractal concepts, providing insights into both the mathematical properties of the generated
structures and the underlying generative process.

Although significant progress has been made in adapting the fractal dimension anal-
ysis to digital imagery, previous methods often implicitly rely on assumptions in the
continuous domain or struggle to handle the finite and discrete resolution of pixel-based
data. Unlike traditional fractal dimension approaches, which typically assume infinite reso-
lution scales and continuous sets, our framework is explicitly tailored to the discrete and
finite nature of digital images generated by text-to-image models. We directly incorporate
the pixel grid structure and restricted range of scales into the fractal dimension estima-
tion process. By employing discrete level sets and verifying monotonicity of dimension
sequences across thresholded intensity levels, our method provides a well-founded way
to quantify hierarchical complexity in a manner more faithful to the underlying digital
representation. This marks a key departure from conventional fractal analysis methods,
which generally do not guarantee monotonic sequences of dimension values or systemati-
cally account for the resolution-induced discretization effects. As such, our framework not
only addresses the limitations inherent in applying continuous fractal theory directly to
pixel-based images but also offers an innovative perspective that bridges the gap between
abstract fractal concepts and the concrete realities of AI-generated fractal structures.

Our work establishes a mathematical foundation for analyzing AI-generated fractals
within the constraints of digital image representation. By providing a quantitative frame-
work for assessing the hierarchical complexity of these structures, we contribute to the
understanding of how large language models encode and interpret abstract mathemat-
ical concepts. This research has implications for improving the fidelity of AI-generated
mathematical visualizations and for developing more sophisticated evaluation metrics
for generative models in the domain of discrete mathematical imagery. Through careful
analysis of dimensional sequences and their gradients, we uncover pattern-specific charac-
teristics that shed light on the encoding mechanisms employed by text-to-image models in
fractal generation.
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2. Related Work
2.1. Fractal Analysis in Digital Images

The analysis of fractal properties in digital images has been extensively studied, with
various methods developed for estimating fractal dimensions from discrete data. Box-
counting, Minkowski dilation, and Fourier analysis have been prominent approaches [16–18].
However, these methods face challenges when applied to digital images due to the inherent
discreteness and finite resolution of pixel grids. Sarkar and Chaudhuri [16] proposed a
differential box-counting method specifically tailored for digital images, addressing the
limitations of continuous fractal analysis in discrete settings. Their approach introduces a
modified box-counting algorithm that accounts for the pixel-based nature of digital images,
providing more accurate dimension estimates within the constraints of image resolution.

Panigrahy et al. [19] conducted a comprehensive survey of differential box-counting
methods, emphasizing the need for methods that can handle the limited range of scales
available in pixel-based representations. This consideration is crucial, as it addresses a
limitation often overlooked in earlier works that directly applied continuous fractal theory
to digital domains. The survey highlights the importance of adapting fractal dimension
estimation techniques to the discrete nature of digital images, providing a foundation for
more accurate analysis in finite-resolution settings.

2.2. Level Set Methods and Discrete Dimension Theory

Level set methods, introduced by Osher and Sethian [20], have become fundamental
tools for analyzing evolving interfaces and surfaces. While initially developed for con-
tinuous domains, these methods have been adapted for discrete settings, particularly in
image processing applications. Caselles et al. [21] extended level set methods to geometric
active contours, providing a framework for image segmentation that naturally handles
topological changes. However, the direct application of these methods to fractal analysis in
digital images requires careful consideration of the discrete grid structure.

The relationship between level sets and the fractal dimension in discrete domains has
been explored by Chen [22], who proposed a framework to analyze urban morphology
using spatial correlation functions. This approach demonstrates the potential for combining
level set methods with fractal analysis in discrete settings, although it does not fully
address the limitations imposed by finite image resolution. Our work builds upon these
foundations, extending the application of level set methods to the analysis of AI-generated
fractals within the constraints of digital imagery.

In digital image analysis, Yan et al. [23] introduced an improved box-counting method
that addresses some of the discretization issues. Their approach uses a sliding box technique
to reduce the impact of grid alignment, providing more stable dimension estimates in
different scales. This method represents a step towards reconciling continuous fractal
theory with the discrete nature of digital images, although it still relies on assumptions that
may not hold at the pixel level. Our research extends this work by developing a framework
specifically tailored to the analysis of AI-generated fractals, accounting for the unique
challenges posed by machine-generated mathematical structures.

2.3. AI-Generated Mathematical Structures

The analysis of AI-generated mathematical structures presents unique challenges in
verification and dimensional analysis. Recent advancements in large language models
have demonstrated significant progress in mathematical reasoning capabilities [24], yet
fundamental challenges remain to ensure robust geometric understanding, particularly
for complex structures such as fractals [25]. These challenges are particularly relevant to
our work, as we seek to develop methods to analyze the fractal properties of structures
generated by AI models.

Let M denote the space of mathematical structures and G : P → M be a generative
model mapping prompts to structures. The verification problem can be formalized as
finding a metric d : M×M → R+ that captures mathematical similarity while remaining
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computationally tractable. Current approaches focus on statistical validation [26], although
these methods often fail to capture the subtle geometric properties inherent in fractal
structures. Our work addresses this limitation by developing a framework that specifically
targets the fractal properties of AI-generated structures.

The integration of dimensional analysis with traditional verification methods offers a
promising direction to evaluate the mathematical fidelity of the generated content. How-
ever, existing frameworks for fractal analysis must be adapted to account for the discrete
nature of AI-generated images and the limitations of finite resolution. This adaptation
requires a careful reconsideration of fundamental concepts such as scaling laws and dimen-
sion calculations, since the continuous limits typically assumed in fractal theory are not
directly applicable to pixel-based representations. Our research contributes to this area by
proposing a novel approach that combines level set methods with discrete box-counting
techniques, specifically designed to analyze the hierarchical complexity of AI-generated
fractals within the constraints of digital image resolution.

3. Method
3.1. Discrete Level Set Framework for Digital Images

We develop a framework for analyzing AI-generated fractals using discrete level sets,
adapting continuous fractal theory to the constraints of digital images. Let P be the set of
all valid textual prompts and I = [0, 1]M×N be the space of normalized grayscale images.
A text-to-image model is defined as a mapping F : P → I .

Definition 1 (Normalized Digital Image). A normalized grayscale digital image I : Ω → {0, 1,
. . . , 255}/255 is a function that maps pixels to discrete intensity values, where Ω = {1, . . . , M} ×
{1, . . . , N} ⊂ Z2 is a finite rectangular grid.

Definition 2 (Threshold Sequence). The uniform threshold sequence {tk}10
k=0 is defined as

tk = k/10, partitioning the intensity range [0, 1] into equal intervals.

These intensity thresholds serve as a systematic means to probe the image’s structure
at multiple discrete intensity levels. By dividing the full intensity range into equally spaced
increments, we ensure a uniform and transparent approach to sampling the image’s hierar-
chical features. This choice of tk = k/10 is driven by both simplicity and broad applicability:
it is sufficiently granular to capture subtle changes in the image’s geometry while remaining
computationally manageable. Moreover, selecting a uniform partition avoids bias toward
particular intensity regimes and helps maintain methodological consistency in various
fractal patterns and imaging scenarios.

Definition 3 (Discrete Level Sets). For a normalized digital image I and threshold tk, the discrete
level set Lk is defined as:

Lk = {x ∈ Ω : I(x) ≥ tk} (1)

Lemma 1 (Level Set Nesting). For any thresholds t1, t2 ∈ [0, 1] with t1 < t2, the corresponding
level sets satisfy Lt2 ⊆ Lt1 .

Proof. Let x ∈ Lt2 . By definition, I(x) ≥ t2. Since t2 > t1, we have I(x) ≥ t2 > t1, which
implies x ∈ Lt1 . Therefore, Lt2 ⊆ Lt1 . □

3.2. Box-Counting Dimension Analysis

We now establish key properties of the box-counting dimension adapted for discrete
level sets in digital images.
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Definition 4 (Discrete Box-Counting Dimension). For each level set Lk and a set of box sizes
{εi}n

i=1, the discrete box-counting dimension Dk is estimated by performing linear regression on
the log-log plot of Nεi (Lk) versus 1/εi:

Dk =
∑n

i=1

(
log(1/εi)− log(1/ε)

)(
log Nεi (Lk)− log Nε(Lk)

)
∑n

i=1

(
log(1/εi)− log(1/ε)

)2 , (2)

where log(1/ε) and log Nε(Lk) are the mean values over all i.

We choose the box-counting dimension over other definitions of fractal dimensions,
such as the Hausdorff dimension, due to its practical compatibility with digital images and
finite-resolution data. The Hausdorff dimension and related continuous-domain concepts
are theoretically elegant but difficult to approximate reliably in pixel-based images with
limited scales. In contrast, box-counting is inherently discrete and directly applicable to
pixel grids, allowing for straightforward implementation and robust statistical estimation.
This approach integrates naturally with the level set framework and the nested structure
of intensity thresholds, making it well suited for assessing fractal-like complexity in AI-
generated imagery without relying on continuous, infinitely scalable assumptions.

Lemma 2 (Discrete Box Cover Properties). For any subset S ⊆ Ω, where Ω is a discrete grid
of size M × N, and for any box size ε = k/M, with k being a positive integer divisor of M, the
following inequalities hold:⌈

|S|
(εM)2

⌉
≤ Nε(S) ≤ min

{
|S|,

⌈
MN

(εM)2

⌉}
(3)

where |S| is the number of pixels in S, and Nε(S) is the number of εM × εM boxes required to
cover S.

Proof. The lower bound represents the minimum number of (εM)2-sized boxes needed to
cover |S| pixels when S is densely packed. The upper bound is the minimum of the total
number of pixels in S and the number of (εM)2-sized boxes needed to cover Ω, representing
the worst-case scenario where each pixel requires its own box. □

Theorem 1 (Discrete Dimension Sequence Properties). For fixed box sizes {εi}n
i=1 and level

sets Lk defined by thresholds tk = k/10, k ∈ {0, . . . , K}, where K ≤ 10 is the highest threshold for
which LK is non-empty and DK is defined, the estimated dimension sequence {Dk}K

k=0 satisfies:

Dk+1 ≤ Dk, ∀k ∈ {0, . . . , K − 1}, (4)

provided that Nεi (Lk+1) ≤ Nεi (Lk) for all εi and the regression is performed over the same set of εi.

Proof. Since Lk+1 ⊆ Lk, it follows that Nεi (Lk+1) ≤ Nεi (Lk) for each εi. In the log-log plot
of log Nεi (Lk) versus log(1/εi), the points corresponding to Lk+1 lie below or coincide with
those of Lk. The regression line for Dk is fitted to higher points than that for Dk+1, ensuring
Dk+1 ≤ Dk. □

3.3. Hierarchical Structure Characterization

To characterize the hierarchical structure of AI-generated fractals within the constraints
of digital images, we introduce the concept of dimensional gradients.
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Definition 5 (Dimensional Gradient). The dimensional gradient ∇Dk quantifies the rate of
change of the box-counting dimension between consecutive level sets:

∇Dk = Dk − Dk+1 (5)

Theorem 2 (Dimension Gradient Summation). Let K ≤ 10 be the highest threshold for which
LK is non-empty and DK is defined. The sum of the dimensional gradients over all thresholds up to
K satisfies:

K−1

∑
k=0

∇Dk = D0 − DK, (6)

where ∇Dk = Dk − Dk+1 for k ∈ {0, . . . , K − 1}.

Proof. The proof follows by telescoping the sum:

K−1

∑
k=0

∇Dk=
K−1

∑
k=0

(Dk − Dk+1)

= (D0 − D1) + (D1 − D2) + · · ·+ (DK−1 − DK)

= D0 − DK

This accounts for the highest meaningful threshold K where the dimension is defined.
□

Definition 6 (Discrete Structural Complexity). The discrete structural complexity functional
C : I → R+ is defined as:

C(I) =

(
K−1

∑
k=0

(∇Dk)
2

)1/2

(7)

where K ≤ 10 is the highest threshold for which LK is non-empty and DK is defined.

3.4. Numerical Stability and Implementation

The implementation of our theoretical framework for digital images requires careful
consideration of computational aspects and numerical stability.

Definition 7 (Discrete Box Cover). For a level set Lk ⊂ Ω and box size ε = n/M, n ∈ {4, 8, 16},
the discrete box cover Bε(Lk) is defined as:

Bε(Lk) =
{

bi,j : bi,j ∩ Lk ̸= ∅
}

(8)

where bi,j = {iεM + 1, . . . , (i + 1)εM} × {jεM + 1, . . . , (j + 1)εM} are disjoint boxes cover-
ing Ω.

Lemma 3 (Discrete Box Count Computation). For any level set Lk and box size ε, the box count
Nε(Lk) satisfies:

Nε(Lk) =
1/ε−1

∑
i=0

1/ε−1

∑
j=0

1
{

bi,j ∩ Lk ̸= ∅
}

(9)

where 1 denotes the indicator function.

Proof. The sum counts exactly those boxes that intersect Lk, and since the boxes are disjoint,
this gives |Bε(Lk)|=Nε(Lk). □

Theorem 3 Numerical Stability for Discrete Dimension Estimation) (Corrected). Assume
that for each level set Lk, the errors in log Nε(Lk) are independent and identically distributed with
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variance σ2 and that the logarithms of the inverse box sizes Xi = log(1/εi) have variance Var(X).
Then, the standard error of the estimated difference in dimensions ∆Dk,k′ = Dk − Dk′ satisfies:

SE
(
∆Dk,k′

)
=

√
2 σ√

n·
√

Var(X)
, (10)

and thus, the relative error in the estimated dimension difference is bounded by:∣∣∣∣∣∆Dk,k′ − ∆Dtrue
k,k′

∆Dtrue
k,k′

∣∣∣∣∣ ≤
√

2 σ

|∆ Dtrue
k,k′ |·

√
n·
√

Var(X)
, (11)

where n is the number of box sizes used in the estimation.

Proof. For each Dk, the variance is:

Var(Dk) =
σ2

S2
X

, (12)

where:

S2
X =

n

∑
i=1

(
Xi − X

)2
= n·Var(X). (13)

Since Dk and Dk′ are independent estimates (errors in log Nε(Lk) and log Nε(Lk′) are
independent), the variance of their difference is:

Var
(
∆Dk,k′

)
= Var(Dk) + Var(Dk′) = 2· σ2

S2
X

. (14)

The standard error is:

SE
(
∆Dk,k′

)
=
√

Var
(
∆Dk,k′

)
=

√
2· σ

SX

=

√
2 σ√

n·
√

Var(X)
.

(15)

The relative error is:∣∣∣∣∣∆Dk,k′ − ∆Dtrue
k,k′

∆Dtrue
k,k′

∣∣∣∣∣ ≤ SE
(
∆Dk,k′

)∣∣∣∆Dtrue
k,k′

∣∣∣ =

√
2 σ∣∣∣∆Dtrue

k,k′

∣∣∣·√n·
√

Var(X)
. (16)

□

Proposition 1 (Computational Complexity for Digital Images). For a digital image of size
M × N pixels, the computation of Nε(Lk) for all thresholds k ∈ {0, . . . , K}, where K ≤ 10 is the
highest meaningful threshold, has time complexity O(MN) and space complexity O(MN).

Proof. The level set computation requires one pass over the image ( O(MN)), and the
box counting for each level set requires examining each pixel exactly once. The space
requirement is dominated by storing the binary level set arrays. □

This theoretical framework, adapted for digital images, ensures numerical stability in
the computation of dimensional sequences and provides error bounds for the analysis of AI-
generated fractals within the constraints of finite resolution. The computational efficiency
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of the implementation enables the analysis of large image datasets while maintaining
mathematical precision.

Adapting fractal theory to digital images presents several challenges. Unlike con-
tinuous mathematical objects, digital fractals are represented by discrete pixel grids, and
resolution limits the smallest scale at which structure can be measured. Additionally, noise
and generation artifacts may distort fractal patterns. To address these issues, we explicitly
incorporate the finite pixel domain into the dimension estimation process, employ uniform
thresholding to reduce bias, and use multiple box sizes matched to the image resolution.
These strategies ensure that our framework remains stable and interpretable despite the
inherent discretization and scale constraints of digital image data.

4. Experimental Settings

Our experimental evaluation implements a systematic framework for estimating the
fractal dimension in digital images, following the methodologies established in [27,28]. Let
(Ω, d) be a discrete metric space representing the pixel grid, where Ω = {1, . . . , 128} ×
{1, . . . , 128} and d is the Euclidean metric. The evaluation protocol encompasses both
dimensional accuracy and computational complexity analysis, with particular emphasis on
the stability of box-counting estimates under varying threshold conditions.

Let F : P ×Rd → [0, 1]128×128×3 denote the FLUX text-to-image model [15], where P
represents the space of text prompts equipped with the standard string metric and Rd is
the latent space of dimension d = 1024. For each prompt p ∈ P and seed s ∈ {0, . . . , 399},
we generate an RGB image Is,p = F (p, ξs) through the stochastic process:

Is,p = F (p, ξs), ξs ∼ N (0, Id) (17)

where the model hyperparameters are fixed at guidance scale γ = 7.0, inference steps
T = 10, and maximum sequence length L = 256. Following the methodology of [29], we
apply the standardized RGB to grayscale conversion:

G(I) = 0.2989R + 0.5870G + 0.1140B (18)

where G(I) ∈ [0, 1]128×128 represents the normalized grayscale image.
To generate each fractal image, we employ the FLUX model with a fixed guidance

scale of 7.0, 10 inference steps, and a resolution of 128 × 128 pixels. Each prompt is mapped
into the latent space of the model, and the diffusion process iteratively refines the image
until the desired resolution is achieved. The resulting RGB images are then converted to
grayscale for analysis. We emphasize that different prompts lead to distinct fractal patterns,
and variations in the prompt (e.g., adding “nested” or “intricate”) yield nuanced changes
in the visual complexity of the fractal.

The experimental procedure incorporates four fundamental fractal designs (Mandel-
brot, Julia, Sierpinski, and Dragon), each paired with four variations (standard, modified,
inverse, hybrid) and five complexity levels (deep, nested, layered, intricate, detailed). For
statistical robustness, we generate five instances of each combination, yielding a total
sample size of 400 images. This structured sampling approach allows us to investigate the
dimensional properties in a diverse range of fractal types while maintaining controlled
experimental conditions as recommended by [19].

The dimensional analysis pipeline begins with the conversion of RGB images to
grayscale using the standard luminance formula Igray = 0.2989R + 0.5870G + 0.1140B,
followed by the normalization of the intensity to the range [0, 1]. For each normalized
image I, we compute the level sets Lk = {x ∈ Ω : I(x) ≥ tk} for thresholds tk = k/10,
k ∈ {0, . . . , 10}. The box-counting dimension Dk for each level set is calculated using three
different box sizes ε ∈ {4/128, 8/128, 16/128}, allowing for multi-scale analysis of the
fractal structures as suggested by [23].

The computation of box-counting dimensions follows a procedure where, for each
box size ε and level set Lk, we partition the image domain into a grid of ε × ε boxes and
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count the number Nε(Lk) of boxes containing at least one pixel from Lk. The dimension
is then computed as Dk = log Nε(Lk)/ log(1/ε). This approach aligns with the theoretical
framework developed by [16] while adapting to the discrete nature of digital images. The
implementation utilizes efficient array operations through NumPy, with the box-counting
algorithm optimized for the regular grid structure of digital images.

5. Results
5.1. Multi-Scale Analysis

The comprehensive analysis of 400 fractal images in multiple box sizes (4× 4, 8× 8, and
16 × 16 pixels) revealed consistent patterns of dimensional behavior. Table 1 presents the
mean dimensions and standard errors for the 8 × 8 pixel boxes at different threshold levels.

Table 1. Multi-Scale dimensional analysis results for 8 × 8 pixel boxes.

Threshold k Mean Dk Std Error

0 2.000 0.000
2 1.948 0.004
4 1.875 0.008
6 1.736 0.015
8 1.472 0.026

The progression of standard errors indicates an increase in variability at higher thresh-
olds, consistent with the expected behavior of box-counting dimension estimates in discrete
settings. Notably, the dimensional sequences exhibited different rates of decrease in box
sizes, with smaller boxes ( 4 × 4) showing more rapid dimensional changes compared
to larger ones ( 16 × 16). This scale-dependent behavior suggests a hierarchical organi-
zation of fractal features, where finer-scale analysis reveals more dramatic changes in
structural complexity.

Figure 1 illustrates the dimension sequences of the box counting in different box sizes
for the threshold levels k ∈ {0, . . . , 10}. The consistent decrease in dimension values in all
scales supports the theoretical prediction of monotonic dimensional sequences within the
discrete setting of digital images.
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variability at higher threshold levels. The consistent decrease in dimension values for all scales
supports the theoretical prediction of monotonic dimensional sequences within the discrete setting of
digital images.
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5.2. Pattern-Specific Analysis

The pattern-specific analysis reveals distinct dimensional characteristics in the four
base patterns: Mandelbrot, Julia, Sierpinski, and Dragon. We analyze dimension se-

quences
{

Dp
k

}10

k=0
in multiple box sizes ε ∈ {4/128, 8/128, 16/128}. The monotonicity

rates achieve 100% consistency in all patterns and box sizes, with sample sizes of 100 im-
ages per pattern type.

The dimensional sequences exhibit pattern-specific decay rates characterized by the
gradient measure:

∇Dp
k = Dp

k − Dp
k+1, k ∈ {0, . . . , 9} (19)

For Mandelbrot and Julia patterns, dimension sequences initially decrease more dra-
matically at lower thresholds, as reflected in early gradients (e.g., from D0 = 2.000 to
approximately D2 = 1.93– 1.96 depending on box size), indicating a rapid initial decay.
Beyond these early stages, their dimensional changes become more gradual (e.g., by time
k = 4 or 6, the rate of decrease stabilizes), consistent with our observed gradient measures
(∇Dp

0 = 0.020 ± 0.004 and ∇Dp
4 = 0.085 ± 0.013).

In contrast, the Sierpinski and Dragon patterns maintain a more uniform reduction in
the dimension values at all threshold levels and scales. Rather than showing a pronounced
early drop, their dimension sequences decrease at a more even rate, resulting in less vari-
ability between consecutive thresholds. This behavior leads to more homogeneous gradient
distributions, with mean gradients ∇Dp

k = 0.042 ± 0.008 for k ≤ 4. Thus, while Mandel-
brot and Julia fractals undergo a notable initial change in complexity at lower thresholds,
Sierpinski and Dragon fractals display a consistently stable and uniform structural decline
throughout the analyzed threshold range.

The multi-scale analysis reveals consistent behavior across box sizes, with correlation
coefficients between dimension sequences at different scales exceeding 0.95 for all patterns.
This scale invariance property provides strong empirical support for the stability of di-
mensional characteristics at different spatial resolutions within the discrete framework of
digital images.

The results provide support for the theoretical framework with perfect monotonicity
rates (100%) in all patterns and box sizes in the 400-image sample. The multi-scale analysis
reveals consistent dimensional behavior in different box sizes, with dimension values
decreasing more rapidly at smaller box sizes (4 × 4) compared to larger ones (16 × 16),
suggesting scale-dependent complexity in the generated fractals. The small standard errors
(≤0.034) and monotonicity in all patterns and scales demonstrate the exceptional robustness
of the dimensional analysis method to characterize AI-generated fractal structures.

The observed differences in dimensional gradients between the Mandelbrot/Julia and
Sierpinski/Dragon patterns can be attributed to the underlying geometric complexities
of these fractals. Mandelbrot and Julia sets are known for intricate boundary structures
whose complexity emerges at intermediate intensity thresholds. This leads to increasingly
pronounced dimensional gradients as thresholds progress, capturing the rapid structural
transitions at these intermediate scales. In contrast, Sierpinski and Dragon patterns are
characterized by more uniform self-similarity and relatively stable geometric motifs at dif-
ferent intensity levels. As a result, their dimensional gradients remain more homogeneous,
reflecting a more evenly distributed complexity that does not exhibit sudden changes at
intermediate thresholds. These distinctions highlight how the internal geometry of specific
fractal families influences the rate at which complexity diminishes in intensity layers.

These insights into pattern-specific dimensional gradients also enhance our under-
standing of how fractal-like structures are internally represented by AI models. The ability
to quantify how complexity diminishes at different intensity thresholds provides a window
into the generative process, suggesting that certain fractal types (e.g., Mandelbrot and
Julia) are encoded with richer intermediate-scale detail, while others (e.g., Sierpinski and
Dragon) rely on more uniform patterns throughout. This quantitative perspective may
inform future research on dissecting the latent representations of text-to-image models,
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ultimately improving our understanding of how abstract mathematical concepts, such as
fractal geometry, are captured and reproduced by contemporary generative architectures.

5.3. Visual Analysis of Generated Fractals

The visual analysis of the generated fractal set reveals systematic relationships between
pattern types and their corresponding dimensional properties. Figure 2 presents a 2× 4 grid
of representative samples, showcasing the four base patterns (Mandelbrot, Julia, Sierpinski,
and Dragon) with their corresponding complexity variations. All images are generated and
analyzed at the same fixed resolution ( 128 × 128 pixels), and the grayscale normalization
and thresholding procedures are applied uniformly, ensuring that each pixel corresponds
to the same physical scale in all images. This uniformity in resolution, preprocessing,
and thresholding steps provides a consistent spatial sampling framework, allowing direct
comparisons of fractal properties in different images and patterns.
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The dimensional analysis of these visual patterns demonstrates a strong correlation
with their structural complexity. For Mandelbrot and Julia patterns, we observe mean
dimension values starting at D0 = 2.000 (±0.000) and decreasing monotonically through
D4 = 1.890 (±0.021) before becoming undefined at higher thresholds. This behavior
indicates a systematic reduction in structural complexity at higher intensity thresholds,
consistent with the theoretical predictions of our discrete level set framework.

Figure 2. A balanced set of 16 fractal images generated by the FLUX model at 128 × 128 resolution,
illustrating only the Mandelbrot (top two rows) and Sierpinski (bottom two rows) patterns. Each
image is created from distinct textual prompts that combine specific variations (standard or modified)
and modifiers (deep or intricate). The individual titles on each image indicate the applied variation,
modifier, and pattern, allowing for direct comparison of how these parameters influence the resulting
fractal structures.

The dimensional analysis of these visual patterns demonstrates a strong correlation
with their structural complexity. For Mandelbrot and Julia patterns, we observe mean
dimension values starting at D0 = 2.000 ( ±0.000) and decreasing monotonically through
D4 = 1.890 ( ±0.021) before becoming undefined at higher thresholds. This behavior
indicates a systematic reduction in structural complexity at higher intensity thresholds,
consistent with the theoretical predictions of our discrete level set framework.
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Figure 3 illustrates the negative gradient of the dimension sequences ( −∇Dk) between
the threshold levels for different box sizes. The plot reveals how quickly the complexity
changes in threshold levels, with steeper gradients indicating more rapid structural changes.
The comparison in box sizes illustrates how the rate of dimensional change varies with
scale within the discrete framework of digital images.
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The quantitative analysis of visual features reveals that 91% of the samples maintain
strict monotonicity in their dimension sequences, with standard errors remaining below
0.021 through the threshold level k = 4. This 91% value was obtained by examining
all 400 samples and verifying that their dimension sequences decreased monotonically
through the specified threshold level. Specifically, we counted the number of images whose
dimension values strictly decreased from D0 through D4 and then divided by the total
number of samples. This direct empirical assessment confirms the high prevalence of
monotonic sequences. This high consistency in dimensional properties in different visual
patterns provides strong empirical support for the theoretical framework developed in
Section 3, particularly with respect to the monotonic decreasing property of dimension
sequences within the constraints of digital image resolution. While these results strongly
support our framework within the tested conditions, we acknowledge that further studies
involving a wider range of resolutions, fractal types, and generative models would be
required to confirm the generality of these findings. Our current conclusions are therefore
contextualized by the specific experimental setup and image generation pipeline used in
this study.

Figure 3. Negative gradient of the dimension sequences ( −∇Dk) in threshold levels for different box
sizes. The plot reveals how quickly the complexity changes in threshold levels, with steeper gradients
indicating more rapid structural changes. The comparison across box sizes illustrates how the rate of
dimensional change varies with scale within the discrete framework of digital images.

The quantitative analysis of visual features reveals that 91% of the samples maintain
strict monotonicity in their dimension sequences, with standard errors remaining below
0.021 through the threshold level k = 4. This 91% value was obtained by examining
all 400 samples and verifying that their dimension sequences decreased monotonically
through the specified threshold level. Specifically, we counted the number of images whose
dimension values strictly decreased from D0 through D4 and then divided by the total
number of samples. This direct empirical assessment confirms the high prevalence of
monotonic sequences. This high consistency in dimensional properties in different visual
patterns provides strong empirical support for the theoretical framework developed in
Section 3, particularly with respect to the monotonic decreasing property of dimension
sequences within the constraints of digital image resolution. While these results strongly
support our framework within the tested conditions, we acknowledge that further studies
involving a wider range of resolutions, fractal types, and generative models would be
required to confirm the generality of these findings. Our current conclusions are therefore
contextualized by the specific experimental setup and image generation pipeline used in
this study.
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6. Discussion and Future Work

Despite the contributions, several limitations must be acknowledged. First, our analy-
sis is constrained by the finite resolution of the generated images, which restricts the lower
bound of the scales. This may cause some fine-scale fractal features to remain undetected.
Second, while our approach confirms monotonic dimension sequences under the chosen
thresholding and box-counting scheme, it does not necessarily generalize to all fractal
concepts that could appear in higher-resolution or more diverse data. Third, the framework
currently focuses on grayscale intensity values and does not directly incorporate color or
multi-channel complexity. Finally, the reliance on a specific set of box sizes and threshold
increments, although well grounded, could be refined to better capture the complexity of
patterns that fall between the chosen scales. Addressing these limitations in future studies
may help further strengthen the generality and interpretability of our framework.

In addition, the chosen resolution of 128 × 128 pixels inherently limits the scale range
and may influence the precision of the estimated dimensions. Higher-resolution images
would allow finer-grained box sizes and more subtle intensity thresholds, potentially
yielding more accurate fractal dimension estimates and revealing more intricate fractal
structures. Exploring higher resolutions in future work could thus provide deeper insights
into the fractal-like geometry and complexity of AI-generated imagery.

Future work may explore the application of this framework to alternative text-to-
image models, potentially incorporating noise-robust estimation methods for improved
stability at higher thresholds. Additionally, investigating connections between dimensional
sequences and manifold learning theory could provide deeper insights into the geometric
encoding mechanisms of text-to-image models. These directions may further elucidate
the relationship between AI-generated fractals and classical fractal dimension theory,
advancing our understanding of how complex mathematical structures are represented in
digital images.

7. Conclusions

This study introduced a discrete level set framework to characterize the fractal-like
complexity of AI-generated images within the finite resolution constraints of digital imagery.
By applying box-counting analysis in multiple intensity thresholds, we established that the
resulting dimension sequences decrease monotonically, reflecting the nested structure of the
level sets. Our experiments confirmed this monotonicity for all tested fractal patterns and
scales, with inter-scale correlations exceeding 0.95. Moreover, we identified distinct decay
patterns in the dimensional gradients for different fractal types, providing insights into
how text-to-image models encode fractal geometry. These findings provide a quantitative
and scalable approach to assessing hierarchical complexity in AI-generated fractals, paving
the way for more nuanced evaluations of generative models in the domain of discrete
mathematical imagery.
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