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Abstract: This paper investigates the controllability of Hilfer fractional stochastic evolution equations
(HFSEES). Initially, we obtain a conclusion regarding the approximate controllability of HFSEEs by
employing the Tikhonov-type regularization method and Schauder’s fixed-point theorem. Addi-
tionally, the conditions for the exact controllability of HFSEEs are explored, utilizing the Ménch's
fixed-point theorem and measure of noncompactness. Finally, the proposed method is validated
through an example, thereby demonstrating its effectiveness.
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1. Introduction

Control theory plays a vital role in mathematical exploration, serving as a foundation
for system optimization and stability analysis [1-3]. In the past few years, numerous
academics have conducted research on the controllability of diverse dynamical systems
utilizing a range of methodologies [4-8]. Exact controllability means that the system
can accurately reach the target state through deterministic control, while approximate
controllability means that the system can approach the target state through appropriate
random control. The control theory of stochastic differential equations plays an important
role in risk management, stock trading, weather forecasting, disease control, etc., which can
improve the quality and effectiveness of decision-making and reduce risks and costs [9-11].

Compared with integer derivatives, fractional derivatives have wider applicability,
more complete descriptive power, better disclosure of non-local properties, and more math-
ematical and physical applications. Therefore, the control theory of fractional stochastic
differential equations has been garnering increasing attention from researchers. In [12],
Sakthivel et al. studied the approximate controllability of the Caputo FSEEs via the fixed
point theorem. In [13], Shu et al. studied the approximate controllability of the Riemann—
Liouville FSEEs with order 1 < a < 2 by using the concepts related to sectorial operators
and Monch's fixed point theorem. For further research on the approximate controllabil-
ity of fractional differential equations, we recommend consulting [14-18]. Ding and Li
in [19], studied the exact controllability of the Caputo FSEEs with order 0 < a« < 1 by
using measure of noncompactness and Monch's fixed-point theorem. For research achieve-
ments related to the exact controllability of fractional differential equations, we recommend
readers refer to [20-22].

The Hilfer fractional derivative can be regarded as a synthesis or extension of the
Riemann-Liouville fractional derivative and the Caputo fractional derivative [23]. When
studying Hilfer fractional systems, we face a problem: their equivalent integral equations
make sense only on open intervals. This limits our analysis, especially when trying to use
the fixed-point theorem and Ascoli-Arzela theorem to study the properties of systems. It is
worth noting that, compared with reference [24], the hypothesis conditions of this paper
are weaker.

Fractal Fract. 2024, 8, 733. https:/ /doi.org/10.3390/ fractalfract8120733

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract8120733
https://doi.org/10.3390/fractalfract8120733
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract8120733
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8120733?type=check_update&version=1

Fractal Fract. 2024, 8,733

20f21

In order to avoid confusion, we will first introduce some basic notations and concepts.
Let H, K, and U be separable Hilbert spaces with norm || - ||. Moreover, (Q), F, { Ft }+>0,P)
is a complete probability space (Q), F,P) with normal filtration {F;};>0, where Q) is a
nonempty sample space, F is a o-algebra on (2, and P is a probability measure defined on F.
The stochastic process {w(t) }+>0 is a K-value Wiener process defined on (Q), F, { Ft }+>0, P).
Moreover, this Wiener process {w(f) };>0 has a nonnegative covariance operator Q with
a finite trace, Tr(Q) = Y321 Ay < oo, where {A, e;}r>1 is orthogonal system satisfying
Qek = )tkek.

We explore the HFSEEs:

1)

DGy (E) = Ay(6) + Gt y(0) + Bu(t) + Tty () S5, 1€ (0.1]
(Z5-P9)©) =0, (T-Py) (0) =1,

In this equation, HDS‘;V represents the Hilfer fractional derivative with order 1 < p < 2

and type 0 < v < 1. The Riemann-Liouville integral operator Ig; P with order 2 — B, B=
u+v(2—p). A: D(A) C H — His the infinitesimal generator of a cosine family {C(t) }+>0
consisting of strongly continuous and uniformly bounded linear operators. The stochastic
process {w(t) }1>o is a K-value Wiener process defined on (Q, F, { ;¢ }+>0, P). The control
function u € L%([0,4],U). B : U — H is a bounded linear operator and || B|| . m) < Mp.
G:[0,h] x H— Hand T : [0,h] x H — L(K,H) are given. yo,y; € L3(Q, H).

To ensure a clear structure, the paper is divided into several parts. Section 2 introduces
fundamental information essential for our analysis. Following that, Section 3 presents
an approximate controllability result for problem (1), while Section 4 provides an exact
controllability result for the same problem. In Section 5, we validate the effectiveness of our
findings with an example. Finally, Section 6 summarizes the content discussed throughout
the paper.

2. Preliminaries

L(K, H) represents the set of bounded linear operators mapping from K to H, where
the norm is denoted as || - ||k m)- In particular, we use L(H) to denote L (I, H). L2(Q,H)
represent a Banach space comprising square-integrable, strongly-measurable random

1
variables. The norm [ly(-)[l;2 )y = (Elly(-,w)|*)?, where E(y(-)) = [qy(, w)dP.

C([0, k], L*(Q, H)) denote the Banach space consisting of continuous mappings from [0, ]
into L2(Q, H). Let

L%(Q,H) = {y S LZ(Q,H),y is Fy — measurable},

L3([0,h],U) := {y : [0,h] x Q — U is a square integrable and F; — adapted process},

1
Clon) = {y e c([on], 12O H)) : [y(llc,, = (sl[l%]ﬁ|y<t>||2> < oo},
te|0,

%
Clon =1V € C((O, h],Lz(Q,H)> : lim+t2’ﬁy(t) exists, [ly(-)ll ¢y, = (sup E||t2/3y(t)|2> .
t—0 te(0,h]

Lemma 1. (see [25]) If T (t) € L(K, H) satisfies
(i) For t € [0, h], T (t) is Fy—measurable ,
(ii) [i E||T(s)|[*ds < oo, then

2

E /OtT(s)dw(s) gTr(Q)/OtEHT(s)szs. @)
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Definition 1. (see [26]) The Riemann—Liouville fractional integral is defined as follows:

Tyt = 1

t
D /0 (t—s)y(s)ds, t >0, u > 0.

Definition 2. (see [26]) The Riemann—Liouville fractional derivative is defined as follows:

1 ar t
RIp: () =~ T / _ynnl _q .
0y (t) F(ﬂ—y)dt”( O(t s) y(s)ds), t>0,n <u<n
Definition 3. (see [26]) The Caputo fractional derivative is defined as follows:

t
Dl y(t) = T ! /0 (t—s)" Py (s)ds, t >0, n—1<p<n,

n—p)
where the function y(t) is absolutely continuous and d"~'y(t)/dt"~1 is continuous.

Definition 4. (see [23]) The Hilfer fractional derivative is defined as follows:

, Y
HpIy (1) = 72 ﬂ>WI(§+ ey, t >0,
wheren —1 <pu<n 0<v <1,

Remark 1. (i) Especially, ifv =0,n—1 < u < n, then

0 d" _n-
MDyry(t) = S5 Ty "y (8) =" Dy y ().

(i) Ifv=1n—-1<pu<n,then

1 —p d"
HDS+ y(t) = Ig+ yﬁy(t) =¢ Dg+y(t)'

Let D be the bounded subset of Banach space X with the norm || - || x. The definition of the
Kuratowski measure of noncompactness x is as follows:

n
x(D) = inf{d >0:D C | Vjand diam(V;) < d},
j=1
where diam(V;) = sup{||x; — x2||x : x1, 22 € V;},j = 1,2, - -, n.

Lemma 2. (see [27]) Let {¢,(t)}5>; : [0,h] — X be Bochner integrable. If there exists ¢ &
LY([0, k], R*) such that ||, (t)||x < ¢(t) for t € [0, h]. Then

X({/Ot an(S)dS}:o_l) < Z/OtX({an(S)}Zo:l)ds.

Definition 5. (see [28]) The definition of Wright function Wy is given by the following:

Wu(§) = nio i _i;nilr Ty 0 <2 <1 E€C,

which satisfies

S r(1+0
/0 W, ()dE = r((1++az3)) fors > 0.
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Definition 6. (see [29]) If a bounded linear operator maps {C(t)},cg : H — Hi, it is referred to as
a strongly continuous cosine family if and only if
() C(t+s)+C(t—s) =2C(t)C(s) forallt,s € R,
(i) C(0) = I,
(iii) C(t)y is continuous for t € Rand y € H.
The family of operators {S(t)}, . is defined as follows:

t
Sty = /o C(s)yds, t e R, y € H.

The operator A : H — H is defined as the generator of a cosine family {C(t)},.p, which is
strongly continuous. It satisfies the following equation:

d?C(t)
="

, y € D(A),
t=0

where D(A) = {y € H : C(t)y is a twice continuously differentiable function with respect to t}.
This paper discusses a strongly continuous cosine family {C(#) } -, in H which consists
of uniformly bounded linear operators. Consequently, there exists a constant M > 1

satisfying [|C(t)|| @) < M for t > 0.

Definition 7. (see [30]) y € C((0,h], L*(Q), H)) is an F;—adapted stochastic process, yo,y1 €
L3(Q), H), the mild solution of problem (1) is defined as follows:

y(0) = 1o + K( + [ NGt = )[G(5,(5)) + Bu(s)lds
+ [ NG =T (s, y(s)dws), + € (0,1 ©
where
J(1) = Mo (), k(1) = 1M (B 1)), NG = (),
Q) = [ Bewy@)s(the)ae.
Lemma 3. (see [30]) The following inequality holds for any y € Hland t > 0.

-1 B—2 B—1
IN@yI < Sl 110 < o= 9l K@l < el

Lemma 4. (see [30]) The following formula is true for y € H and any t > 0.

d 00 y
SN0y = (5 =1y [T (EY @My @c (o) e
Moreover,
| ovem]| < Xl 1o

Lemma 5. (Schauder’s fixed point theorem, see [31]) Let V be a closed, convex, and nonempty
subset of a Banach space X. Let & : V. — V be a continuous mapping such that ®V is a relatively
compact subset of X. Then, ® has at least one fixed point in V.
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Lemma 6. (Monch's fixed point theorem, see [32]) Let V be a closed convex subset of a Banach
space X and 0 € V. Assume that ® : V — V is a continuous map that satisfies Monch's condition,
ie., for D C V is countable and D C co({0} U®(D)) = D is compact. Then, ® has at least one
fixed point in V.

Let y(h; u) be the state value of system (1) at time & with control u and reachable set
R(h) = {y(h;u) : u € L3([0,h],U) }.

Definition 8. (see [33]) The fractional stochastic control system (1) is said to be
(i) approximate controllability on the interval [0, h] if R(h) = L?(Q, H);
(ii) exact controllability on the interval [0, h] if R(h) = L?(Q, H).

Lemma 7. (see [33]) For any ¢ € L*(Q,H), there exists an Fy—adapted stochastic process
@ : [0,h] — L(K,H) such that foh E||¢(s)||*ds < coand o = Eo + foh @(s)dw(s).

In order to present the main result of this paper, the following assumption is required:
(A1): G(+,-) satisfies the Caristi condition: for t € [0, k], G(t, -) is Lebesgue measurable and
for each y € H, G(+,y) is continuous.

(Ap): T(:,-) satisfies the Caristi condition: for t € [0,k], T (¢t,-) is Fi-measurable and
fot E||T (s,-)|?ds < oo, for each y € H, T (-,y) is continuous .
(A3): For t € [0,h] and each y € H, there exists g € L' ([0, 1]; R ") that satisfies

EIIG(E )PV EIT (L y)lI? < g(8),

where V means the maximum of the two.
Define mapping @ :

(@y)(t) = (Pry) () + (P2y)(t), ¥ € Clou, @

where
(P1y)(t) = J(t)yo + K(t)y1, for t € (0,H],
(D) (1) :/;N(t—s)[g(s,y(s))+Bu(s)]ds+/;N(t—s)T(s,y(s))dw(s), For t € (0,h].

If @ has a fixed-point y* € C(g, then y* is a mild solution for problem (1).

As the Ascoli-Arzela theorem is applicable only to finite closed intervals. Hence, it is
necessary to transform Equation (4).

Let Vz € Cjoy), we define y(t) = tP=2z(t) for t € (0,h]. It can be easily seen that

ye C(O,h]'
Introduce the operator ¥ as follows:

(Y2)(t) = (Y12)(8) + (F22)(t), fort € [0,h],

where
[P P(@y)(t),  forte (0,H],
(Fi)(0) = {r(ﬁyo_l), fort=0,
2—-PB ’
(F22)(1) = {g @0, fort€ O .

So, ¥ has a fixed point that is equivalent to ®’s fixed point.
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3. Approximate Controllability

We introduce a controllability matrix:
h
rh = / N (i — s)BB*N*(h — s)ds,
0

B* and N*(t) denote the adjoint of B and N(t), respectively. According to Lemma 3, it
becomes apparent that I’ is linear and bounded.

Let R(a,T}) = (al +TE)~!, a > 0. We define the control function u(t) = u®(t;y)
as follows:

u'(ty) = B*N*(h — t)R(a, T$)S(y), 6)
where
S(y) = Eo— J(k)wo — (i — [ NO—9)G(5y(5))ds
h
= [ NG9 (T(s,5(5) ~ p(s))dwo(s)

By Definition 8, we can establish that the system (1) is approximate controllability
on the interval [0, 4] if and only if there exists E||y*(h) — o> — 0, where y* represents
the mild solution to system (1) corresponding to u(t) = u”(t;y). To prove this, our initial
step is to demonstrate the existence of a mild solution for system (1) under the condition

u(t) = u(t;y).
Because u(t) = u”(t;y), then, operator ¥, in (5) becomes
t
(F22)(t) = tz*ﬁ/o N(t =5)[G(s,y(s)) + Bu'(s;y)]ds
t
4 2P / N(t — )T (s, y(s))dw(s), for t € (0,h].
0
To demonstrate the approximate controllability outcome, the subsequent assumption
is necessary:
(B1): {S(t),t > 0} is a compact semigroup and ||aR(a,T})| < 1 for any a > 0.
(Bz): There exists a constant N > 0, such that

IGE YO+ ITE YO <N, Vy € Ciop, Yt € (0,h].

(B3): aR(a,T}) — 0 asa — 07 in the strong operator topology.
By the fact form (Aj3), we have

it (=) i+ (cfs;) P

2-p+5\ 2 t 2—B+p\ 2
+5<Mf 2) 1/ (t—s)?‘lg(s)ds+5<MBMt ) Ly
0

I'(p) 7 I'(p+1)
]\/Itz_l3 2 t 2(
o _5)2(u-1) <
+5( ) ) 1(Q) [ (t=s) g(s)ds} <r, @)
where L, is defined in Lemma 8 of this article and » > 0 is a constant.

Let
D, = {z:2€ oy llleg, <} D= {v:v € Complyley, <7}

Obviously, Dy € Cjp ) and D, C Cio,n) are convex, nonempty and closed.
Next, we will establish several lemmas that are pertinent to main result.



Fractal Fract. 2024, 8,733

7 of 21

Lemma 8. Suppose that (A1) — (Asz) and (By) are satisfied for t € (0, h]. Then
MpMh—1\? MhP~2 2 MhF-1\?
Ellu”(t; 2<6(7B ){E 2+(—)E 2+( )E 2
Il < o o= ) {ElelP+ (== ) Elwl*+ (") Elwl

M 212_1 . h st Mhy—l Zr
+ (F(ﬂ)) yh” IIgHLlJrT(Q)/0 Ellg(s)|d +( ) ) T(Q)ngm}
=:L,

Proof. By Lemma 3, (2), Holder's inequality and assumption (A3), (By), we have
E|lu(t;y)[* = E|B*N*(h — HR(a,T§)S ()|

MpMh#—1 =~ 2
(M2 eyt

S6(M%%%i){HMW+EW<Wﬂ2+HW<W”2+4U1 (F)wls)

+EH/ G(s,y(s))ds +EH/ ,y(s))dw(s) 2}
< 6(%) {E||@||2+ (%) Ellyol + (Aﬁ’g’;)zmynﬁ

) [ =9 G sy s + Q) [ Ellg(s) s

2

+

h
(i @) [0 9P BT y05) s

(9
(7
<o Momrr 2 71) {E||g||2 (W_Af)’f(;_l))zzs|yo|2+(Aﬁ’gz)l)zfsmnz
(

—1\ 2
) ertigl +170) [ ot s+ (MY 10yt

+

O

Theorem 1. If (A1) — (A3) and (By) hold. Then, there is at least one mild solution to problem (1)
in D,.

Proof. Now, we divide this part of the proof into the following steps:
Step 1: Y is equicontinuous for z € D.
From [30], we obtain that ¥; is equicontinuous. Next, we prove that '¥; is equicontinuous.

When t; = 0,0 < t; < I, by Lemma 3, Lemma 8, (2), (A3) and Holder's inequality, we
can obtain

E|[(¥22)(f2) — (¥22)(0) ||

- ﬁ/ (tp —s)G(s,y(s))ds

2
< 3E||t

+3E t2 ﬁ/ (tp —s)Bu*(s;y)ds

+3Et2ﬁ/ a,f@T@g@nmm@

2—p+5 2-p+5

< 3<Mtr(y))2;/ot2(t2 —s)ﬂlg(s)ds+3<M;2(m>2;M%Lu /Otz(tz o)

2-B. 2 b
+3<AI/{E‘;) ) Tr(Q)/O (tz—s)z(Vfl)g(s)ds

— 0, as tp — 0.
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When 0 < t; < tp < h, by C, inequality, we can obtain

2

EH (¥22) (1) — (¥2) (1)

2/8/ (tr —5)G s—tzﬁ/ (t1 —3)G(s,y(s))ds

2-p [P 2-p [N ?
t; /N(tz—s)u"‘(s;y)ds—t‘1 /N(tl—s)u"‘(s;y)ds

2
< 3E||t

+3E

+3E

=:3J1 + 3> +3J5.

Now, we prove tlin} J1 — 0. By C; inequality, we have
2k

2
J1 < 3E|jt

2 ﬁ/ (t2 = 5)G(s,y(s))ds
2 [ (vt t1—5)>g(5,]/(5))d5
s ) E| [ N2 =006 59

3
<3Y i
i=1

2
+3E

where

2

2-p 2 t
= (Y] [ -6y

ha=E | [ (N 5) = Nt =9 )95 ()

Ji3 = (%) (fi P ’3) H/ (t —s)F1G(s,y(s))ds

By Holder's inequality and (Aj3), we have

MtZi;B 2 ty _ ty
i< (i) [ a9 s [ ElG s v(eIPas

1

2-B. 2

Mt 1 t
< L ty —tp)2 1 d
= < T(p) ) -1z /n 8(s)ds

— 0, as tp — 1.

2

4

2

Because

t 2

flz—t 22-F)E

7

T N0ty banas

so, by Lemma 4 and Holder's inequality, we have

t2 ﬁ/ (ta — )T (s,y(s))dw(s) —tz ﬁ/ (t1 —s)T (s,y(s))dw

(s)

2
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2
Ji2 < ti(z_ﬁ)E

% /t1 /:H #72G(s,y(s))dtds

1—S

B 2 4y 1
< (wﬁﬁw) [ (=9 = (= ) as [ NG (s y)asl s

2—-p 2
Mt 1 21 - 2 .
: (w—f)r(u)) i L G Cl Vi i N 17
— 0, as ty — ty.

It is obvious that lim J;3 — 0. Hence hm J1 — 0.
ty—t

Next, we prove the thn} J»—0. By C inequality, we have
2—h

2

ot
] <3E|67F [UN (- s)u' (sry)ds

2/3/ < (t—s) — t1—s)>u”(S;y)d5
(5] -

3
<3) i
i=1

Jo1 = (Al/fizﬁ>
2- ﬁ/ < (t —s) N(t1—5)>“a(5?y)d5

]23_“;1)) (3e-2)

By Lemma 8 and Holder's inequality, we have
2-B 2
Mt ta 29—2 tp 2
]<( 1)/ t—s”ds/Eu“s; ds
21 () | (t2—s) " [ (s; )
2-p
Mt 1
< 1 - _ 2}4
< () it

— 0, asty — 1.

2
+3E

where

tz 2

(ty — s)" " 1ul(s;y)ds

7

2

7

Joo =

2

t
JRCEE R EIE
0

Because

2
] — t2(2 ﬁ tl

7

th—s 4
B dt{ u”(s; y)}dtds

so, by Holder's inequality and Lemma 4, we have

t th—s
’ / / =2 u®(s;y)dtds
t

2 (2 4 "
< () (=9 = = op s [ Bl sl

. 2
]22<t PE

2-p 2
Mt 1 o1 B -
= ((;4 - 11)r(y)> -1 (K" + (=) = tlp. JiL,

— 0, as tp — 1.
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It's obvious that J,3 — 0. Hence [, — O as ty, — #1.
From [30], we can obtain J3 — 0 as t, — #7.
Consequently,

E||(¥22)(t2) — (¥22) (1) ||> = 0, as ty — t.

Through the above analysis, tlirr} | (¥22)(t2) — (¥2z)(t1) Hc[o;] — 0, for ty, £, € [0, h].
2—h h

To sum up, ¥ is equicontinuous for z € D,.
Step 2: ¥ is continuous.
Let {z,, } be a sequence, which is convergent to z in D,, then

lim z,(t) = z(t) and lim tF=2z,(t) = tF~22(t), for t € (0,h).

n—oo n—oo

Because y(t) = tP~2z(t),t € (0,h], by (A1) and (A), we have

Lim E[|G(t,ya(8))]” = lim E[|G(t, =22, (1)) ||* = E||(t, ##22(1)|* = E[|G(t,y(1)]*,
Lim E[| T (t,ya(8)]* = lim E||T(t,#6-22,())||* = E||T (¢, #~22(0)|* = E[| T (¢, y() |

Using (A3), we can obtain

(t = )" E[|G (5, () — G(s,y(s))||* < 4(t = 5)"g(s), t € (0, 1]

As's — 4(t — s)#~1g(s) is integrable for s € [0,t], we can use the Lebesgue dominated
convergence theorem to derive

2
— 0, as n — oo. (8)

E| [/t 51005, un(6)) - OG5, y(s)) s

Similarly, we have

2

E’ /Ot(t — )T (s,yn(s)) — T (s,y(s))]dw(s)|| — 0, as n — 0. )

By use (6), (8) and (9), we can obtain

2
E||u®(t;yn) — u"(ty)
—1\ 2 2
§2<%> ; ./ohN(hS)[g(sryn(S))g(s,y(s))]ds
MpMm#=1\? || rh ’
+2<aw)> E /O N(h —$)[T (s, yn(s)) = T (s, y(s))]dw(s)
2pu—1\ 2 2
§2<%) E /Oh(h—S)”1[G(S,yn(8))—Q(S,y(S))}dS
2pu—1\ 2 ?
+2<%> E /Oh(h_s)”l[T(s,yn(S)) = T (s,y(s))|dw(s)

— 0, asn — oo.
Because, from Lemma 8, we have

(t— S)H_lEHua(S;yn) — u”(s;y)”z <4(t— S)y_lLu.
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By using the Lebesgue dominated convergence theorem, we can obtain

2

(10)

E /Ot(t — )" Hu(s; ) —u'(s;y)]|| — 0, as n — 0.
So, by using (8)—(10), for each t € [0, h], we obtain
2
EH (a20)(8) — (¥22) (1)
MP P, It . 2
< 3( ) )°E A (t =) (G(s,yn(s)) — G(s,y(s)))ds
_ . 2
3N PE| [0 ) — ()i
_ 2
3N LPE| [ (T mnle)) — Tls,y(s) )
— 0, asn — oo.
Therefore, ¥ is continuous.
Step 3: ¥(D,) C D;.
For t € (0,h], by (As), Lemma 4 and (7), we have
2 2
E|]<Yz><t> — E|l2F(@y) (1)
= 2 E |10+ Kt + | N(E=5)G(5,(6)) + B (59)lds
; 2
+/0 N(E— s)T (s, y(s))dw(s)
§5t2(2/5)EH](t)yo 2+5t2(2ﬁ)EHK(t)y1 2
t 2
+522-B)F /ON(t—s)(g(s,y(s))+Buﬂ(s;y))ds
¢ 2
+5t2(2/3)EH/ N(t—s)T (s,y(s))dw(s)
2 2
<5(c—tr—p i )) Ellyol +5(r(ﬁ)) Ellyl
M2 Fth 1 2 a 2
+5( M ) (6= ) (ENG (s, y(5)) | + ElIBu (55)|P)ds
2- ﬁ
es(ME 5 o 0t< SPUVEIT(5,y())]ds
2 b ? 2
—ti‘(ﬂi{ (o=otG=5 ) Eloll*+5( 557 ) Ellnl
MP-B+h t _splg MBMtz Btu
+5< T(p) )u/o(t ) s (e)ds +5( >

(4 0 - ]

<r.
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Fort =0, since M > 1, we have

H?

2 M 2
— || <|+—————<] E 2<r.
o) < (Gorg=g) Bl
Therefore, we have ¥(D;,) C D,.

Step4: ¥ : D; — D, is completely continuous.

It is evident that problem (1) has a mild solution y € D, if and only if ¥ has a
fixed-point z € D,. Based on Step 2 and Step 3, it can be concluded that the operator
¥ : Dy — D, is continuous. It is clear that ¥ : D, — D, is completely continuous if ¥ (D)
is relatively compact in L?2(Q, H). From Step 1, ¥ is equicontinuous. According to the
Ascoli-Azela theorem, to prove that ¥ is completely continuous, we need to show that
(YD;)(t) is relatively compact in L?(Q, H) for 0 < t < h. However, it is clear that (¥ D;)(0)
is relatively compact. Now, we will demonstrate that (¥D,)(t) is relatively compact in
L%(Q,H) for t > 0.

When 57 € (0,t) and o > 0, we have the following definition for ¥}, on D;:

(Fy,02) ()

= tz_ﬁ(q)r],ay)(t)
=27 PI(t)yo + P PK(t)y

ZESI0 2

L

LSl 1720 /Ot W ;OZE t=5)2 WL (©)S((t—5)58 = 70)G(s,y(s))ddds

7720
2-pS(n20) 1720 t=n ooy B 1 B A/
+ ¢t / 2§ (t—s)2 %(C)S((t—s)zﬁ—nZU)Bu (s;y)déds
;720' 0 T

L ppSlnzo) ’72‘7 /t "/ et =)Wy @) ((t=5)5¢ = n0) T (s, y(s))dedu(s).

n By
As {S(t) }+>0 is compact, then S (;7%0)/ (17%0) is also compact. Therefore, for any
o > 0and any € (0,t), it follows that (¥, ,z)(t) is relatively compact in L?(Q), H) for
z € D,. Additionally, for any z € D,, we can conclude that:

E[[(¥2)(1) — (¥02) (1)

_ ple- ﬂ>3EH// Ba(t— )Wy (@S (- 9)50)G (s, y(s))dzds

N\?

S(I0) [0 [ Kap gt ~ 9t - nto)g(s y(s)deds|
ol / Lot =9 Wy @S((t—5)%2 —nt0)G(s,y(s)ded
k) fg —5) 2 IWy (§)S((t—)8) Bu" (s;y)ddds
1720 o ¢ % —8)1E —n10)Bu(s; s2
pn / / Lot =)Wy (@S ((t—5)te —nto)Bu’ (s;y)ded
+ 22-P)3E /Oo Lot =) Wy ()8 ((t—)58) T (s, y(5))dedun(s)
5 t= B i 2
SO [ 7 Bat - 9wy (@8 (- )8~ nEo)T(s () dedals)
nto

=:di +dy +ds.
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In order to prove that E||(¥z)(t) — (¥,02)(f) H2 — 0, we first need to establish that d; — 0,

=203 | [1 [ Bt =)Wy (@5 (1= 95000 sy(s)dcds

2

nho /ot 77/0 gé(t‘S)%”Wg(é)s((t—S)%é—n%a)g(s,y(s))dgds

< p2- ﬁ9EH// Ber—s)bw

+ ?2=PI9E

2

N\T

Wi (8)S((t—5)28)G (s, y(s))dEds

2

_’7/0 %g(t_s)rlw%(g)s((t—s)%C)Q(s,y(S))dCds

b [ [y (s0-9)f0)- S D s(0-9 40t
2

[

2o

X G(s,y(s))deds

=:dy +dip +dis,

Because HS(t) H < Mt for any t > 0 and (7), we have

2
4

=22 9E | [ [ Be(o— 5wy @S (-9 £000(6 v(9)deds
< 9M242(2- ﬁ).” /0 (ts)”‘lg(s)ds(/oaZﬁzwg(f)d§>2

< 3 | U;‘cZW;@)d@)Z

— 0, asoc — 0.

By utilizing Definition 5, we obtain

2
dyp = *2-PloE

5=t Wy @8 (=) Fe) 900 ()

2
220-p) 1" _ gyl CHa
e 7 H?(t 5)¥ g(s)ds</0 Le wg(g)dg>

L
ZM n2e-p 1 1

e (= gl

— 0, asy — 0.

Considering dy3, by utilizing }in& I Sty _ y|| = 0and ||S(t) —

k)HL(H) < M|t — k| for
any y € H, we can deduce that

HS((t —s %é)y S(”;%)S((t —s)2E - 'ff)yH

20

Ul
<| (2 )s(e-a)] |2 ’”)(8 ARG ORI

< M(t—s)"¢

D=

(852 5550t

—0,asy, 0 =0,
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so, we can get

rt—1 00 "
2(2-B) Pap_ )51
f /O ( /a Pa—s)itw

< [ GGy P

I3 2
- SO (o) - nio)d ) ) ds

nio

=
—~
R
N
/N

)
~
N

-
N

ol
™
N

_ o 2 _
<2 [T ([T Rt Wy @ (e - o) fe M- )i ) ds [ gl

2(2—B) A s2 2 [t 2(u—1) Y 2
< 2P+ n? [ s Vas ([ Bew e ) lsto)

Mh2—B 2 2u—1
sy ) B ls el

By the Lebegue dominated convergence theorem, we derive that di3 —+ 0 as# — 0 or
o — 0. Thus, d; — 0. Similar, we can get d, — 0 and d3 — 0. So, ¥(D;) is relatively
compact in LZ(Q,H). Thus, ¥ : D, — D, is completely continuous.

By using Schauder’s fixed-point theorem, It can be inferred that ¥ possesses at least
one fixed point z* € D,. Let y* = tB=2z% fort € (0, 1], thus

S(M+1)2<

v =Ty + K + [ NG —9)G(5,°(:))ds
—i—/OtN(t—s)Bu“(s;y*)ds+/OtN(t—s)T(s,y*(s))dw(s), £ (0,H].

O

The following theorem justifies the approximate controllability results of system (1).

Theorem 2. Assume that (A1) — (A3) and (By) — (Bs) are fulfilled. Then, the system (1) is
approximately controllable on [0, h].

Proof. For Va > 0,Vp € LZ(Q, H), according to Theorem 1, it follows that ® has a fixed
point in C(g ) when the control function u(t) = u®(t;y). Let y* be the fixed-point of P.
Then

Y0 = J(Eyo + Ky + [ N(=9)[G(s,(5)) + Bu'(s:y7)]ds
+ [ NG= TG (9)dw(s), t € O3] an
where
9 (5;9%) = BN* (h - 5)R(a, TH)S(),
S(y") = Eo— J(k)yo — K(ys — [ N(—5)G(s,(5))ds
[N 9T (5,47(5)) — 9(6)es).

Taking into consideration I — TER(a,T/) = aR(a, T}}) and Lemma 7, simple calculation yields
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00 = T+ K(hyn + [ NG = 5)G(5,(5)ds
+ /Oh N(h — s)BB*N*(h — s)R(a, Tk)S(y")ds

h
+ [ NG9 T (s, (5))deo(s)
= 0= S(r") + T4R(2 TH)S (")
=0~ (I-T{R(a,15))S(y")
= ¢~ aR(a,T{)S(y").

From (B;y), it follows that there exist two subsequences, which we will still denote
by {G(s,y"(s))} and {7 (s,¥"(s)) }, and these subsequences weakly converge to G(s) and
T (s), respectively. Therefore

Elly*(h) — el
= E||aR(a,T5)S(y")II?

= ook ) o 1000~ KOs~ [ NOH— 99056

2

= [ N 9Ty — gle)te) |

2

2 h
< 6E +6EH/0 aR(a, TN (h — 5)[G(s, 1" (s)) — G(s)]ds

aR(a,T}) {e (o - K(h)yl}

+6E‘/OhaR(a,l"g)N(hfs)g(s)ds ’

2

! ) ,
+6E’ /0 aR(a, TEYN (h—s)[T (s,y"(s)) — T (s)]dw(s) +6EH/O aR(a, TN (1 — s)T (s)dw(s)

2

4 6E ' /Oh aR (a, TN (1 — s)g(s)dw(s)

By using (B7), (B3) and the Lebesque dominated convergence theorem, it follows that
Elly*(h) —o|* — 0T, asa — 0™.
This proves that the system (1) is approximately controllable on the interval [0, 4]. [

4. Exact Controllability

To establish the exact controllability of the system (1), the following hypotheses are necessary:
H;j. The linear operator

Yu = /Oh N(h — s)Bu(s)ds,

it is bounded and invertible, | Y ~1(| < L.

H;,. For any bounded set V € H, there exists contant I > 0, such that

x(G(s, V)V x(T(s,V)) <127 Px(V), forae. t € [0,h].

Hj3. Assume that the following inequality holds,

1
2MI ht 2MgMM ht M R2r=1 N 2
s ML o 2Oy M (@) )Y L,
( T(p) p T(p) w T(p) ( )2z4—1 P
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where

For any ¢ € L?(Q, H), we define the control function u(t) = u(t;y) as follows:

h
i) =Y (0= 1o — Kl — [ NGh = 5)0(s,y(6))ds

h
_/0 N(h—s)T(s,y(s))dw(S))(t)'

By Definition 8, we can conclude that the system (1) is exactly controllable on [0, /] if
and only if there exists y*(h) = o0, where y* is the mild solution to system (1) corresponding
to u(t) = u(t;y). To prove this, we only need to prove that system (1) has a mild solution
when u(t) = u(t;y). Next, let us make some preparations for applying the Monch's fixed

point theorem.
As u(t) = u(t;y), the operator ¥, in (5) becomes

(422)(6) = P [ N(t=9)[G(5, () + Bulsiy)lds
42 /(;tN(t — )T (s,y(s))dw(s), fort € (0,h].

From form (Aj3), we have

s 3 (Grit) Bl + () P

MPFH3\21 gt MpM2FHi\?
o 7)Y 2 _ g1 BEE T
+5< > /O(t s) g(s)ds+5< TG+ 1) ) Ly

I'(p) Z
2-B\ 2 t
+5<A1/£EV)> Tr(Q)/O (t— S)Z(F‘l)g(s)ds} <mn, (12)
where L, is defined in Lemma 9 of this article and r; > 0 is a constants.

Let
Dy, = {Z 1z € C[O,h]r ||ZHC[0,h] < Tl}r ﬁrl = {y 1y e C(o,h], Hy||c(0,h] < 1’1}.

Obviously, Dy, C Cjgy) and D,, C Cio,n) are convex, nonempty and closed.

Lemma 9. Suppose that (Aq)—(As) are satisfied. Then

B2 \2 p-1\2
Elu(t)I? < s3{Elel? + (—pyr—gy ) ElwlP + (g ) Elwal?
M \Zr2l M1\ ?
() S lslo+ (S ) T(@lslo |
=:L,.

Proof. By Lemma 3, Holder's inequality and assumption (Asz), (H;), we have
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Ellu(t:)|P? < 5L§{Ene|\2 LN (R)yol2 + EIK ()1 P

2+EH [ N 9Ty ) 2}
<st3{Ellg? + (W_Afjf(;_l))zmyov " (Aﬁ’ggl)zmw
+ (r?fl))z};f [ 0= 5Bl g s, y(s)) s

¥ (rﬁ))zm@ ] =0 5y Pt

B2 2 p-1y2
<si3{elel+ (= ) Elwl+ (*Hgy ) Ell?

+ (r](”w)zhz:lngnp + (Aﬁ; ;l)zmgngm}

=1L,.

*EH /OhN(h—S)g(Sry(S))ds

O

Theorem 3. Suppose that (A1) — (Asz) and (Hy) — (Hs) are satisfied, and {S(t) }4~ is noncom-
pact. Then, the system (1) is exact controllability on [0, h].

Proof. Similar to Step 1, 2, and 3 in Theorem 1, by applying Lemma 9, we can verify that ¥
is equicontinuous, continuous, and that ¥(Dy,) C D;,. Next, we will prove that ¥ satisfies
Ménch's condition. Suppose that V4 = {y,}>_; C Dy, and V; C co({0} U®P(V;)). Suppose
that Vo = {z,}%, C Dy, and V» C c0({0} U¥(V3)). Then, we have V5(t) = 2FV;(t) for
t € [0,h].

By Lemmas 2 and 3 and (H;), we have

x{ /;Nu—s)g(s,vl(s))ds}
2M

<
— T(w)
2Ml1

< T /Ot(t — )" 1527 P x (P25 (s))ds

< 2MI /[:(t —)E Ty (Va(s)) ds.

[ (@6 (2vate) )

~ T(p)

For any y1,y2 € H, by using Lemma 3 and (2), we can derive that

. )

/Ot N(t — )T (s, y1(s))dw(s) — /Ot N(t — )T (s, y2(s))dw(s)

2y
< %(E’ /Ot(tfs)ﬁ‘fl(T(s,yl(s)) — T (s,y2(5)) ) dw(s) )
M f - 2\
< W(Tr(Q)/O (t—$)2W=VE(|T(s,y1(5)) — T(s,y2(5)) ds) _ (13)

Thus, by (13), (Hz) and referring to [13], we have
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Thus, we can obtain
x(u(t, V1))
< Lye{e— 00— Kb — [ (b= 91505 Vi(s))ds = [ NO=5)T (s Vi(s)ls) |
<Ly ()({ /Oh N(h—s)G(s, Vl(s))ds} —I—X{ /Oh N(h—s)T (s, Vl(s))dw(s)})

1

< 1y (2 sy Vit s ot 20) [ 520D vt |
< Lv(% /(;h(h — ) s + % {ZTV(Q) /O'h(h fs)2<ﬂ*1>ds} 7) tzmx{vz(t)}
OMIBE Ml 21 2
< LW(W? ey <2Tr(9)ﬁ) ) tzl[;};] x{Va(t)}
=M sup x{Va(t)}.
te[0,h]

Then, we have

x{(¥V2)}
= x{(¥1V2)(t) + (¥2V2) (1) }

sx{ﬂ—ﬁ /(:N(t—s)[g(s,Vl(s))+Bu(s, Vl(s))]ds+t2_5/0tN(t—s)T(s, Vl(s))dw(s)}
< x{tz—ﬁ /OtN(tfs)g(s,Vl(s))ds} +X{t2_/5 /OtN(tfs)Bu(s,Vl(s))ds}
+ X{tz’ﬁ /Ot N(t—$)T (s, V3 (s))dw(s)}

< PP ol [ =0l e s+ PR [ (s Vi)
+ t2_5% <2Tr(Q) /Ot(t =52 ({7 (s, V1(S))})2d5> E
< t27ﬁ% /Ot(t =) Px{P2Va(s) s
_g2MgM t —1 27
+ AT [ t=sy 1Mdst;3»h]x<vz<t>>

+ tzfﬁ% (ZTr(Q) /(:(t — 5)2(n-1)g2(2-F) (X{S(ﬁ%) Vs (S)})st) :
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oMl [t MMM [t
<P _ )1 2-p MBI ol
< {t r(]l)/o(t s)Fds + ¢ m /O(t s)Fds
M t >
+t27ﬁ—(2Tr Q t—s 2(”71)115) } su Vo (t
o (27(Q) [ (=9) sup (V2 (0)
2MI hit 2Mp MM ht M R2u-1\ 3
[ iy A i i SRy (ZTr Q 7> } su Vo (t
{ T(u) T(p) T(p) ( )2]1—1 te[O},:;z]X( 2(t))

=:p sup x(Va(t)).
te[0,h]

Combined with the above calculations, we have

x(Va) < x(w({o} U‘I’(Vz))> = x(¥(W2)) < ptsm]x(Vz(t)) < px(V2) < x(Va).

By (Hj3), we can conclude that x(V2) = 0 and that V; is relatively compact. According
to the Monch's fixed point theorem, ¥ has at least one fixed point y* € D,,. This fixed
point y* is a mild solution of the fractional stochastic control system (1) when the control
function is taken as u(t) = u(t;y). Furthermore, it satisfies y* (h) = o for any ¢ € L?(Q, H).
Therefore, we can conclude that system (1) has exact controllability on [0, h]. [

Theorem 4. Suppose that (A1) — (As) and (Hy) — (Hy) are satisfied, and {S(t) }¢~0 is compact.
Then, the system (1) is exact controllability on [0, h].

Proof. The proof follows a similar approach to that of Theorem 1. [

5. An Application

Example 1. Consider following equation:

91"z (t,v) = 92z(t,v) + etcos(z(t,v)) + Bu(t,v) + e'sin(z(t, v))dul;gt), te (0,1, ve 0,7,
z(t,0) = z(t, 1) =0, t € (0,1], (14)
(Z2P2)(0,0) = 20(0), (7. P2)/(0,0) = 21 (v), v e [0,7],

where 9" is a Hilfer fractional partial derivative with order 1 < p < 2 and type 0 < v < 1,
B=u+v(2—u) H=K="U = L*([0,7)).

Let Az = %z, D(A) = {z € H:z(0) = z(n) = 0;2" € H;2/,2"are absolutely continuous}.
Then, A is infinitesimal generator of uniformly bounded strongly continuous cosine family {C () }+>o.

Let ¢, (v) = \/gsin(mw), whiich implies that {—n?m?,n € N} is eigenvalues of A and
{Wn}>_q is an orthonormal basis of H. Then

Az = — Z n? < z,Pn > Py, z € D(A),

n=1

< -, - > is the inner product in H.
See [34], we can obtain

C(t)z=)_ cos(nmt) <z,pu > Py, S(hz=) %sin(nnt) <z,0y >y, z €H,
n=1 n=1

and

Q(t)z = i £2 Epype(—n2H) < 2,0 > P,
n=1
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where Ey,(z) = Yoy Wnﬂ)) is the Mittag-Leffler function.

Let y(t)v = z(t,v), then the problem (14) can be reformulated as the problem (1) in H for
G(t,y(t)) = etcos(y(t)) and T (t,y(t)) = e'sin(y(t)). Clearly, the assumtions (A1)—(As) and
(Hy) are satisfied.

Based on [34], it can be deduced that (Hy) is valid. Therefore, Theorem 3 implies that the
problem (14) is exact controllability.

6. Conclusions

In this paper, we investigate the approximate and exact controllability for the HFSEESs.
To accomplish this, we use stochastic analysis techniques, fractional calculus, measure of
noncompactness and the fixed point theorem. Our findings indicate that the conditions for
both approximate and exact controllability do not necessitate the Lipschitz condition being
satisfied by G(t,y(t)) and 7 (¢, y(t)). Additionally, we demonstrate the exact controllability
for both cases: when the semigroup is compact or noncompact.
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