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Abstract: Many real-world phenomena exhibit multi-step behavior, demanding mathematical models
capable of capturing complex interactions between distinct processes. While fractional-order models
have been successfully applied to various systems, their inherent smoothness often limits their
ability to accurately represent systems with discontinuous changes or abrupt transitions. This paper
introduces a novel framework for analyzing nonlinear fractional evolution control systems using
piecewise hybrid derivatives with respect to a nondecreasing function W(ι). Building upon the
theoretical foundations of piecewise hybrid derivatives, we establish sufficient conditions for the
existence, uniqueness, and Hyers–Ulam stability of solutions, leveraging topological degree theory
and functional analysis. Our results significantly improve upon existing theoretical understanding
by providing less restrictive conditions for stability compared with standard fixed-point theorems.
Furthermore, we demonstrate the applicability of our framework through a simulation of breast
cancer disease dynamics, illustrating the impact of piecewise hybrid derivatives on the model’s
behavior and highlighting advantages over traditional modeling approaches that fail to capture
the multi-step nature of the disease. This research provides robust modeling and analysis tools
for systems exhibiting multi-step behavior across diverse fields, including engineering, physics,
and biology.

Keywords: evolution control systems; topological degree theory; Lipchitz criteria; Hyers–Ulam
stability; completely continuous; breast cancer model; simulation

1. Introduction

Fractional calculus (FC) has emerged as a powerful tool for modeling complex phenom-
ena across diverse fields [1–3]. However, traditional fractional derivatives [4–6], relying on
a single memory kernel, are limited when modeling systems exhibiting multi-step behavior
and crossover effects—where dominant factors shift over time. This limitation stems from
their enforced uniform decay of past influences, failing to capture the varying dynamics
often observed in real-world systems. Furthermore, existing analytical techniques, such
as classical fixed-point theory, frequently impose restrictive conditions, hindering their
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application to complex systems. To overcome these limitations, Atangana and Seda [7]
introduced the piecewise hybrid fractional operator, which incorporates multiple fractional
derivatives applied over distinct intervals. This innovative approach allows for a more
nuanced representation of memory dynamics, as different derivatives can be tailored to
specific phases, and the inclusion of transition points explicitly models crossover effects.
This technique has already proven valuable in various applications, including modeling
infectious diseases, biological interactions, and tumor growth [8–12]. Naik et al., in [8],
developed an Ebola epidemic model incorporating a piecewise hybrid fractional operator
and a Mittag-Leffler kernel to analyze disease dynamics and control factors. Alazman
et al. in [9] analyzed a novel mathematical model using a system of differential equations
with a piecewise fractional operator combining Caputo and Atangana–Baleanu derivatives.
Saleem et al. [10] applied a classical piecewise hybrid model with a fractional deriva-
tive to an epidemic model. Aldowah et al. [11] presented numerical simulations of a
piecewise dynamic model for malaria transmission. Sweilam et al. [12] presented a novel
mathematical model of monkeypox disease dynamics with time delay, using a hybrid
crossover approach and piecewise techniques. Some researchers have used piecewise
hybrid fractional derivatives to analyze the dynamics of breast cancer at different disease
stages (see [13–16]).

Lastly, to further enhance flexibility, enabling adaptation to diverse scenarios and
datasets, in 2024, Alragad et al. [17] incorporated a variable memory kernel modulated
by the nondecreasing function W(ι). This function is important and plays a crucial role
in enhancing the flexibility and adaptability of the piecewise hybrid fractional derivative
approach. It essentially acts as a “time-warping” function, allowing the model to adapt
to different time scales and incorporate variations in the rate of change in the system’s
dynamics. This approach is particularly crucial for modeling systems exhibiting complex,
multi-step behavior and crossover effects. This novel approach shows promise for di-
verse applications. Alragad et al. [17] applied a ϕ-piecewise hybrid fractional derivative
approach to investigate Ebola virus disease transmission dynamics. Sweilam et al. [18]
presented a novel hybrid crossover model of monkeypox incorporating time delays. These
advancements provide valuable insights into the complex dynamics of infectious diseases
and improve our ability to predict and manage outbreaks. Their results have proven the
importance of this technique in simulating the dynamics of the diseases transmission in its
various stages well.

In this work, we incorporate a control variable function to investigate the nonlinear
fractional evolution model by applying controllability criteria using the W-piecewise hy-
brid derivative, incorporating a nondecreasing function W(ι) that modulates the memory
kernel, providing greater flexibility and adaptability for representing the varying influence
of past events on a system’s current state. This is particularly crucial for modeling sys-
tems exhibiting complex, multi-step behavior and crossover effects. This novel approach
shows promise in diverse applications in different fields such as engineering, finance,
environmental science, and biology. These advancements provide valuable insights into
the complex dynamics of infectious diseases and improve our ability to predict and man-
age outbreaks. Using topological degree theory, we establish sufficient conditions for
the existence, uniqueness, and Hyers–Ulam stability of solutions for nonlinear fractional
evolution control systems employing the W-piecewise hybrid derivative. Our framework
addresses the limitations of traditional methods by providing a more robust and versatile
tool for analyzing complex systems with dynamic memory characteristics. Specifically, our
analysis overcomes the limitations of single fractional derivatives and simpler piecewise
models by incorporating a variable memory kernel, modulated by W(ι), providing a more
realistic representation of systems where the influence of past events changes over time; it
effectively captures multi-step behavior and crossover effects, avoiding the limitations of
single fractional derivatives; it allows for a smooth transition between different dynamic
regimes, unlike simpler piecewise models that often introduce discontinuities, and its
flexibility and adaptability make it well suited to model diverse scenarios and datasets. The
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choice of W(ι) provides further control over the memory kernel to better reflect the specific
dynamics of the system. We demonstrate the power of this new framework through its
application to a breast cancer model to offer a significantly more nuanced representation of
the disease’s multi-stage progression. The variable memory kernel, modulated by W(ι),
allows for the accurate capture of the changing influence of past treatments, immune
responses, and other factors on tumor growth. The ability to model crossover effects and
smooth transitions between different disease stages enhances the model’s biological realism
and predictive power, leading to more effective strategies for understanding and treating
breast cancer. Motivated by the importance of piecewise hybrid fractional derivative, we
explore a category of fractional-order evolution control systems by applying controllability
criteria. These systems are represented by the following equation, where ι ∈ J := [0, χ],{

PCML−W(ι)
0 DZ

ι K(ι) = ΦK(ι) + ΨV(ι) + F(ι,K(ι)),
K(0) = K0,

(1)

where,

• Φ is the infinitesimal generator of an analytic semigroup of bounded linear operators
on the Hilbert space H.

• V is the control variable function on L2[J,H] that represents the input to the system,
allowing for manipulation of its trajectory.

• Ψ : H → H is a linear bounded operator that bridges the control input to the system’s
state, influencing how the control input affects the system’s evolution.

• F : J ×R → R represents potential nonlinearities in the system, adding complexity
and potentially making the system more difficult to control.

• The increasing function W(ι) plays a crucial role in enhancing the flexibility and
adaptability of the W-piecewise hybrid fractional derivative approach. It essentially
acts as a “time-warping” function, allowing the model to adapt to different time scales
and incorporate variations in the rate of change in the system’s dynamics.

• W(ι) can map the original time variable ι onto a new time scale, effectively stretching
or compressing the time axis in different parts of the interval. This is particularly
useful in modeling systems where the dynamics evolve at different rates in different
phases. For example, in an infectious disease outbreak, the initial spread might be
rapid, while the later stages might exhibit slower changes.

Nonlinear fractional evolution control systems (1), characterized by memory effects,
nonlocal interactions, and complex dynamics, offer significant potential for modeling
diverse real-world phenomena, including viscoelastic materials, financial markets, and
biological systems exhibiting power-law behavior.

This research makes the following key contributions:

• A Novel Piecewise Hybrid Fractional Derivative Framework: We introduce a novel
framework for modeling and analyzing nonlinear fractional evolution control systems
using PCML-W fractional derivatives. This approach overcomes limitations of both
single fractional derivatives and simpler piecewise models by (a) employing a variable
memory kernel (modulated by W(ι)) in the W-ML component, thus providing a more
realistic representation of systems where the influence of past events changes over
time; and (b) enabling a smooth transition between distinct dynamic regimes (via a
biologically relevant crossover point, ι1) using the W-Caputo and W-ML components,
thereby avoiding the artificial discontinuities of simpler piecewise methods.

• Robust Mathematical Framework: While classical fixed-point theory provides a useful
tool for analyzing fractional differential equations (FDEs), its reliance on restrictive
conditions, including strong compactness assumptions, limits its applicability. Co-
incidence degree methods [19–21] have expanded this scope, but limitations remain.
Therefore, to analyze the broader class of nonlinear FDEs, particularly those involving
piecewise fractional derivatives and control systems, we utilize the more versatile
topological degree theory, which is capable of handling noncompact operators. Our
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rigorous mathematical analysis, employing topological degree theory, establishes
sufficient conditions for the existence, uniqueness, and Hyers–Ulam stability of so-
lutions. This ensures the reliability and robustness of our model’s predictions, even
under small perturbations. Furthermore, we highlight the critical role of controllability
analysis in developing effective control strategies.

• Controllability: This work highlights the critical role of controllability analysis in
developing effective control strategies for these complex systems.

• Modeling Breast Cancer: We present a breast cancer model that uses PCML-W frac-
tional derivatives to accurately capture the transition from early-stage intrinsic growth
to later stages. This transition is significantly influenced by treatment, immune re-
sponse, and angiogenesis.

This piecewise hybrid derivative approach offers a more accurate, flexible, and bi-
ologically realistic framework than previous methods for modeling complex dynamical
systems with multi-step behavior, demonstrating its significant advantage for applications,
particularly in biological modeling.

2. Specific Techniques or Methods

This section lays the groundwork for our subsequent analysis by introducing key
concepts related to the PCML-W fractional derivative. In 2021, Atangana and Araz [7]
explored new concepts in fractional derivatives, specifically piecewise hybrid fractional
derivatives. One of these derivatives, called a piecewise hybrid derivative with Caputo
and ML kernel, is defined as follows:

PCML
0 DZ

ι K(ι) =


C
0 DZ

ι K(ι), ι ∈ [0, ι1],

ML
0 DZ

ι K(ι), ι ∈ [ι1, χ],

where the following hold:

• C
0 DZ

ι K(ι) represents the Caputo fractional derivative of order Z ,

• ML
0 DZ

ι K(ι) = MLDZ
0+K(ι) = ML(Z)

1−Z
∫ ι

0 EZ
(

Z
Z−1 (ι − s)Z

)
K′(s)ds represents the ML

fractional derivative defined by Atangana and Baleanu [22].

The corresponding fractional integral PCML
0 IZι is defined by

PCML
0 IZι K(ι) =


RL
0 IZι K(ι), ι ∈ [0, ι1],

ML
0 IZι K(ι), ι ∈ [ι1, χ],

where,

• RL
0 IZι K(ι) = 1

Γ(Z)

∫ ι
0(ι − s)Z−1K(s)ds represents the Riemann-Liouville fractional integral.

• ML
0 IZι K(ι) = 1−Z

ML(Z)
K(ι) + Z

ML(Z)Γ(Z)

∫ ι
ι1
(ι − s)Z−1K(s)ds represents the ML

fractional integral.

In this work, building upon the definitions of the ML-fractional derivative with
respect to function W(ι) [23] (denoted by ML−W) and the C-fractional derivative with
respect to function W(ι) [24] (denoted by C−W), we present the definitions of piecewise
hybrid derivative with a Caputo and ML kernel, with respect to function W(ι) (denoted by
PCML−W(ι)), as follows:

PCML−W(ι)
0 DZ

ι K(ι) =


C−W(ι)
0 DZ

ι K(ι), ι ∈ [0, ι1],

ML−W(ι)
ι1 DZ

ι K(ι), ι ∈ [ι1, χ],

where,
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• C−W(ι)
0 DZ

ι K(ι) represents the Caputo fractional derivative with respect to function W(ι),

• ML−W(ι)
ι1 DZ

ι K(ι) = ML(Z)
1−Z

∫ ι
0 W

′(s)EZ
(
Z(W(ι)−W(s))

Z−1

)
K′

W(s)ds represents theML frac-

tional derivative with respect to function W(ι), where W′(ι) ̸= 0 for all ι ∈ [0, χ] ⊂ R,
χ > 0, and K′

W(ι) =
K′(ι)
W′(ι) ,W′(ι) ̸= 0, for all ι ∈ [0, χ].

By allowing us to incorporate the influence of various factors affecting disease trans-
mission, this generalization provides a more comprehensive and nuanced approach to
modeling disease dynamics. The corresponding fractional integral is defined by

PCML−W(ι)
0 IZι K(ι) =


C−W(ι)
0 IZι K(ι), ι ∈ [0, ι1],

ML−W(ι)
0 IZι K(ι), ι ∈ [ι1, χ],

where,

• C−W(ι)
0 IZι K(ι) = 1

Γ(Z)

∫ ι
0 X

Z−1
W (ι, s)K(s)ds represents the Caputo fractional integral

with respect to function W(ι) [24].
• ML−W(ι)

0 IZι K(ι) = 1−Z
ML(Z)

K(ι) + Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)K(σ)dσ represents the ML

fractional integral with respect to function W(ι) [23],
• XZ−1

W (ι, s) = W′(s)(W(ι)−W(s))Z−1.

To support our subsequent analysis, we utilize key findings from reference [25] regard-
ing the properties and applications of topological degree theory.

Definition 1. Let N be a Banach space of continuous functions on the interval [0, χ] equipped
with the norm ∥K∥ = maxι∈[0,χ]|K(ι)|. Let ∆ ⊂ P(N ) be the family of all bounded sets. The
Kuratowski measure of noncompactness, ξ(X), for a set X ∈ ∆, is defined as

ξ(X) = inf{r > 0 : X admits a finite cover by sets such ψ(X) ≤ r},

where,

1. ψ(X) represents the diameter of X,
2. ξ : ∆ → R+ represents the measure ξ.

Definition 2. Assume G : ∆ ⊂ N → N is a continuous and bounded operator. Then, if

∥G(u)−G(û)∥ ≤ Θ∥u − û∥, Θ > 0,

for all u, û ∈ ∆. Then, the operator G is Lipschitz with a specific constant Θ. Furthermore, if
Θ < 1, the operator F is classified as a strict contraction.

Proposition 1. If G : ∆ → N is compact, then G satisfies the property of being Θ–Lipschitz with
constants equal to 0.

Definition 3 ([25]). If G : N → N is a Θ-condensing operator and

D = {K ∈ N : ∃ℓ ∈ (0, 1),K = ℓG(K)}.

If D ⊂ N is bounded, and D ⊂ Ωr(0), then

deg(I − ℓG, Ωr(0), 0) = 1, for all ℓ ∈ [0, 1].

Consequently, the operator G possesses at least one fixed point, which is located within the
ball Ωr(0).
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Lemma 1. If K ∈ H(0, χ), K ∈ L(J), the solution of{
C−W(ι)
0 DZ

ι K(ι) = K(ι),
K(0) = K0,

is deduced as follows:

K(ι) = K0 +
1

Γ(Z)

∫ ι

0
XZ−1
W (ι, σ)K(σ)dσ.

Lemma 2. If K ∈ H(0, χ), K ∈ L(J), the solution of{
ML−W(ι)
0 DZ

ι K(ι) = K(ι),
K(0) = K0,

is deduced as follows:

K(ι) = Kι1 +
1 −Z
ML(Z)

K(ι) +
Z

ML(Z)Γ(Z)

∫ ι

ι1
XZ−1
W (ι, σ)K(σ)dσ.

Theorem 1. The solution of model (1) is given by

K(ι) =


K0 +

1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ,

Kι1 +
1−Z

ML(Z) [ΦK(ι) + ΨV(ι) + F(ι,K(ι))]

+ Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ.

Proof. By Lemmas 1 and 2 , the said solution can be obtained.

Behavior of the System

To understand how the operators interact W-Caputo and W−ML, and investigate the
crossover point z1 at which the dominant transmission mechanism shifts and to accurately
represent the changing influence of various factors over time, we divide the study period
[0, χ] into two sections: [0, ι1] and [ι1, χ]. This lets us see how the model’s behavior shifts
as we move from using the W-Caputo derivative to the W−ML derivative. Using this
division, model (1) can be expressed as

PCML−W(ι)
0 DZ

ι K(ι) =


C−W(ι)
0 DZ

ι K(ι) = ΦK(ι) + ΨV(ι) + F(ι,K(ι)), ι ∈ [0, ι1],

ML−W(ι)
ι1 DZ

ι K(ι) = ΦK(ι) + ΨV(ι) + F(ι,K(ι)), ι ∈ [ι1, χ],

where C−W(ι)
0 DZ

ι and ML−W(ι)
ι1 DZ

ι represent the Caputo and ML derivatives with respect to
the function W(ι), respectively. This division allows us to lead to a deeper understanding
of the model’s behavior and potential for improved accuracy and insights. In the following
theorems, we analyze the properties of solutions of the system in both intervals and observe
the impact of transitioning between different derivative operators.

3. Qualitative Analysis of the Model (1)

To discuss the qualitative analysis of Model (1), we use the topological degree theory.
The following assumptions must be fulfilled for the analysis of the existence and uniqueness
as well as stability results:
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3.1. Hypothesis

(H1) There exists a constant number LF0 such that∣∣∣F(ι,K(ι))− F
(

ι, K̂(ι)
)∣∣∣ ≤ LF

∣∣∣K(ι)− K̂(ι)
∣∣∣, for ι ∈ J and K, K̂ ∈ N .

(H2) F : J ×R → R is continuous, and there exist two constants τF, ηF > 0 such that

|F(ι,K(ι))| ≤ τF + |K(ι)|ηF, for ι ∈ J .

(H3) For constants ℏΦ, MΨ > 0, we have

|ΦK(ι)| ≤ ℏΦ|K(ι)|, |ΨV(σ)| ≤ MΨ.

3.2. Notations

In view of Theorem 1, we define an operator G : N → N by

G(K(ι)) =


K0 +

1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ,

Kι1 +
1−Z

ML(Z) [ΦK(ι) + ΨV(ι) + F(ι,K(ι))]

+ Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ.

(2)

We observe that the model (1) has a solution if and only if the operator G possesses
fixed points. Before we start our analysis, we use the following notations:

V = max

{
(W(ι1)−W(0))Z

Γ(Z + 1)
,

(
1 −Z
ML(Z)

+
Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z + 1)

)}
,

O = V(ℏΦ + ηF),

Θ = V(ℏΦ +LF).

3.3. Θ-Lipschitz

Lemma 3. Under the assumption (H1 − H3), the operator G is Θ-Lipschitz and satisfying the
given condition

∥G(K)∥ ≤ [max{|K0|, |Kι1 |}+ V(MΨ + τF)] +O∥K∥.

Proof. Let us take K, K̂ ∈ N . Then, considering (2), for ι ∈ [0, ι1] we have∣∣∣G(K(ι))−G
(
K̂(ι)

)∣∣∣ = 1
Γ(Z)

∫ ι

0
XZ−1
W (ι, σ)

[
Φ
∣∣∣K(σ)− K̂(σ)

∣∣∣+ ∣∣∣F(σ,K(σ))− F
(

σ, K̂(σ)
)∣∣∣]dσ.

By (H1) and (H3), we have∣∣∣G(K(ι))−G
(
K̂(ι)

)∣∣∣ ≤ 1
Γ(Z)

∫ ι

0
XZ−1
W (ι, σ)

[
ℏΦ

∣∣∣K(σ)− K̂(σ)
∣∣∣+LF

∣∣∣K(σ)− K̂(σ)
∣∣∣]dσ.

Hence,∥∥∥G(K)−G
(
K̂
)∥∥∥ ≤ (W(ι1)−W(0))Z

Γ(Z + 1)

[
ℏΦ

∥∥∥K− K̂
∥∥∥+LF

∥∥∥K− K̂
∥∥∥]. (3)
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For ι ∈ [ι1, χ] we have∣∣∣G(K(ι))−G
(
K̂(ι)

)∣∣∣
≤ 1 −Z

ML(Z)

[
Φ
∣∣∣K(ι)− K̂(ι)

∣∣∣+ ∣∣∣F(ι,K(ι))− F
(

ι, K̂(ι)
)∣∣∣]

+
Z

ML(Z)Γ(Z)

∫ ι

ι1
XZ−1
W (ι, σ)

[
Φ
∣∣∣K(σ)− K̂(σ)

∣∣∣+ ∣∣∣F(σ,K(σ))− F
(

σ, K̂(σ)
)∣∣∣]dσ.

By (H1) and (H3), we have∣∣∣G(K(ι))−G
(
K̂(ι)

)∣∣∣
≤ 1 −Z

ML(Z)

[
ℏΦ

∣∣∣K(ι)− K̂(ι)
∣∣∣+LF

∣∣∣K(ι)− K̂(ι)
∣∣∣]

+
Z

ML(Z)Γ(Z)

∫ ι

ι1
XZ−1
W (ι, σ)

[
ℏΦ

∣∣∣K(σ)− K̂(σ)
∣∣∣+LF

∣∣∣K(σ)− K̂(σ)
∣∣∣]dσ.

Hence,

∥∥∥G(K)−G
(
K̂
)∥∥∥ ≤

(
1 −Z
ML(Z)

+
Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z + 1)

)[
ℏΦ

∥∥∥K− K̂
∥∥∥+LF

∥∥∥K− K̂
∥∥∥]. (4)

Then, by (3) and (4), we obtain∥∥∥G(K)−G
(
K̂
)∥∥∥ ≤ Θ

∥∥∥K− K̂
∥∥∥.

Therefore, the operator G is Θ-Lipschitz. Furthermore, we can readily derive the
growth condition as follows:

∥G(K)∥ ≤ [max{|K0|, |Kι1 |}+ V(MΨ + τF)] +O∥K∥.

3.4. Compactness of Operator G

Lemma 4. The operator G : N → N is compact and, therefore, completely continuous.

Proof. Define a bounded set ∆ = {K ∈ N : ∥K∥ ≤ r} and consider sequences {Kn}, {Vn}
in ∆, such that Kn → K,Vn → V as n → ∞. Since Φ, Ψ and F are continuous mappings,
we have

ΦKn(ι) → ΦK(ι), ΨVn(ι) → ΨV(ι), as n → ∞,

F(ι,Kn(ι)) → F(ι,K(ι)), as n → ∞.

Using H1, we have

∥G(Kn)−G(K)∥

≤


(W(ι1)−W(0))Z

Γ(Z+1) [(ℏΦ +LF)∥Kn −K∥],

(
1−Z

ML(Z)
+ Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z+1)

)
[(ℏΦ +LF)∥Kn −K∥],

→ 0, as n → ∞.
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Thus, the operator G is continuous. By Lemma 3, we have

∥G(K)∥ ≤ [max{|K0|, |Kι1 |}+ V(MΨ + τF)] +Or.

Hence, the operator G is bounded. For equicontinuity, let 0 < ιa < ιb < ι1,K ∈ ∆.
Then, we have

|G(K(ιb))−G(K(ιa))|

=

∣∣∣∣ 1
Γ(Z)

∫ ιb

0
XZ−1
W (ι, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ

− 1
Γ(Z)

∫ ιa

0
XZ−1
W (ι, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ

∣∣∣∣
≤ 1

Γ(Z)

∫ ιa

0
W′(σ)

(
(W(ιb)−W(σ))Z−1 − (W(ιa)−W(σ))Z−1

)
×

[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ +
1

Γ(Z)

∫ ιb

ιa
XZ−1
W (ι, σ)×

[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ.

Thus, by (H2), we have

∥G(K(ιb))−G(K(ιa))∥

≤ (W(ιb)−W(0))Z − (W(ιa)−W(0))Z

Γ(Z + 1)
[ℏΦr + MΨ + τ + rη].

Let ι1 < ιa < ιb < χ,K ∈ ∆. Then, we have

|G(K(ιb))−G(K(ιa))|

=

∣∣∣∣ 1 −Z
ML(Z)

[ΦK(ιb) + ΨV(ιb) + F(ιb,K(ιb))] +
Z

ML(Z)Γ(Z)
×∫ ιb

ι1
XZ−1
W (ιb, σ)[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ

−
[

1 −Z
ML(Z)

[ΦK(ιa) + ΨV(ιa) + F(ιa,K(ιa))] +
Z

ML(Z)Γ(Z)
×∫ ιa

ι1
XZ−1
W (ιa, σ) [ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ]

∣∣∣∣
≤ 1 −Z

ML(Z)
([ΦK(ιb) + ΨV(ιb) + F(ιb,K(ιb))]− [ΦK(ιa) + ΨV(ιa) + F(ιa,K(ιa))])

+
Z

ML(Z)Γ(Z)

∫ ιa

ι1
W′(σ)

(
(W(ιb)−W(σ))Z−1 − (W(ιa)−W(σ))Z−1

)
×

[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ +
Z

ML(Z)Γ(Z)

∫ ιb

ιa
XZ−1
W (ι, σ)×

[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ.

Thus, by (H2), we have

∥G(K(ιb))−G(K(ιa))∥

≤ 1 −Z
ML(Z)

([ΦK(ιb) + ΨV(ιb) + F(ιb,K(ιb))]− [ΦK(ιa) + ΨV(ιa) + F(ιa,K(ιa))])

+
Z(W(ιb)−W(ι1))

Z − (W(ιa)−W(ι1))
Z

ML(Z)Γ(Z + 1)
[(ℏΦ + ηF)r + MΨ + τF].
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Moreover, utilizing the boundedness and continuity ofG, we have ∥G(K(ιb))−G(K(ιa))∥ → 0
as ιa → ιb. This indicates that G is uniformly continuous. Consequently, by the Arzela–Ascoli
theorem, we conclude that G is relatively compact and, therefore, completely continuous.

3.5. Existence of Solution

Theorem 2. The model (1) possesses a bounded set of solutions, guaranteeing the existence of at
least one solution, provided that O < 1.

Proof. Based on Lemma 3, we conclude that the operator G is Θ-Lipschitz with a constant
Θ ≤ 1. We can characterize a set of solutions for (1) as

D = {K ∈ N : ∃ℓ ∈ (0, 1),K = ℓG(K)},

which implies that

∥K∥ = ∥ℓG(K)∥

≤


|K0|+ (W(ι1)−W(0))Z

Γ(Z+1) [(ℏΦ + ηF)∥K∥+ MΨ + τF],

|Kι1 |+
(

1−Z
ML(Z)

+ Z(W(χ)−W(ι1))
Z

ML(Z)Γ(Z+1)

)
[(ℏΦ + ηF)∥K∥+ MΨ + τF]

(5)

≤ [max{|K0|, |Kι1 |}+ V(MΨ + τF)] +O∥K∥.

Let the set D be unbounded. By dividing both sides of (5) by ∥K∥, we obtain

1 ≤ lim
∥K∥→∞

1
∥K∥ ([max{|K0|, |Kι1 |}+ V(MΨ + τF)] +O∥K∥) ≤ O < 1.

This result is impossible, implying that the set D must be bounded. Therefore, G has
at least one fixed point, which corresponds to a solution of the model (1).

3.6. Uniqueness of Solution

Theorem 3. Under assumptions (H1, H3), the model (1) possesses a unique solution if Θ < 1.

Proof. By Lemma 3, we see that G is is Θ-Lipschitz. Thus, by the contraction mapping
principle, we conclude that G has a unique fixed point, which corresponds to a unique
solution of the model (1).

3.7. Hyers–Ulam Stability

Hyers–Ulam stability is crucial in the study of functional equations as it provides
a framework for understanding how small perturbations in inputs can affect outputs
while ensuring the existence of nearby solutions. This concept is particularly important in
applications across mathematics, physics, and engineering, where systems often experience
minor deviations from ideal conditions. By establishing criteria for the stability of solutions,
Hyers–Ulam stability aids in the analysis and control of dynamic systems, ensuring that
approximate models can yield reliable predictions and behaviors [26]. Before presenting
the crucial theorem regarding Hyers–Ulam stability for model (1), we introduce several
definitions and an auxiliary Lemma to facilitate the discussion of the stability result.

Definition 4. The model (1) is HU stable if there exists a real number M > 0 such that for each
ε > 0, there exists a unique solution K̂ ∈ N satisfies the following inequality:∣∣∣PCML−W(ι)

0 DZ
ι K̂(ι)−

(
K̂(ι) + ΨV(ι) + F

(
ι, K̂(ι)

))∣∣∣ ≤ ε, ι ∈ J , (6)
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corresponding to a solution K ∈ N of model (1) such that∥∥∥K̂−K
∥∥∥ ≤ Mε, ι ∈ J ,

Remark 1. Let Q be a mapping in (Q dependent of K), such that for any ε > 0:
(i) |Q(ι)| ≤ ε, ι ∈ J ;
(ii) The model (1) is considered as follows:{

PCML−W(ι)
0 DZ

ι K(ι) = (K(ι) + ΨV(ι) + F(ι,K(ι))) + Q(ι),
K(0) = K0.

(7)

The solution of (7) is given as follows:

K(ι) =



K0 +
1

Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)×

[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ

+ 1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)Q(σ)dσ,

Kι1 +
1−Z

ML(Z) [ΦK(ι) + ΨV(ι) + F(ι,K(ι)) + Q(ι)]

+ Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)×

[ΦK(σ) + ΨV(σ) + F(σ,K(σ))]dσ

+ Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)Q(σ)dσ.

(8)

In view of Theorem 3, we may write (8) as follows in terms of the operator:

K(ι) = G(K(ι)) +


1

Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)Q(σ)dσ,

1−Z
ML(Z)

Q(ι) + Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)Q(σ)dσ.

(9)

Lemma 5. By the solution (9) and considering Remark 1 (i), we have

|K(ι)−G(K(ι))| ≤ max

{
(W(ι1)−W(0))Z

Γ(Z + 1)
,

(
1 −Z
ML(Z)

+
Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z + 1)

)}
ε.

Proof. Consider the solution (9)

|K(ι)−G(K(ι))| =


∣∣∣ 1

Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)Q(σ)dσ

∣∣∣,∣∣∣ 1−Z
ML(Z)

Q(ι) + Z
ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)Q(σ)dσ

∣∣∣. (10)

Therefore, we have

|K(ι)−G(K(ι))| ≤


1

Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)|Q(σ)|dσ,

1−Z
ML(Z) |Q(ι)|+ Z

ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)|Q(σ)|dσ

≤


(W(ι1)−W(0))Z

Γ(Z+1) ε,

(
1−Z

ML(Z)
+ Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z+1)

)
ε

≤ max

{
(W(ι1)−W(0))Z

Γ(Z + 1)
,

(
1 −Z
ML(Z)

+
Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z + 1)

)}
ε.
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Theorem 4. The solution of model (1) is Hyers–Ulam-stable and generalized-Hyers–Ulam-stable if
Θ < 1.

Proof. Consider any solution K of model (1), and let K̂ be the unique result, then we take∣∣∣K̂(ι)−K(ι)
∣∣∣ =

∣∣∣K̂(ι)−G(K(ι))
∣∣∣

=
∣∣∣K̂(ι)−G

(
K̂(ι)

)
+G

(
K̂(ι)

)
−G(K(ι))

∣∣∣
≤

∣∣∣K̂(ι)−G
(
K̂(ι)

)∣∣∣+ ∣∣∣G(K̂(ι)
)
−G(K(ι))

∣∣∣.
By Lemma 5 and Theorem 3, we have

∣∣∣K̂(ι)−K(ι)
∣∣∣ ≤ max

{
(W(ι1)−W(0))Z

Γ(Z + 1)
,

(
1 −Z
ML(Z)

+
Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z + 1)

)}
ε

+Θ
∣∣∣K̂(ι)−K(ι)

∣∣∣,
which further yields

∥∥∥K̂−K
∥∥∥ ≤ max

{
(W(ι1)−W(0))Z

Γ(Z + 1)
,

(
1 −Z
ML(Z)

+
Z(W(χ)−W(ι1))

Z

ML(Z)Γ(Z + 1)

)}
ε

+Θ
∥∥∥K̂−K

∥∥∥.

Thus, after simplification, we obtain

∥∥∥K̂−K
∥∥∥ ≤

max
{

(W(ι1)−W(0))Z

Γ(Z+1) ,
(

1−Z
ML(Z)

+ Z(W(χ)−W(ι1))
Z

ML(Z)Γ(Z+1)

)}
1 − Θ

ε. (11)

Hence, the solution of model (1) is Hyers–Ulam stable. Further, define a nondecreasing
mapping Σ : (0, χ) → R as Σ(ε) = ε, such that Σ(0) = 0; then, from (11), one has

∥∥∥K̂−K
∥∥∥ ≤

max
{

(W(ι1)−W(0))Z

Γ(Z+1) ,
(

1−Z
ML(Z)

+ Z(W(χ)−W(ι1))
Z

ML(Z)Γ(Z+1)

)}
1 − Θ

Σ(ε).

Therefore, the solution of model (1) is generalized-Hyers–Ulam-stable.

The Hyers–Ulam stability bounds presented in Theorem 4 demonstrate the robustness
of the model’s solution to small perturbations. The Hyers–Ulam stability bound shows that
the error between the exact solution and an approximate solution is directly proportional
to the size of the perturbation ε. The generalized Hyers–Ulam stability bound, with a
nondecreasing mapping Σ(ε), where Σ(0) = 0, indicates that the error grows at a controlled
rate as the perturbation increases. These bounds highlight the resilience of the system’s
behavior, even when confronted with uncertainties or errors in the model parameters or
input, making it well suited for applications requiring reliable control and prediction. The
magnitude of the bounds (M and Σ(ε)) directly reflects the robustness of the system, with
smaller values indicating greater insensitivity to perturbations.

4. An Application

Breast cancer development is a nonuniform process, characterized by distinct stages
with varying biological mechanisms. Early-stage tumor growth is primarily driven by
intrinsic cellular processes, genetic mutations, and hormonal influences, often exhibiting
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relatively rapid and exponential growth. A constant-memory kernel, such as that employed
by the Caputo fractional derivative, effectively captures the dynamics of this initial phase,
reflecting the cumulative impact of past genetic and environmental factors. However,
later stages are significantly influenced by external factors including delayed treatment
responses, dynamic immune system interactions, complex angiogenesis, and the potential
for metastasis. These complexities necessitate a more adaptable model. The W−ML
fractional derivative, featuring a variable memory kernel modulated by the function W(ι),
is well suited for these later stages. W(ι) allows for the accommodation of changes in the
influence of past events due to treatment, immune responses, and other factors, capturing
the dynamic memory inherent in these processes and the long-range interactions typical of
complex biological systems. The crossover point, ι1, between the W-Caputo and W−ML
models represents a shift from predominantly intrinsic growth to a phase significantly
influenced by external factors.

This piecewise approach, using the PCML−W fractional derivative, effectively cap-
tures the dynamics of the breast cancer model across its different stages. The PCML−W
breast cancer model, a system of four coupled fractional differential equations, describes
the populations of normal cells, tumor cells, immune response cells, and estrogen, incorpo-
rating control variables like anticancer drugs and ketogenic diet effects.

PCML−W(ι)
0 DZ

ι N(ı) = N(ı)m1(A1 − λ1N(ı)− ζ1T(ı))− (1 − r)µ1N(ı)E(ı),
PCML−W(ι)
0 DZ

ι T(ı) = T(ı)m2(A2 − λ3T(ı)− ζ2I(ı)) + (1 − r)µ1T(ı)N(ı)E(ı),
PCML−W(ι)
0 DZ

ι I(ı) = ργI(ı) + I(ı)(A3 − λ5I(ı)− ζ3T(ı))− (1 − r)µ2I(ı)E(ı),
PCML−W(ι)
0 DZ

ι E(ı) = E(ı)((1 − r)α − ζ4E(ı)),

with the initial conditions
N(0),T(0), I(0),E(0) > 0, (12)

The population size is detailed in Table 1, while the model parameters and their
estimates are outlined in Table 2.

Table 1. The population size for the breast cancer model.

Variable Definition Unit

N(ı) This population represents healthy cells, with a growth rate of m1 and a carrying capacity of A1. Cells
T(ı) Malignant cancer cells, characterized by a growth rate of m2 and a carrying capacity of A2. Cells
I(ı) The body’s defense against the tumor. Cells
E(ı) Level of estrogen in the body, which is produced at a source rate of α and eliminated at a rate of ζ4. ng/mL
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Table 2. The descriptions and parameter values for the breast cancer model [27–29].

Parameter Description Value Unit

m1 Growth rate of normal cells 0.3 day−1

A1 Carrying capacity of normal cells 1.232 Cells
λ1 Logistic rate for normal cell growth 0.1 day−1

ζ1 Inhibition rate of normal cells by tumor cells 6 × 10−8 day−1

µ1 Rate of normal cell transformation to tumor cells 0.2 day−1

r Reduction factor for tumor cell formation due to anticancer drugs 0.5
m2 Growth rate of luminal-type tumor cells 0.4 day−1

A2 Carrying capacity of luminal-type tumor cells 2.35 Cells
λ3 Logistic rate for luminal-type tumor cell growth 0.1 day−1

ζ2 Inhibition rate of luminal-type tumor cells by immune cells 3 × 10−6 day−1

ρ Source rate of immune cells 130 day−1

γ Immune booster supplement (with ρ × γ = 1.3 × 102) 1 day−1

A3 Carrying capacity of immune cells 1.17 Cells
λ5 Logistic rate for immune cell growth 0.1 day−1

ζ3 Inhibition rate of immune cells by tumor cells 1 × 10−7 day−1

µ2 Suppression rate of immune cells by estrogen 0.002 day−1

α Source rate of estrogen 2 ng/mLday−1

ζ4 Elimination rate of estrogen 0.97 day−1

This model describes the dynamics of four key cell populations in the context of
breast cancer:

• The growth of normal cells N(ı) is influenced by a logistic rate of (λ1) and inhibited by
tumor cells at a rate of (ζ1). Tumor cells can evolve from normal cells at a rate of (µ1),
but this process is reduced by the effect of anticancer drugs, represented by (1 − r).

• The growth of luminal-type tumor cells T(ı) is influenced by a logistic rate of (λ3) and
inhibited by immune cells at a rate of (ζ2). New tumor cell formation is promoted by
estrogen E(ı) at a rate represented by µ1N(ı)E(ı).

• Immune cells I(ı) are continuously produced at a source rate ρ and the supplement of
immune booster γ, with a carrying capacity of (A3) and a logistic rate of (λ5). Their
growth is inhibited by tumor cells at a rate of (ζ3) and suppressed by estrogen at a rate
of (µ2). Immune cell loss is also influenced by the combined effects of estrogen and
anticancer drugs, as represented by (1 − r)µ2I(ı)E(ı).

• The level of estrogen E(ı) in the body, which is produced at a source rate of (α) and
eliminated at a rate of (ζ4).

This model provides a framework for understanding the complex interactions between
these populations and the potential influence of treatment interventions like anticancer
drugs. The inclusion of fractional derivatives in the model allows for a more nuanced
representation of memory effects and nonlocal interactions within the system.

Theorem 5. The solution of (N,T, I,E) is positive with positive initial condition N0 > 0, T > 0,
I0 > 0, E0 > 0.
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Proof. Consider the above model, as follows:

PCML−W(ι)
0 DZ

ι N(ı)
∣∣∣∣
N=0

= 0

PCML−W(ι)
0 DZ

ι N(ı)
∣∣∣∣
T=0

= 0

PCML−W(ι)
0 DZ

ι N(ı)
∣∣∣∣
I=0

= 0

PCML−W(ι)
0 DZ

ι N(ı)
∣∣∣∣
E=0

= 0.

(13)

In view of Lemma 2, (13) yields that

N(ı) = N0 > 0,

T(ı) = T0 > 0,

I(ı) = I0 > 0,

E(ı) = E0 > 0,

which implies that the solution

(N(ı),T(ı), I(ı),E(ı))

is positive for all ı > 0.

Theorem 6. (Lipschitz property) Let N,T, I,E, N̂, T̂, Î, Ê, be continuous functions in L1[0, 1].
Then, we obtain positive constants c1, c2, c3, and c4 such that

∥N∥ = max
ı∈J

|N(ı)| < c1,

∥T∥ = max
ı∈J

|T(ı)| < c2,

∥I∥ = max
ı∈J

|I(ı)| < c3,

∥E∥ = max
ı∈J

|E(ı)| < c4,

such that F1,F2,F3,F4 defined by
F1(ı,N) = N(ı)m1(A1 − λ1N(ı)− ζ1T(ı))− (1 − r)µ1N(ı)E(ı),

F1(ı,T) = T(ı)m2(A2 − λ3T(ı)− ζ2I(ı)) + (1 − r)µ1T(ı)N(ı)E(ı),
F1(ı, I) = ργI(ı) + I(ı)(A3 − λ5I(ı)− ζ3T(ı))− (1 − r)µ2I(ı)E(ı),

F1(ı,E) = E(ı)((1 − r)α − ζ4E(ı)),

satisfy Lipschitz conditions with Lipschitz constant LF = max4
i=1
{
LFi

}
> 0, where

LF1 = (m1 A1 + m1λ1 + m1ζ1c2 + (1 − r)µ1c4),

LF2 = A2m2 + λ3m2 + m2ζ2c3 + (1 − r)µ1c1c4,

LF3 = ργ + A3 + λ5 + ζ3c2 + (1 − r)µ2c4,

LF4 = (1 − r)α − ζ4.

Proof. Let N, N̂ ∈ L1[0, 1]. Then,
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∥∥∥F1(ı,N)− F1

(
ı, N̂
)∥∥∥ =

∥∥∥∥∥ N(ı)m1 A1 −N(ı)m1λ1N(ı)−N(ı)m1ζ1T(ı)− (1 − r)µ1N(ı)E(ı)
−
(
N̂(ı)m1 A1 − N̂(ı)m1λ1N̂(ı)− N̂(ı)m1ζ1T(ı)− (1 − r)µ1N̂(ı)E(ı)

) ∥∥∥∥∥
≤ (m1 A1 + m1λ1 + m1ζ1c2 + (1 − r)µ1c4)

∥∥∥N− N̂
∥∥∥.

Let LF1 = (m1 A1 + m1λ1 + m1ζ1c2 + (1 − r)µ1c4) > 0. Then, we have∥∥∥F1(ı,N)− F1

(
ı, N̂
)∥∥∥ ≤ LF1

∥∥∥N− N̂
∥∥∥.

In the same manner, we can obtain the following:∥∥∥F2(ı,T)− F2

(
ı, T̂
)∥∥∥ ≤ LF2

∥∥∥T− T̂
∥∥∥,∥∥∥F3(ı, I)− F3

(
ı, Î
)∥∥∥ ≤ LF3

∥∥∥I− Î
∥∥∥,

and ∥∥∥F4(ı,E)− F4

(
ı, Ê
)∥∥∥ ≤ LF4

∥∥∥E− Ê
∥∥∥.

Let
LF =

4
max
i=1

{
LFi

}
> 0.

Thus, Fi, i = 1, 2, 3, 4 are Lipschitz continuous with a Lipschitz constant LF > 0.

Matrix Form

Let us represent the given breast cancer model in the matrix form, taking into account
the specific definitions and interpretations of each component:

• Define the State Vector K(ι):

K(ι) =


N(ι)
T(ι)
I(ι)
E(ι)


This vector represents the state of the system at time ι, capturing the populations of
normal cells, tumor cells, immune response cells, and estrogen levels.

• Define the Control Variable Function V(ι): Let us assume we have two control vari-
ables: V1(ι), which represents the effect of anticancer drugs.
V2(ι), which represents the effect of a ketogenic diet. We can combine them into a vector:

V(ι) =
(

V1(ι)
V2(ι)

)
• Construct the Matrices: Φ: This matrix represents the linear dynamics of the system.

We can derive it from the coefficients of the linear terms in the differential equations:

Φ(ι) =


m1 A1 −m1ζ1 0 0

0 m2 A2 − m2λ3 −m2ζ2 0
0 −ζ3 ργ + A3 − λ5 0
0 0 0 (1 − r)α


• Construct the Matrices: Ψ: This matrix bridges the control input to the state. We

need to determine how the control variables directly affect each population. Let us
assume the following: V1(ι) (anticancer drugs) directly reduces tumor cell growth:
Add a term −d1V1(ι) to the second equation (tumor cell dynamics). V2(ι) (ketogenic
diet) directly increases immune response cell population: Add a term +d2V2(ι) to
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the third equation (immune response cell dynamics). With these assumptions, the Ψ
matrix becomes

Ψ(ι) =


0 0

−d1 0
0 d2
0 0


where d1 and d2 are constants that represent the strength of the control variables’ effects.

• F(ι,K(ι)): This vector represents the nonlinear terms in the system. We identify these
from the following equations:

F(ι,K(ι)) =


−m1λ1N(ι)2 − (1 − r)µ1N(ι)E(ι)

−m2λ3T(ι)2 + (1 − r)µ1T(ι)N(ι)E(ι)
−λ5I(ι)2 − (1 − r)µ2I(ι)E(ι)

−ζ4E(ι)2


• Initial Condition Vector K(0):

K(0) =


N(0)
T(0)
I(0)
E(0)


• Final Matrix Representation: Now, we can express the model in the matrix form:{

PCML−W(ι)
0 DZ

ι K(ι) = ΦK(ι) + ΨV(ι) + F(ι,K(ι)),
K(0) = K0,

(14)

5. Numerical Scheme with W-Piecewise Hybrid Derivative

To solve the fractional-order breast cancer model, we implement a numerical scheme
leveraging the W-piecewise hybrid fractional integral, specifically designed to handle the
intricacies of this derivative type. The convergence and stability of a multi-step method
like the one adopted depend on step size and other parameters. For instance, for a smooth
problem with starting values up to n − 1, the terms converge to the initial value of the
problem as the step size is going to zero; then, in such case, the numerical solution converges
to the exact one because the numerical solution of the proposed method depends on all the
starting values of the numerical solution. Because any small perturbation produces a small
effect in the solution, we say that the method is stable. Utilizing the PCML−W-fractional
integral, we obtain the following numerical scheme:

N(ι) =


N0 +

1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)[Nm1(A1 − λ1N− ζ1T)− (1 − r)µ1NE]dσ,

Nι1 +
1−Z

ML(Z) [Nm1(A1 − λ1N− ζ1T)− (1 − r)µ1NE]
+ Z

ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)[Nm1(A1 − λ1N− ζ1T)− (1 − r)µ1NE]dσ,

T(ι) =


T0 +

1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)[Tm2(A2 − λ3T− ζ2I) + (1 − r)µ1TNE]dσ,

Tι1 +
1−Z

ML(Z) [Tm2(A2 − λ3T− ζ2I) + (1 − r)µ1TNE]
+ Z

ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)[Tm2(A2 − λ3T− ζ2I) + (1 − r)µ1TNE]dσ,

I(ι) =


I0 +

1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)[ργI+ I(A3 − λ5I− ζ3T)− (1 − r)µ2IE]dσ,

Iι1 +
1−Z

ML(Z) [ργI+ I(A3 − λ5I− ζ3T)− (1 − r)µ2IE]
+ Z

ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)[ργI+ I(A3 − λ5I− ζ3T)− (1 − r)µ2IE]dσ,
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and

E(ι) =


E0 +

1
Γ(Z)

∫ ι
0 X

Z−1
W (ι, σ)[E((1 − r)α − ζ4E)]dσ,

Eι1 +
1−Z

ML(Z) [E((1 − r)α − ζ4E)]
+ Z

ML(Z)Γ(Z)

∫ ι
ι1
XZ−1
W (ι, σ)[E((1 − r)α − ζ4E)]dσ.

Now, put ι = ιn+1, we obtain

N(ιn+1) =


N0 +

1
Γ(Z)

∫ ιn+1
0 XZ−1

W (ιn+1, σ)[Nm1(A1 − λ1N− ζ1T)− (1 − r)µ1NE]dσ,

Nι1 +
1−Z

ML(Z) [Nm1(A1 − λ1N− ζ1T)− (1 − r)µ1NE]
+ Z

ML(Z)Γ(Z)

∫ ιn+1
ι1

XZ−1
W (ιn+1, σ)[Nm1(A1 − λ1N− ζ1T)− (1 − r)µ1NE]dσ,

T(ιn+1) =


T0 +

1
Γ(Z)

∫ ιn+1
0 XZ−1

W (ιn+1, σ)[Tm2(A2 − λ3T− ζ2I) + (1 − r)µ1TNE]dσ,

Tι1 +
1−Z

ML(Z) [Tm2(A2 − λ3T− ζ2I) + (1 − r)µ1TNE]
+ Z

ML(Z)Γ(Z)

∫ ιn+1
ι1

XZ−1
W (ιn+1, σ)[Tm2(A2 − λ3T− ζ2I) + (1 − r)µ1TNE]dσ,

I(ιn+1) =


I0 +

1
Γ(Z)

∫ ιn+1
0 XZ−1

W (ιn+1, σ)[ργI+ I(A3 − λ5I− ζ3T)− (1 − r)µ2IE]dσ,

Iι1 +
1−Z

ML(Z) [ργI+ I(A3 − λ5I− ζ3T)− (1 − r)µ2IE]
+ Z

ML(Z)Γ(Z)

∫ ιn+1
ι1

XZ−1
W (ιn+1, σ)[ργI+ I(A3 − λ5I− ζ3T)− (1 − r)µ2IE]dσ,

and

E(ιn+1) =


E0 +

1
Γ(Z)

∫ ιn+1
0 XZ−1

W (ιn+1, σ)[E((1 − r)α − ζ4E)]dσ,

Eι1 +
1−Z

ML(Z) [E((1 − r)α − ζ4E)]
+ Z

ML(Z)Γ(Z)

∫ ιn+1
ι1

XZ−1
W (ιn+1, σ)[E((1 − r)α − ζ4E)]dσ.

where
XZ−1
W (ι, σ) = W′(s)(W(ι)−W(s))Z−1.

Convergence and Stability of the Numerical Scheme

Theorem 2 establishes sufficient conditions for the existence and uniqueness of a solu-
tion to the fractional-order breast cancer model, which is a prerequisite for the convergence
of the numerical scheme. However, the convergence of the scheme itself is not directly
established by Theorem 2 and requires a separate analysis. The convergence depends on
several factors:

• The convergence of the numerical scheme depends on time step size. For small time
step size, it shows divergence in the solution, but on large time step, we see the
solutions of all classes tend to converge. Hence, we can say that the solution computed
implies that a significant gain in efficiency can be achieved by step size control. This
is not only for the computation of numerical solutions of ordinary deterministic
differential equations but also for variable and fractional order problems. Also, the
efficiency can be claimed for stochastic-type differential equations. Here, we used
step size = 0.1 so that the solutions graphs of various compartments obtained show
convergence behavior for almost all. If we increase the step size = 0.5, the graphs
do not converge for all compartments. On checking it for step size = 0.01, we can
also achieve the same results but the compilation time will increase as compared
with using step size = 0.1. In the same way, by using step size = 0.01, we obtain
stability in solution more rapidly as compared with step size = 0.1. Hence, the smallest
values of perturbation in the initial condition if applied to obtain more stable results is
0.01. Here, we give the given Table 3. Here, it should be noted that the convergence
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also depends on the value of variable-order and fractional-order values. For smooth
variable orders and larger fractional orders, the convergence is faster. But stability in
the case of the decay process is faster on smaller fractional orders, while in the growth
process, it will be faster on larger fractional orders.

• The convergence of the numerical scheme depends on Lipschitz Continuity. Here, we
noted that the nonlinear terms in the model satisfied a Lipschitz condition. See Theorem 6.

Table 3. CPU time for comparison for convergence and stability.

Step Size CPU Time Fractional Order Z W(ι)

0.01 2 s 0.75 ι
0.01 1.5 s 1.0 ι
0.1 1.2 s 0.75 ι
0.1 1 s 1.0 ι

6. Simulations and Discussion

Let us take the initial data N(0) = 200, T(0) = 50, I(0) = 50,E(0) = 10 and apply the
numerical scheme established above to simulate our results graphically. Here, we presented
the numerical illustrations for some different values of fractional order Z using W(ι) = ι in
Figures 1–4, respectively.
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Figure 1. Numerical illustration for normal cell class of breast cancer model at fractional orders
ranging from Z = 0.75, Z = 0.88, Z = 0.95, to Z = 1.00 with W(ι) = ι.
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Figure 2. Numerical illustration for luminal-type tumor cell class of breast cancer model at fractional
orders ranging from Z = 0.75, Z = 0.88, Z = 0.95 to Z = 1.00 with W(ι) = ι.
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Figure 3. Numerical illustration for immune response cells class of breast cancer model at fractional
orders ranging from Z = 0.75, Z = 0.88, Z = 0.95 to Z = 1.00 with W(ι) = ι.
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Figure 4. Numerical illustration for estrogen class of breast cancer model at fractional orders ranging
from Z = 0.75, Z = 0.88, Z = 0.95 to Z = 1.00 with W(ι) = ι.
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The crossover behavior in each class can be seen for different fractional orders with
the use of the given specific function W(ι) = ι. We see that the population of normal cells
first decreases and then becomes stable. In the same way, the population of luminal-type
tumor cells decreases until it becomes stable. The number of immune response cells also
rises, and then it falls. Further, the estrogen cells first decay and then rise.

The provided graphs illustrate the dynamics of four key cell populations in the context
of breast cancer, simulated using a piecewise hybrid fractional derivative model. The model
incorporates the effects of anticancer drugs and a ketogenic diet as control variables.

• Normal Cells: The graph shows that the normal cell population initially decreases
rapidly, suggesting an initial rapid depletion of healthy cells, perhaps due to the
onset of the disease or treatment. The population then stabilizes, indicating a balance
between cell loss and regeneration.

• Luminal-Type Tumor Cells: The tumor cell population increases initially, reflecting
tumor growth. The rate of increase gradually slows, potentially due to the combined
effect of anticancer drugs and the immune response, which suppress tumor cell
proliferation. The population eventually stabilizes at a higher level, suggesting that
the treatment successfully controls tumor growth but does not eliminate it completely.

• Immune Response Cells: The immune response cells initially increase, indicating
the activation of the immune system to fight the cancer. The population reaches a
peak and then declines, possibly due to the depletion of immune cells as they combat
the tumor.

• Estrogen: The estrogen level exhibits a sharp initial decrease, potentially due to the
effects of treatment or disease progression on estrogen production or metabolism.
After an initial decrease, the estrogen level stabilizes at a lower level, which might
suggest a reduction in estrogen-driven tumor growth.

The Intersection Point: The point of intersection between the normal cell and tumor
cell graphs represent a crucial threshold where the rate of normal cell loss is equal to the rate
of tumor cell growth. This point marks a potential turning point in the disease trajectory,
where the balance between healthy cells and tumor cells is shifting.

Importance of Piecewise Hybrid Fractional Derivative: the use of a piecewise hybrid
fractional derivative offers several advantages over traditional fractional derivatives:

• Flexibility: The piecewise hybrid derivative allows for different fractional orders
within different time intervals, accommodating the varying rates of change in complex
biological systems. This is especially valuable in modeling disease progression, where
different phases of the disease might involve different rates of cell growth, immune
response, or estrogen production.

• Memory Effects: The piecewise hybrid derivative incorporates memory effects, al-
lowing for the influence of past events on the current state [6,17]. In breast cancer,
past treatments, diet, and other factors can influence the behavior of different cell
populations over time. The piecewise approach allows for more realistic modeling of
these memory effects.

• Crossover Effects: This approach captures the crossover effects, where the dominant
factors influencing the system shift over time. For example, the effect of anticancer
drugs might initially dominate, but as the tumor cells are suppressed, the immune
system’s role might become more prominent.

Overall, the graphs and analysis highlight the potential of piecewise hybrid fractional
derivatives in modeling complex biological systems like breast cancer. The model captures
the interplay of different cell populations, the effects of treatment, and the importance of
memory and crossover effects. The point of intersection represents a significant threshold,
where the balance between normal cells and tumor cells shifts, providing insights into the
disease progression.
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7. Conclusions

Nonlinear fractional evolution control systems are essential for modeling complex
real-world phenomena exhibiting memory, nonlocal interactions, and complex dynam-
ics—features poorly captured by linear models. Fractional derivatives account for memory
effects, while nonlinearity reflects the often nonuniform and state-dependent nature of
system interactions. This framework enables sophisticated control strategies with broad
applications in biomedical systems (disease modeling, drug delivery), engineering, finance,
and environmental science. This research contributes by investigating these systems using
a novel piecewise hybrid derivative approach. We established sufficient conditions for
the existence and uniqueness of solutions using topological degree theory and proved
Hyers–Ulam stability, ensuring robustness to perturbations. This theoretical framework
extends the capabilities of traditional fractional calculus to systems exhibiting multi-step be-
havior. The model successfully captures the transitions between different stages of disease
progression by employing a W-Caputo derivative for early stages and a W−ML derivative
for later stages. Numerical simulations, incorporating control variables (anticancer drugs
and ketogenic diet), illustrate the model’s ability to represent the dynamic interplay of
cell populations and treatment responses. Our approach overcomes the limitations of
previous studies using single fractional derivatives (with their constant memory kernels
and inability to model multi-step behavior) and simpler piecewise models (characterized
by arbitrary transition points, discontinuities, and limited memory flexibility) [15,16]. This
piecewise hybrid model more accurately reflects the changing dynamics of breast can-
cer progression, with the transition point ι1 representing a biologically significant shift
from primarily intrinsic tumor growth to a phase dominated by external factors such
as treatment and immune response. Future work will explore integrating this model
with multi-scale modeling approaches to capture complex spatiotemporal interactions,
enhancing its predictive capabilities.
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