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Abstract: This paper proposes an iterative algorithm for the search for common fixed points of
two mappings. The properties of approximation and convergence of the method are analyzed in
the context of Banach spaces. In particular, this article provides sufficient conditions for the strong
convergence of the sequence generated by the iterative scheme to a common fixed point of two
operators. The method is illustrated with some examples of application. The procedure is used to
approach a common solution of two Fredholm integral equations of the second kind. In the second
part of the article, the existence of a fractal function coming from two different Read–Bajraktarević
operators is proved. Afterwards, a study of the approximation of fixed points of a fractal convolution
of operators is performed, in the framework of Lebesgue or Bochner spaces.
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1. Introduction

In this paper, we address the approximation of a common fixed point of a finite number
of mappings through an iterative method, and its applications to the study of fractal
functions involving two different operators. From a practical point of view, the problem of
finding common fixed points of two mappings appears in mathematical applications such
as convex optimization (see, for instance, [1]).

Das and Debata [2] extended the classical iteration proposed by Ishikawa [3] to find a
critical point of a single operator, acting on a normed space, to the case of the approximation
of a common fixed point of two maps S and T. The iterative scheme is the following:

yn = (1 − αn)xn + αnSxn, (1)

xn+1 = (1 − βn)xn + βnTyn, (2)

for αn, βn ∈ [0, 1]. They considered quasi-nonexpansive maps defined on uniformly convex
Banach spaces. Takahashi and Tamura [4] studied the same method in the nonexpansive
case on a strictly convex Banach space. Khan and Takahashi [5] generalized the procedure
to deal with asymptotically nonexpansive operators.

In reference [6], Yadav proposed a variant of the iteration considered by Sahu [7] for
a single map, in order to include two different mappings. The recurrence is given by the
following steps:

yn = (1 − βn)Txn + βnSxn, (3)

xn+1 = Tyn, (4)

for βn ∈ [0, 1]. This method was called Y-iteration by the author. He gave sufficient condi-
tions on the space and the maps S and T in order to obtain weak and strong convergences
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of the sequence (xn) to a common fixed point of both mappings, and presented some
examples of the application of the algorithm.

The single operator case proves that not all the fixed point approximation methods
are useful for all kind of mappings. The convergence of each procedure depends on the
underlying space and the properties of the map involved. Thus, it is desirable to have a
variety of algorithms to focus a given problem. We propose a different iterative method
for the search for common fixed points of a finite family of quasi-nonexpansive mappings,
based on an algorithm defined in [8].

One of the first results of common fixed point existence of a family of operators is due
to Browder [9]:

Theorem 1. Let X be a uniformly convex Banach space, and C ⊆ X be nonempty, bounded, closed
and convex. If {Uλ} is a commuting family of nonexpansive mappings Uλ : C → C, then the set
{Uλ} has a common fixed point.

The proof of this theorem is based on the well-known fixed point result of the same
author for nonexpansive mappings on uniformly convex Banach spaces [9]. Theorem 1 is
an extension of of the Markov–Kakutani Theorem [10,11]. It is also a generalization of the
Theorem of De Marr [12], where C is assumed to be compact.

Afterwards, a great number of researchers expanded this result. For instance, R.E.
Bruck [13] considered this problem in a Banach space X and C ⊆ X satisfying some fixed
point conditions, given in the following definition.

Definition 1. Let X be a Banach space; a subset C ⊆ X has the fixed point property for nonexpansive
mappings if every nonexpansive map f : C → C has a fixed point. C has the conditional fixed point
property for nonexpansive mappings if every nonexpansive mapping f : C → C satisfies either
that f has no fixed points or that f has a fixed point in every nonempty bounded, closed and convex
f-invariant subset of C.

Example 1. If X is a uniformly convex Banach space, any subset C that is nonempty, bounded,
closed and convex has the fixed point property for nonexpansive mappings.

C = X, where X is a uniformly convex Banach space, has the conditional fixed point property
for nonexpansive mappings.

Both are consequences of Browder’s Theorem on the existence of fixed points (Theorem 1 of
reference [9]).

Bruck’s Theorem [13] states that if X is a real or complex Banach space and C ⊆ X
has the fixed point property and the conditional fixed point property for nonexpansive
mappings, and C is either weakly compact or bounded and separable, then any com-
muting family of nonexpansive self-mappings of C has a common fixed point. This is a
generalization of Browder’s common fixed point Theorem 1.

The existence of common fixed points of two maps was then historically linked to their
commutativity. There was a conjecture stating that if two maps f , g : [0, 1] → [0, 1] are
continuous and commute, they need to have a common fixed point. This hypothesis was
refuted by Boyce [14] and Huneke [15]. However, the fact is true if some additional conditions
are added on the underlying space X and the maps, as seen in Browder’s Theorem.

It is clear that commutativity and continuity are not necessary conditions for the
existence of common fixed points, and current research on the topic tries to remove both
conditions (see, for instance, [16,17]). A discussion and bibliography on this subject can be
found in reference [18].

We avoid in this article the problem of the existence of common fixed points (except in
the definition of fractal functions of Section 5), and focus on their search in case of existence.
We give sufficient conditions on the space and the maps for the strong convergence of a new
procedure to approximate a common fixed point of the mappings S and T (Sections 2 and 3).
Through two examples, the algorithm is illustrated in the cases of the approximation of a
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commom fixed point of two real maps and the search for a common solution of two integral
equations of Fredholm type (Section 4).

In a subsequent section we give conditions for the existence of a common fractal
function coming from two different Read–Bajraktarević operators (Section 5). Finally, we
consider an application to the approximation of fixed points of the fractal convolution of
two operators by means of the algorithm proposed (Section 6).

2. An Algorithm for the Approximation of Common Fixed Points of
Quasi-Nonexpansive Operators

In this section, we propose an algorithm for the approximation of a common fixed
point of two mappings. We start with a normed space X and two operators S, T : C → C ,
where C ⊆ X is nonempty, closed and convex. The algorithm to find a simultaneous critical
point of S and T is given by the following iterative scheme:

zn = (1 − γn)xn + γnSxn, (5)

yn = (1 − βn)xn + βnzn, (6)

xn+1 = (1 − αn)yn + αnTyn, (7)

where αn, βn, γn ∈ [0, 1] for n ∈ N, and x0 ∈ C. This method will be called common
N-iteration, and it generalizes the N-iteration proposed in [8] for a single map. Throughout
the paper, FS and FT will denote the set of fixed points of S and T, respectively. We propose
the following definitions.

Definition 2. A sequence (xn) ⊆ C has the common limit existence property (CLE) with respect to
S and T if limn→∞ ||xn − x∗|| = l ∈ R for any x∗ ∈ FS ∩ FT , provided that FS ∩ FT ̸= ∅.

Remark 1. This definition can be generalized to a finite number of mappings (T1, T2, . . . , Tm).

Definition 3. A sequence (xn) ⊆ C has the approximate fixed point property (AF) with respect to
S if limn→∞ ||xn − Sxn|| = 0.

Definition 4. Let X be a normed space. A map U : C ⊆ X → X is quasi-nonexpansive if FU ̸= ∅
and

||Ux − x∗|| ≤ ||x − x∗||, (8)

for any x ∈ C and x∗ ∈ FU .

Proposition 1. Let X be a normed space and C ⊆ X be nonempty, closed and convex. Let
S, T : C → C be two quasi-nonexpansive operators such that FS ∩ FT ̸= ∅. The common
N-iteration has the CLE property; that is to say, for (xn) defined as in (5), (6) and (7),
limn→∞ ||xn − x∗|| = l ∈ R for any x∗ ∈ FS ∩ FT and any x0 ∈ C.

Proof. Let x∗ ∈ FS ∩ FT and x0 ∈ C. According to (5),

||zn − x∗|| ≤ (1 − γn)||xn − x∗||+ γn||S xn − x∗|| ≤ ||xn − x∗||. (9)

In the same way, using (6),

||yn − x∗|| ≤ (1 − βn)||yn − x∗||+ βn||zn − x∗|| ≤ ||xn − x∗||. (10)

Finally,

||xn+1 − x∗|| ≤ (1 − αn)||yn − x∗||+ αn||T yn − x∗|| ≤ ||yn − x∗|| ≤ ||xn − x∗||. (11)

Consequently, the sequence (||xn − x∗||) is non-increasing and bounded and thus
limn→∞ ||xn − x∗|| = l exists and it is real. □
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The next lemma can be consulted in reference [19].

Lemma 1. Let X be a uniformly convex Banach space, and let a sequence (λn) ⊆ X be such
that there exist p, q ∈ R satisfying the condition 0 < p ≤ λn ≤ q < 1 for all n ∈ N. Let
(xn), (yn) be sequences of X such that lim supn→∞ ||xn|| ≤ r, lim supn→∞ ||yn|| ≤ r, and
lim supn→∞ ||λnxn + (1 − λn)yn|| = r for some r ≥ 0. Then, limn→∞ ||xn − yn|| = 0.

Theorem 2. Let X be a uniformly convex Banach space and C ⊆ X be nonempty, closed and
convex. If S, T : C → C are two quasi-nonexpansive operators such that FS ∩ FT ̸= ∅ and
0 < inf γn ≤ sup γn < 1, 0 < inf αn ≤ sup αn < 1, then

• The sequences (xn), (yn) and (zn) defined in (5), (6) and (7) have the CLE property.
• (xn) has the AF property with respect to S and (yn) has the AF property with respect to T.

Proof. Let x∗ ∈ FS ∩ FT . By the previous proposition, l := limn→∞ ||xn − x∗|| exists and it
is real. According to (10),

lim supn→∞ ||yn − x∗|| ≤ l, (12)

and
lim supn→∞||T yn − x∗|| ≤ lim supn→∞ ||yn − x∗|| ≤ l. (13)

Using Lemma 1 and the following equality

l = lim
n→∞

||xn+1 − x∗|| = lim
n→∞

||(1 − αn)(yn − x∗) + αn(Tyn − x∗)||

we have that
lim

n→∞
||yn − Tyn|| = 0.

Hence, (yn) has the AF property with respect to T. Again, by the third step of the algorithm,

||xn+1 − x∗|| ≤ ||yn − x∗||+ αn||T yn − yn||.

Then,
l ≤ lim infn→∞ ||yn − x∗||. (14)

By (12) and (14), l = limn→∞ ||yn − x∗||. Let us consider now that

||yn − x∗|| ≤ (1 − βn)||xn − x∗||+ βn||zn − x∗||,

||yn − x∗|| − ||xn − x∗|| ≤ βn(||zn − x∗|| − ||xn − x∗||) ≤ ||zn − x∗|| − ||xn − x∗||.
Then,

||yn − x∗|| ≤ ||zn − x∗||.
Consequently,

l = lim
n→∞

||yn − x∗|| ≤ lim infn→∞ ||zn − x∗||.

By (9), lim supn→∞ ||zn − x∗|| ≤ l and hence l = limn→∞ ||zn − x∗||. Consequently, the
sequences (xn), (yn) and (zn) have the CLE property, with the same limit:

lim
n→∞

||xn − x∗|| = lim
n→∞

||yn − x∗|| = lim
n→∞

||zn − x∗||,

for x∗ ∈ FS ∩ FT . The quasi-nonexpansiveness of S implies that

lim supn→∞||S xn − x∗|| ≤ l.

The equality

l = lim
n→∞

||zn − x∗|| = lim
n→∞

||(1 − γn)(xn − x∗) + γn(Sxn − x∗)||,
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along with the inequality lim supn→∞||S xn − x∗|| ≤ l imply, by Lemma 1, that

lim
n→∞

||xn − Sxn|| = 0,

and (xn) has the AF property with respect to S. □

According to Proposition 1 and Theorem 2, the approximation properties of the
common N-iteration are true also for the two-step common N-iteration, given by the
following recurrence:

yn = (1 − γn)xn + γnSxn, (15)

xn+1 = (1 − αn)yn + αnTyn. (16)

where 0 < inf γn ≤ sup γn < 1 and 0 < inf αn ≤ sup αn < 1 (taking βn = 1 for all n in (6)).
This iterative scheme can be generalized to a finite number of operators with common

fixed points, in order to provide the following m-step common fixed point N-algorithm for
the mappings T1, T2, . . . , Tm : C → C such that ∩m

i=1FTi ̸= ∅:

x1
n =

(
1 − c1

n
)
xn + c1

nT1xn, (17)

x2
n =

(
1 − c2

n
)
x1

n + c2
nT2x1

n, (18)

. . . . . . (19)

xi
n =

(
1 − ci

n
)

xi−1
n + ci

nTixi−1
n , (20)

. . . . . . (21)

xn+1 = xm
n = (1 − cm

n )xm−1
n + cm

n Tmxm−1
n , (22)

where 0 < infn ci
n ≤ supn ci

n < 1 for all n ≥ 1, i = 1, . . . , m, and x0 ∈ C.

3. Convergence Theorems for the Common N-Iteration

Throughout this section, we will assume a normed space X, C ⊆ X, C ̸= ∅, and
S, T : C → C, such that FS ∩ FT ̸= ∅. We will consider the common N-iteration given by
(5), (6) and (7) with the conditions for αn and γn given in Theorem 2.

Remark 2. The notation Id will represent the identity operator.

Theorem 3. Let X be a uniformly convex Banach space and C ⊆ X be compact and convex. If
S, T : C → C are quasi-nonexpansive and closed, then the common N-iteration described converges
strongly to a common fixed point of S and T.

Proof. Since C is compact, the sequence (yn) of the iteration has a convergent subsequence.
Let limj→∞ ynj = x ∈ C. Since (yn) has the AF property with respect to T, then ||ynj − Tynj ||
tends to zero. Since Id − T is closed, then 0 = (Id − T)x, and x ∈ FT .

According to the third step of the algorithm,

||xnj+1 − x|| = ||
(

1 − αnj

)(
ynj − x

)
+ αnj

(
Tynj − x

)
|| ≤ ||ynj − x|| → 0.

Consequently, limj→∞ xnj+1 = x.
Since Id − S is closed and (xn) has the AF property with respect to S, then

0 = (Id− S)x, and x ∈ FS ∩ FT. The CLE property of (xn) implies that limn→∞ ||xn − x|| = 0. □

Corollary 1. Let X be a uniformly convex Banach space, and let C ⊆ X be compact andconvex. If
S, T : C → C are nonexpansive, then the common N-iteration described converges strongly to a
common fixed point of S and T.
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Proof. A nonexpansive mapping with a fixed point is quasi-nonexpansive and continuous,
and we have the hypotheses of Theorem 3. □

Definition 5. Let X be a normed space. A mapping T : X → X , such that there exists B ≥ 0
satisfying for any f , g ∈ X the following inequality

||T f − Tg||≤|| f − g||+B min{|| f − T f ||, ||g − Tg||}, (23)

is a nonexpansive partial contractivity.

For B = 0, we have a nonexpansive mapping.

Corollary 2. Let X be a uniformly convex Banach space, and let C ⊆ X be compact andconvex.
If S, T : C → C are closed nonexpansive partial contractivities, then the common N-iteration
described converges strongly to a common fixed point of S and T.

Proof. A nonexpansive partial contractivity with a fixed point is quasi-nonexpansive, and
we are in the conditions of Theorem 3. □

Definition 6. Let X be a normed space, and C ⊆ X. A map T : C → X is demicompact if a
bounded sequence (xn) ⊆ C, such that (Txn − xn) is convergent, has a convergent subsequence. If
a sequence (xn) ⊆ C, such that (Txn − xn) is convergent to zero, has a convergent subsequence
(xnj), then T is demicompact at zero.

Remark 3. According to this definition, if T is demicompact at zero, (xn) is bounded and it has the
AF property with respect to T, then there exists a convergent subsequence (xnj).

Proposition 2. Let X be a uniformly convex Banach space, and let C ⊆ X be closed andconvex. If
S, T : C → C are quasi-nonexpansive and closed, and T is demicompact at zero, then the common
N-iteration described converges strongly to a common fixed point of S and T.

Proof. The CLE property of (yn) implies that the sequence (yn) is bounded. The AF prop-
erty of (yn) with respect to T implies that ||yn − Tyn|| tends to zero. As T is demicompact,
there is a convergent subsequence

(
ymk

)
. Let x∗ := limn→∞ ymk . Then, (Id − T)ymk → 0.

Since T is closed, then 0 = (Id − T)x∗, and x∗ ∈ FT .
Regarding (xn), according to the last step of the algorithm,

||xmk+1 − x∗|| = ||
(
1 − αmk

)(
ymk − x∗

)
+ αmk

(
Tymk − x∗

)
|| ≤ ||ymk − x∗|| → 0.

As (Id − S)xmk+1 tends to zero due to the AF property of (xn) and Id − S is closed, then
0 = (Id − S)x∗ and x∗ ∈ FS ∩ FT .

The CLE property of (xn) implies that the common N-iteration converges strongly to
x∗ for any x0 ∈ C. □

Corollary 3. Let X be a uniformly convex Banach space, and let C ⊆ X be closed and convex.
If S, T : C → C are nonexpansive and T is demicompact at zero, then the common N-iteration
described converges strongly to a common fixed point of S and T.

Corollary 4. Let X be a uniformly convex Banach space, and let C ⊆ X be closed andconvex. If
S, T : C → C are closed nonexpansive partial contractivities and T is demicompact at zero, then
the common N-iteration described converges strongly to a common fixed point of S and T.

Definition 7. Let X, Y be Banach spaces. Then, S : X → Y is demiclosed (at z ∈ Y) if yn ⇀ y
and Syn → z imply that Sy = z.

Remark 4. The symbol ⇀ denotes the weak convergence of a sequence.
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The following demiclosedness principle for nonexpansive mappings can be consulted
in reference [20], Theorem 10.4:

Theorem 4. Let X be a uniformly convex Banach space, C a nonempty, closed and convex subset of
X and T : C → X a nonexpansive mapping. Then, Id − T is demiclosed on C.

Definition 8. Let X, Y be Banach spaces. Then, S : X → Y is completely continuous if xn ⇀ x
implies that Sxn → Sx.

Remark 5. A completely continuous mapping is demiclosed.

Proposition 3. Let X be a uniformly convex Banach space, and let C ⊆ X be bounded, closed
and convex. If S, T : C → C are nonexpansive and T is completely continuous, then the common
N-iteration described converges strongly to a common fixed point of S and T.

Proof. Since C is bounded, closed and convex in a uniformly convex space, there exists
a weakly convergent subsequence (ynj) of (yn). That is to say, ynj ⇀ x. The AF property
of (yn) with respect to T implies that ||ynj − Tynj || tends to zero. According to Theorem 4,
Id − T is demiclosed and this implies that 0 = (Id − T)x, that is to say, x ∈ FT .

Since T is completely continuous, limj→∞ Tynj = Tx = x. Then,

ynj =
(

ynj − Tynj

)
+ Tynj → x.

||xnj+1 − x|| ≤ ||
(

1 − αnj

)(
ynj − x

)
+ αnj

(
Synj − x

)
|| ≤ ||ynj − x|| → 0.

Since
(
(Id − S)xnj+1

)
tends to zero due to the AF property of (xn) with respect to S, and

Id − S is continuous, then 0 = (Id − S)x and x ∈ FS ∩ FT .
The CLE property of (xn) implies its convergence to x. □

Remark 6. All the results obtained in this section are applicable to the case S = T, and the usual
N-algorithm for a single map defined in reference [8].

4. Some Applications of the Common N-Iteration

In this section, we present two examples of the application of the common N-iteration.

4.1. Approximation of a Common Fixed Point of Two Mappings

The maps S, T : [0, 1] → [0, 1] given by S(x) =
(√

1 − x2/3
)3

and T(x) = x have a
common fixed point at x∗ ≃ 0.353553. The common N-iteration with all the scalars equal
to 1/2 has been used to approach this point. Namely, we have computed the successive
values of xn by means of the iterative scheme:

zn =
xn + Sxn

2
,

yn =
xn + zn

2
,

xn+1 =
yn + Tyn

2
.

The abscissas x0 = 0.1 and x0 = 1 have been chosen as starting points of two performances
of the algorithm. The subsequent errors, computed as |xn − x∗|, are collected in Table 1.
The left part gathers the errors for x0 = 0.1 and the right part displays the case x0 = 1.
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Table 1. Approximation errors of the first values given by the N-algorithm for a common fixed point
of two maps starting at x0 = 0.1 (left) and x0 = 1 (right).

Iteration Error Iteration Error

0 0.25355 0 0.64645

1 0.10482 1 0.39645

2 0.04951 2 0.22717

3 0.02415 3 0.12388

4 0.01193 4 0.06521

5 0.00593 5 0.03355

6 0.00296 6 0.01703

7 0.00148 7 0.00858

8 0.00074 8 0.00431

9 0.00037 9 0.00216

10 0.00018 10 0.00108

4.2. Search for a Common Solution of Two Fredholm Integral Equations of the Second Kind

Let us consider the following integral equations of Fredholm type:

f (x) = h(x) +
∫ b

a
K(x, y) f (y)dy,

g(x) = h′(x) +
∫ b

a
K′(x, y)g(y)dy,

where we look for a common solution in L2([a, b]). This problem is equivalent to the search
for a common fixed point of the operators S, T : L2([a, b]) → L2([a, b]) defined as

Su(x) = h(x) +
∫ b

a
K(x, y)u(y)dy,

Tu(x) = h′(x) +
∫ b

a
K′(x, y)u(y)dy.

It is well known that if K and K′ are such that K, K′ ∈ L2(I × I), where I = [a, b], then
the operators S and T are linear and compact and consequently demicompact. They are
nonexpansive if ∫

I×I
|K(x, y)|dxdy ≤ 1,

∫

I×I

∣∣K′(x, y)
∣∣dxdy ≤ 1.

The following integral equations:

f (x) = (ex − 1) +
∫ 1

0
y f (y)dy,

f (x) = (ex + 1 − e) +
∫ 1

0
f (y)dy.

have a common exact solution at f (x) = ex. Let us apply the two-step common N-algorithm
( βn = 0), and let us choose αn = γn = 1/2 for all n ≥ 1. Thus, the N-iteration is given by
the following scheme:

gn(x) =
(

fn(x) + (ex − 1) +
∫ 1

0
y fn(y)dy

)
/2,
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fn+1(x) =
(

gn(x) + (ex + 1 − e) +
∫ 1

0
gn(y)dy

)
/2.

Let the starting function be f0(x) = x. The error of every approximation is computed as

Errn =

(∫ 1

0
| fn(x)− f (x)|2dx

)1/2

,

where f (x) is the exact solution. Table 2 collects the errors from the first to the twentieth
iteration. Figure 1 represents the exact common solution (in yellow) along with the first,
fourth, seventh and tenth approximations, respectively (in blue).

Table 2. Errors of the first twenty approximations given by the two-step N-algorithm for a common
solution of two Fredholm integral equations.

Iteration Error Iteration Error

1 0.94392 11 0.05539

2 0.71417 12 0.04041

3 0.53734 13 0.03031

4 0.40345 14 0.02273

5 0.30270 15 0.01705

6 0.22705 16 0.01279

7 0.17030 17 0.00960

8 0.12772 18 0.00719

9 0.09579 19 0.00539

10 0.07184 20 0.00405
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where f (x) is the exact solution. Table 2 collects the errors from the first to the twentieth
iteration. Figure 1 represents the exact common solution (in yellow) along with the first,
fourth, seventh and tenth approximations, respectively (in blue).

Table 2. Errors of the first twenty approximations given by the two-step N-algorithm for a common
solution of two Fredholm integral equations.

Iteration Error Iteration Error

1 0.94392 11 0.05539

2 0.71417 12 0.04041

3 0.53734 13 0.03031

4 0.40345 14 0.02273

5 0.30270 15 0.01705

6 0.22705 16 0.01279

7 0.17030 17 0.00960

8 0.12772 18 0.00719

9 0.09579 19 0.00539

10 0.07184 20 0.00405
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Figure 1. From upper left to bottom right, exact solution (yellow) along with the first, fourth, seventh
and tenth approximations ( f1, f4, f7, f10) (blue).

5. Fractal Functions as Common Fixed Points of Two Different Operators

In this section, we find a fractal function as a common fixed point of two different
Read–Bajraktarević operators.

Figure 1. From upper left to bottom right, exact solution (yellow) along with the first, fourth, seventh
and tenth approximations ( f1, f4, f7, f10) (blue).

5. Fractal Functions as Common Fixed Points of Two Different Operators

In this section, we find a fractal function as a common fixed point of two different
Read–Bajraktarević operators.

According to the formalism of these mappings, we consider a compact real interval
I = [a, b], and a partition of it ∆ : a = t0 < t1 < t2 . . . < tM = b. Let us consider
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Im = [tm−1, tm), for m = 1, 2, . . . M − 1 and IM = [tM−1, tM] and define Lm : I → Im such
that Lm(t) = amt + bm and

Lm(t0) = tm−1, Lm(tM) = tm. (24)

Let Sm, Tm be mappings on the space Lp(I), that is to say, Sm, Tm : Lp(I) → Lp(I), and
let us assume that 1 < p < ∞. Let us define the operators of Read–Bajraktarević type
S, T : Lp(I) → Lp(I) given by

S f (t) = Sm( f ) ◦ L−1
m (t), (25)

T f (t) = Tm( f ) ◦ L−1
m (t), (26)

for t ∈ Im. The next result gives sufficient conditions for the existence of a fractal function
as a common fixed point of S and T. Let ||·||p denote the norm of the space Lp(I) for
1 < p < ∞.

Theorem 5. Let the operators Sm, Tm meet the following conditions for m = 1, 2, . . . , M:

1. There exists R > 0 satisfying ||Sm f ||p ≤ R and ||Tm f ||p ≤ R for any f ∈ Lp(I) such that
|| f ||p ≤ R.

2. Sm and Tm are nonexpansive.

3. Tm

(
∑M

i=1 κIi (·)Si( f ) ◦ L−1
i (·)

)
= Sm

(
∑M

i=1 κIi (·)Ti( f ) ◦ L−1
i (·)

)
, where κIi is the indica-

tor map of Ii or, equivalently, Sm

(
Tj f ◦ L−1

j (·)
)
= Tm

(
Sj f ◦ L−1

j (·)
)

where L−1
j : Ij → I,

for j = 1, . . . , M.

Then, the operators S and T defined in (25) and (26) commute, they are nonexpansive and there
exists a fractal function f ∈ Lp(I) such that f is a common fixed point of S and T. This function
can be approached using the common N-iteration of the maps S and T whenever 0 < inf αn ≤
sup αn < 1 and 0 < inf γn ≤ sup γn < 1.

Proof. The Hypothesis (1) of the theorem enables the restriction of the domain and
codomain of the operators S and T to the closed ball with a center in the null function f0
and radius R,B( f0, R) ⊆ Lp(I) since

||S f ||p ≤ R,

||T f ||p ≤ R,

for f ∈ B( f0, R). Thus, S and T can be defined from and onto the bounded, closed and
convex subset B( f0, R) of the uniformly convex Banach space Lp(I). It is easy to check that
S and T are nonexpansive, since

||S f − S f ′||p ≤
(

M

∑
m=1

am

)1/p

||Sm f − Sm f ′||p ≤ || f − f ′||p,

||T f − T f ′||p ≤
(

M

∑
m=1

am

)1/p

||Tm f − Tm f ′||p ≤ || f − f ′||p,

and ∑M
m=1 am = 1 due to conditions (24). Moreover,

(T ◦ S) f (Lmt) = T(S f )(Lmt) = Tm(S f )(t),

and
(S ◦ T) f (Lmt) = S(T f )(Lmt) = Sm(T f )(t),
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where

Tm(S f ) = Tm

(
M

∑
i=1

κIi (·)Si( f ) ◦ L−1
i (·)

)
= Tm

(
Sj f ◦ L−1

j (·)
)

and

Sm(T f ) = Sm

(
M

∑
i=1

κIi (·)Ti( f ) ◦ L−1
i (·)

)
= Sm

(
Tj f ◦ L−1

j (·)
)

where L−1
j : Ij → I. The last two equations are equal due to the Hypothesis (3) of the theorem,

and, consequently, S ◦ T = T ◦ S. Then, we have the hypotheses of Browder’s Theorem 1 for
C = B( f0, R), and S and T have a common fixed point f ∈ B( f0, R) ⊆ Lp(I). □

Example 2. The operators defined as Sm f = cm f , Tm f = c′m f for cm, c′m ∈ R,|cm|, |c′m|≤ 1, and
cmc′j = c′mcj for m, j = 1, 2, . . . , M, satisfy the hypotheses required.

6. Fixed Points of the Fractal Convolution of Several Types of Operators

In this section, we consider a special type of operators defined in (26),

T f (t) = Tm( f ) ◦ L−1
m (t), (27)

for t ∈ Im and
Tm f (t) = u ◦ Lm(t) + km( f (t)− v(t)),

where u, v ∈ Lp(I) and km ∈ R are constant and such that |km|< 1 for m = 1, 2, . . . , M. In
this case, the operator T is a contraction since

||T f − T f ′||p ≤ k|| f − f ′||p,

for any f , f ′ ∈ Lp(I) and k = max{|km|} < 1. Then, T has a fixed point, usually denoted
as uα, called α-fractal function in previous papers (see, for instance, [21] for the two-
dimensional case). In other articles (see, for instance, [22]), uα has been considered as the
result of a binary internal operation in Lp(I), that is to say,

uα = u ∗ v.

The operation ∗ has been called “fractal convolution”. This operation has useful prop-
erties such as idempotency, namely, u ∗ u = u for any u ∈ Lp(I). Other features of
the fractal convolution can be consulted in reference [22]. From this background, we
have also defined a fractal convolution between operators on the same space defined, for
V, W : Lp(I) → Lp(I) , as

(V ∗ W) f = (V f ) ∗ (W f ),

for f ∈ Lp(I).
The fractal convolution of operators also has the property of idempotency, that is to say,

V ∗ V = V.

A straightforward consequence of this characteristic is that, if FV and FW are the sets of
fixed points of V and W, respectively, then

(FV ∩ FW) ⊆ FV∗W .

Namely, a common fixed point of V and W is a fixed point of V ∗ W.
In the following, we assume that V and W are such that FV ∩ FW ̸= ∅, and V, W : C → C,

where C ⊆ Lp(I) or C ⊆ Bp(I), where Bp(I) denotes the Bochner space of p-integrable maps
f : I → B , with B being a uniformly convex Banach space.
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Let us consider C ̸= ∅ and 1 < p < ∞. For the common N-iteration algorithm,
we will assume the following conditions on the scalars: 0 < inf αn ≤ sup αn < 1 and
0 < inf γn ≤ sup γn < 1.

The results obtained in previous sections for the common fixed points of two mappings
and their approximation are applicable to the search for fixed points of V ∗ W. A summary
of these results, applied to V ∗ W, is the following:

• If C is compact and convex and V, W are quasi-nonexpansive and closed, then the
common N-iteration converges strongly to a fixed point of V ∗ W.

• If C is compact and convex and V, W are nonexpansive, then the common N-iteration
converges strongly to a fixed point of V ∗ W.

• If C is compact and convex and V, W are closed nonexpansive partial contractivities,
then the common N-iteration converges strongly to a fixed point of V ∗ W.

• If C is closed and convex, V, W are quasi-nonexpansive and closed and W is demi-
compact at zero, then the common N-iteration converges strongly to a fixed point of
V ∗ W.

• If C is closed and convex, V, W are nonexpansive and W is demicompact at zero, then
the common N-iteration converges strongly to a fixed point of V ∗ W.

• If C is closed and convex, V, W are closed nonexpansive partial contractivities and W
is demicompact at zero, then the common N-iteration converges strongly to a fixed
point of V ∗ W.

• If C is bounded, closed and convex, V, W are nonexpansive and W is completely
continuous, then the common N-iteration converges strongly to a fixed point of V ∗ W.

7. Conclusions

This article presents an iterative method to find common fixed points of two maps
S, T : C → C, where C is a nonempty, closed and convex subset of a normed space X. The
recurrence is called common N-iteration, and it is given by the recurrence:

zn = (1 − γn)xn + γnSxn, (28)

yn = (1 − βn)xn + βnzn, (29)

xn+1 = (1 − αn)yn + αnTyn. (30)

for αn, βn, γn ∈ [0, 1] and x0 ∈ C.
It has been proved that (xn), (yn) and (zn) have the CLE property, (xn) has the AF

property with respect to S, and (yn) has the AF property with respect to T. This article
provides sufficient conditions on X, C and the maps S and T for the strong convergence of
the algorithm to a common fixed point of S and T, in case of existence.

The procedure has been applied to the approximation of a common fixed point of
two maps defined in the interval [0, 1] and a common solution of two Fredholm integral
equations of the second kind.

This paper has proved the existence of a fractal function that is a common fixed point
of two different nonexpansive Read–Bajraktarević operators defined on Lp(I) or Bp(I). In
the last section, the article gives sufficient conditions for the convergence of the algorithm
to a fixed point of a fractal convolution of operators V ∗ W, where V, W : Lp(I) → Lp(I)
or V, W : Bp(I) → Bp(I). In both cases, the range of values of p is 1 < p < ∞.
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