
Citation: Wang, C.; Yi, S. A Hybrided

Method for Temporal Variable-Order

Fractional Partial Differential

Equations with Fractional Laplace

Operator. Fractal Fract. 2024, 8, 105.

https://doi.org/10.3390/

fractalfract8020105

Academic Editor: Agnieszka B.

Malinowska

Received: 5 December 2023

Revised: 13 January 2024

Accepted: 16 January 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Hybrided Method for Temporal Variable-Order Fractional
Partial Differential Equations with Fractional Laplace Operator
Chengyi Wang 1 and Shichao Yi 1,2,*

1 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
cywang@just.edu.cn

2 Yangzijiang Shipbuilding Group, Taizhou 212299, China
* Correspondence: shichaoyi@just.edu.cn

Abstract: In this paper, we present a more general approach based on a Picard integral scheme for non-
linear partial differential equations with a variable time-fractional derivative of order α(x, t) ∈ (1, 2)
and space-fractional order s ∈ (0, 1), where v = u′(t) is introduced as the new unknown function
and u is recovered using the quadrature. In order to get rid of the constraints of traditional plans con-
sidering the half-time situation, integration by parts and the regularity process are introduced on the
variable v. The convergence order can reach O(τ2 + h2), different from the common L1,2−α schemes
with convergence rate O(τ2,3−α(x,t)) under the infinite norm. In each integer time step, the stability,
solvability and convergence of this scheme are proved. Several error results and convergence rates
are calculated using numerical simulations to evidence the theoretical values of the proposed method.

Keywords: time–space fractional advection–diffusion equation; variable fractional order; nonlinearity;
stability; second order

1. Introduction

One of the most useful and applicable generalizations of the ordinary derivatives
of integer orders and integrals is the fractional calculus. Utilizing the models based on
derivatives of fractional orders in several branches of science and engineering is a major
study of many mathematicians and physicists [1–4]. Fractional partial differential equations
(FPDEs), particularly space- and time-fractional equations, have been widely studied to
demonstrate the existence of solutions and the validity of these problems [5–7].

In this paper, we will consider the nonlinear multi-dimensional fractional advection–
diffusion equation involving variable time–space orders.

c
0D

α(x,t)
t (1 + (−∆)s)u(x, t) + A(x, t)((−∆)s − ∆)u(x, t) = N (u(x, t)) + f (x, t), (1)

with the following initial and boundary conditions:

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω.
(2)

In addition, finding reliable and powerful numerical and analytical methods for
solving FPDEs has been focused on in the last two decades. According to the mathematical
literature, fractional partial differential equations have been progressed in various problems
in science and engineering such as the Schrödinger, diffusion and telegraph fractional
equations [5,8–12].

Nonetheless, the analytical solutions for the majority of fractional partial differen-
tial equations remain elusive. Consequently, over the past two decades, a significant
portion of researchers has concentrated on approximations and numerical methods for
tackling these fractional-order systems. Many researchers have particularly emphasized
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difference schemes, given their superior stability and solvability compared to alternative
approaches. For example, Adomian decomposition method (ADM) was utilized to ap-
proximate the time–space FPDE with the Caputo sense in [13]. The space–time fractional
advection–diffusion equations are linear partial pseudo-differential equations with Feller
space-fractional differentiation derivatives and are used to model transport at the earth’s
surface in [14]. The space–time fractional diffusion equation with Caputo time-fractional
derivative α and Riesz–Feller space-fractional derivative β is studied in [15], and the con-
vergence rate is O(τ3−α + h3−β). In [16], multi-dimensional space–time variable-order
fractional Schrödinger equations are introduced with a Caputo time-fractional derivative
and Riesz–Feller space-fractional derivative. The time–space fractional telegraph equa-
tion with local fractional derivatives is investigated in [17]. Among them, the fractional
advection–diffusion equation, as an important model, has been widely studied in engineer-
ing applications and fast calculations. In [18], the fractional advection–diffusion equation
model is a new approach to describe the vertical distribution of suspended sediment con-
centration in steady turbulent flow. Gu has successively published multiple outstanding
achievements in rapid calculation in [19–21].

The foundational time model, tailored for discrete schemes, often requires the incorpo-
ration of half-time steps for the variable u due to their suitability in representing derivatives
and integration processes. Conversely, conventional energy methods for u typically involve
its coupling with the variable v. In [22], we pivot our focus to primarily address the situa-
tion of v. We meticulously establish the system’s stability and solvability and demonstrate
that the convergence of u is of second order. It is worth noting that the derivative operation
is inherently unbounded, whereas integration acts as a refining operator. In Section 4 of
this paper, we substantiate the effectiveness of the integral formula when coupled with the
difference scheme, illustrating its robust stability.

2. Preliminaries and Some Lemmas

Consider the set {tn|n ≥ 0}, which comprises uniformly spaced time intervals with
tn = nτ and τ > 0. Suppose

un
i = un−1

i + τ
(

vn−1
i + vn

i

)
/2, (3)

∫ τ

0
g(η)

∂vi
∂η

dη =

[
v1

i − v0
i

τ

∫ τ

0
g(η)dη

]
, (4)

∫ tn

tn−1

g(η)
∂vi
∂η

dη=

[∫ tn

tn−1

(η − (tn−1 + tn−2))g(η)dη

]
vn

i
τ2

−
[∫ tn

tn−1

(η − (tn + tn−2))g(η)dη

]
2vn−1

i
τ2

+

[∫ tn

tn−1

(η − (tn + tn−1))g(η)dη

]
vn−2

i
τ2 , (n ≥ 2),

(5)

where un
i and vn

i correspond to the function values and their respective first derivative
values at time tn for the point xi, while g(t) represents a smooth function defined within
the interval (0, T].

Here is the difference scheme we will explore for Equation (1):

Case I: n = 1
1

τΓ(2 − α)

[
a1

0v1
i − a1

1v0
i

]
+

1
τΓ(2 − α)

[
a1

0(−∆)sv1
i − a1

1(−∆)sv0
i

]

= −τA1
i
[
(−∆)s − ∆

]
(

v0
i + v1

i
2

) +N (u0
i ) + F1

i ,

(6)
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Case II: n ≥ 2

1
τΓ(2 − α)

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]

+
1

τΓ(2 − α)

[
an

0 (−∆)svn
i −

n−1

∑
k=1

an
(n−k)(−∆)svk

i − an
n(−∆)sv0

i

]

= −τAn
i
[
(−∆)s − ∆

]
(

vn−1
i + vn

i
2

) + 2N (un−1
i )−N (un−2

i ) + Fn
i ,

(7)

where

an
l = al(tn) =

∫ tl+1

tl

dt
tα(tn)−1

=
1

2 − α(tn)

[
(tl+1)

2−α(tn) − (tl)
2−α(tn)

]

=
τ3−α(tn)

2 − α(tn)

[
(l + 1)2−α(tn) − l2−α(tn)

]
, l ≥ 0.

(8)

and
Fn

i = −An
i
[
(−∆)s − ∆

]
un−1

i + f n
i .

An
i corresponds to the variable coefficients A(x, t) at the point (xi, tn). It is verified

that
{

an
0 , an

1 , an
2 , an

3 , · · · , an
n−1
}

constitutes a monotonically decreasing sequence for
each value of n with

an
0 = a0(tn) = τ2−α(tn)/(2 − α(tn)). (9)

2.1. Time-Discretization of the Present Scheme

To establish the time-fractional derivation in the current scheme, the following lemmas
are required.

Lemma 1. For any v = {v(t0), v(t1), v(t2), · · · }, we have

N

∑
n=1

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]
v(tn)

≥ t1−α(tn)
m τ

2

N

∑
n=1

v(tn)
2 − t2−α(tn)

N v(t0)
2

2(2 − α(tn))
.

(10)

where al(tn) is defined in (8).

Proof.

N
∑

n=1

[
an

0 vn
i −

n−1
∑

k=1
an
(n−k)v

k
i − an

nv0
i

]
v(tn)

=
N
∑

n=1
an

0 v(tn)
2 −

N
∑

n=1

n−1
∑

k=1
an
(n−k)v

k
i v(tn)−

N
∑

n=1
an
(n−1)v(t0)v(tn)

≥
N
∑

n=1
an

0 v(tn)
2 − 1

2

N
∑

n=1

n−1
∑

k=1
an
(n−k)(v(tk)

2 + v(tn)
2)− 1

2

N
∑

n=1
an
(n−1)(v(t0)

2 + v(tn)
2)

=
N
∑

n=1
an

0 v(tn)
2 − 1

2

N
∑

n=1

n−1
∑

k=1
(an

(n−k−1) − an
(n−k))v(tk)

2 − 1
2

N
∑

n=1

n−1
∑

k=1
(an

(n−k−1) − an
(n−k))v(tn)

2

− 1
2

N
∑

n=1
an
(n−1)v(t0)

2 − 1
2

N
∑

n=1
an
(n−1)v(tn)

2

(11)
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By rearranging the order of summation, we have

N

∑
n=1

[
an

0 v(tn)−
n−1

∑
k=1

(an
(n−k−1) − an

(n−k))v(tk)− an
(n−1)v(t0)

]
v(tn)

≥
N

∑
n=1

an
0 v(tn)

2 − 1
2

N

∑
n=2

(an
0 − an

(n−1))v(tn)
2 − 1

2

N−1

∑
k=1

(an
0 − an

(n−k))v(tk)
2

−1
2

N

∑
n=1

an
(n−1)v(t0)

2 − 1
2

N

∑
n=1

an
(n−1)v(tn)

2 +
N

∑
n=1

(an
2 − an∗

2 )vn−2
i v(tn)

=
1
2

N

∑
n=1

aN−n(tn)v(tn)
2 − 1

2

N

∑
n=1

an
(n−1)v(t0)

2

≥ 1
2

aN−1

N

∑
n=1

v(tn)
2 − (t2−α

N + τ2−α)

2(2 − α)
v(t0)

2

≥ 1
8

t1−α
N τ

N

∑
n=1

v(tn)
2 − (t2−α

N + τ2−α)

2(2 − α)
v(t0)

2

(12)

where
N

∑
n=1

an−1(tn) ≤
N−1

∑
n=0

an(tn) =
∫ tN

t0

dς

ςα(tn)−1
≤ t2−α(tn)

N
2 − α(tn)

+
τ2−α(tn)

2 − α(tn)
,

al ≥ an−1 =
1
4

∫ tl

tl−1

ς1−α(tn)dς ≥
t1−α(tn)
l+1

4
τ (0 ≤ l ≤ n − 1).

(13)

Obviously, α is the largest number in the series α(tn) in the formula of an
l , and the

same procedure may be easily adapted to obtain corresponding behaviours for bn
l . □

Lemma 2. Assume v(t) ∈ C2[0, tn]. We obtain
∣∣∣∣∣
∫ tn

0
v′(t)

dt

(tn − t)α(tn)−1
− 1

τ

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]∣∣∣∣∣

≤ 4τ2t2−α(tn)
n

3(2 − α(tn))
∥v′′′ (t)∥L∞([0,tn ])

,

(14)

where an
l is defined in (8), 1 < α(tn) < 2 and n > 1.

Proof. Obviously, it suffices to verify

n

∑
k=1

[∫ tk

tk−1

(η − (tk−1 + tk−2))g(η)dη

]
vk

i − 2
[∫ tk

tk−1

(η − (tk + tk−2))g(η)dη

]
vk−1

i

+

[∫ tk

tk−1

(η − (tk + tk−1))g(η)dη

]
vk−2

i

=
1
τ

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]
.

(15)
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Combining this with the result of Lemma 1, we obtain
∣∣∣∣∣
∫ tn

0
v′(t)

dt

(tn − t)α(tn)−1
− 1

τ

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]∣∣∣∣∣

=

∣∣∣∣∣
n

∑
k=1

∫ tk

tk−1

[
v(t)−

(
L(k−2)v(tk−2) + L(k−1)v(tk−1) + Lkv(tk)

)]′ dt

(tn − t)α(tn)−1

∣∣∣∣∣

=
n

∑
k=1

∫ tk

tk−1

∣∣∣∣
[
(t − tk)

3
/6 max{|v′′′ (t) |}t∈[tk−2,tk ]

]′∣∣∣∣
dt

(tn − t)α(tn)−1

≤ 4τ2

3

n

∑
k=1

∫ tk

tk−1

∥v′′′ (t)∥L∞([tk−2,tk ])
dt

(tn − t)α(tn)−1
≤ 4τ2t2−α(tn)

n
3(2 − α(tn))

∥v′′′ (t)∥L∞([0,tn ])
,

(16)

where L(k−2), L(k−1), Lk are the Lagrange interpolation functions on the nodes t(k−2), t(k−1), tk.
This completes the proof. □

2.2. Semi-Discretization in Space of the Present Scheme

Denote
(−∆)u(t) = ∆cu(t),

where ∆c is a differential matrix format of the Laplace operator (−∆). Then the matrix
representation of the operator (−∆)s can be given by ∆s

c. Thus, we use the finite-difference
approximation of (−∆)s:

(−∆)su(t) = ∆s
cu(t)

For functions ϵ(x) on Ω, we use the 2-norm with

∥ϵ(x)∥∞ = max
xi∈Ω

{|ϵ (xi) |}, ∥ϵ(x)∥0,h =

(
hd ∑

xi∈Ω

{
ϵ(xi)

2
})1/2

.

Due to the similarity of the 2-norm, we will use the ∥.∥∞ format to replace the above
norm for convenience in the following process. And we obtain the approximate error of
the difference representation under this norm.

From the differential discretization scheme, we have the approximate property of the
matrix ∆c. Assuming that u ∈ C4(Ω), we obtain

∥(−∆)u−∆cu∥∞ ≤ h2∥u∥c4 ,

which for u = ϕj with (−∆)u = (−∆)ϕj = λjϕj gives

∥(λj I − ∆c)ϕj∥∞ ≤ h2∥ϕj∥c4 .

Theorem 1. If u ∈ C4(Ω), the following error estimate holds:

∥(−∆)su − ∆s
cuh∥∞ ≤ C(s, u, d, ∆c)h2,

where Ω is a nonempty open bounded set with Lipschitz continuous boundaries, and C(s, u, d, ∆c)
is a constant number depending on u, s, d and ∆c.

Proof. We decompose the left-hand side of the error estimate as

∥(−∆)su − ∆s
cuh∥∞≤ ∥(−∆)su − ∆s

cu∥∞ + ∥∆s
cu − ∆s

cuh∥∞. (17)
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Firstly, we estimate the first term. Using the notation K0 = min
{

λ1, λ1,h
}

, we have

max
{∣∣∣1 − λj

K

∣∣∣,
∥∥∥I − ∆c

K

∥∥∥
}
= 1 − K0

K . We obtain that

∥(−∆)su − Bsu∥∞

= ∥Ks
∞

∑
k=0

(
s
k

)
(−1)k

∞

∑
j=1

(1 −
λj

K
)

k

ujϕj − Ks
∞

∑
k=0

(
s
k

)
(−1)k

∞

∑
j=1

(Ih −
∆c

K
)

k
ujϕj∥∞

= Ks∥
∞

∑
k=1

(
s
k

)
(−1)k

∞

∑
j=1

[
(Ih −

λj Ih

K
)

k

− (Ih −
∆c

K
)

k
]

ujϕj∥∞

≤ Ks
∞

∑
k=1

(
s
k

)
(−1)k−1∥

∞

∑
j=1

[
(Ih −

λj Ih

K
)

k−1

+ · · ·+ (Ih −
∆c

K
)

k−1
][

λj Ih − ∆c

K
)

]
ujϕj∥∞

≤ sKs−1
∞

∑
k=1

(
s − 1
k − 1

)
(−1)k−1

∞

∑
j=1

k ∗ max
{∣∣∣∣1 −

λj

K

∣∣∣∣,
∥∥∥∥I − ∆c

K

∥∥∥∥
}
∥
(

λj Ih − ∆c

)
ujϕj∥

∞

≤ sKs−1
∞

∑
k=1

(
s − 1
k − 1

)
(−1)k−1

∞

∑
j=1

(
1 − K0

K

)k−1
∥
(

λj Ih − ∆c

)
ujϕj∥

∞

≤ sKs−1
∞

∑
k=0

(
s − 1

k

)
(−1)k

(
1 − K0

K

)k ∞

∑
j=1

∥
(

λj Ih − ∆c

)
ujϕj∥

∞

≤ sKs−1
(

K0
K

)s−1 ∞

∑
j=1

∥
(

λj Ih − ∆c

)
ujϕj∥

∞

≤ λs−1
1

∞

∑
j=1

∥
(

λj Ih − ∆c

)
ujϕj∥

∞
.

(18)

The last is the estimate of ∑∞
j=1 ∥

(
λj Ih − ∆c

)
ujϕj∥∞,

∞
∑

j=1
∥
(
λj Ih − ∆c

)
ujϕj∥∞ ≤

∞
∑

j=1
ujh2∥ϕj∥H6(Ω)

≤
∞
∑

j=1
ujh2λ3

j ≤ h2
∞
∑

j=1
uj j

6
d . (19)

Considering the boundedness of ∑∞
j=1 uj j

6
d ,

∞
∑

j=1
∥
(
λj Ih − ∆c

)
ujϕj∥∞ ≤ CIh2. (20)

Taking (20) into (18), we obtain the estimate

∥(−∆)su − ∆s
cu∥∞ ≤ CIλ

s−1
1 h2. (21)

Secondly, we estimate the second term,

∥∆s
cu − ∆s

cuh∥∞≤ ∥∆s
c∥∞∥u − uh∥∞. (22)

From the property of the difference matrix ∆c, we have ∥∆s
c∥∞ ≤ 4d. Then,

∥∆s
cu − ∆s

cuh∥∞≤ 4d∥u−uh∥∞ ≤ 4dh2∥u∥C2 . (23)

Finally, inserting the inequalities into each other implies the following error estimate:

∥(−∆)su − ∆s
cuh∥∞ ≤

(
4d∥u∥C2 + CI Iλ

s−1
1

)
h2 = C(s, u, d, ∆c)h2. (24)

□
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2.3. Analysis of the Time–Space Discretization of the Present Scheme

Based on Lemma 2 and Equations (6) and (7), we have

cD
α(t)
0 u(x, t)=

1
Γ(2 − α(tn))

∫ tn

0

∂2u(x, t)
∂t2

dt

(tn − t)α(tn)−1
,

=
1

τΓ(2 − α(tn))

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]
+ (r1)

n
i ,

(25)

and
(−∆)sun

i = Bs(i, :)un + (r2)
n
i := (−∆)s

cun
i + (r2)

n
i , (26)

where
|(r1)

n
i | ≤c1τ2, |(r2)

n
i | ≤ c2(τ

2 + h2). (27)

Taking into account the distinct characteristics of the nonlinear part N u(x, t),

N un(x, t) = cc2N un−1(x, t)−N un−2(x, t) + c3τ2, n ≥ 2. (28)

When the above results are substituted into (1), the following is obtained:

1
τΓ(2 − α)

(1 − (−∆)s
c)

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]

= −τAn
i
(
(−∆)s

c − ∆
)
(

n−1

∑
k=1

vk
i +

v0
i + vn

i
2

)
+ F̂n

i + Rn
i ,

(29)

where
|Rn

i | ≤ C(τ2 + h2), (30)

and F̂n
i involves the original Fn

i and the approximate value of N u(x, t).
We also define

∥gn∥∞ = max
1≤i≤m

|gn
i |, ∥gn∥ =

√
mi

m

∑
i=1

(gn
i )

2, (31)

where D is the metric coefficient of Ω. Moreover, when g(Γ) = 0, it is observed that:

∥gn∥∞ ≤
√

D
2

|∇gn|, |∇gn
i | ≤ D|gn

i |. (32)

3. Main Results

In this section, the solvability, stability and convergence of this scheme are proved.
The notation for the inner product discretization form is used as follows:

(u, w) =
∫

Ω
uwdΩ =

m

∑
i=1

wi(uiwi), ∀ui, wi ∈ L2(Ω), (33)

where wi is described as the Gauss weight at the point xi. Subsequently, some lemmas are
introduced.

Lemma 3. Let 0 ≤ s ≤ 1 and f , (−∆)s f ∈ Lp. Then, for any arbitrary p ≥ 1, there holds

∫
| f |

p−2
f (−∆)s f dx ≥ 2

p

∫
((−∆)

s/2
| f |p/2)2dx.
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Lemma 4. Suppose {vn} is the solution of

1
τΓ(2−α(tn))

(1 − (−∆)s
c)

[
an

0 vn
i −

n−1
∑

k=1
an
(n−k)v

k
i − an

nv0
i

]

= −τAn
i
(
(−∆)s

c − ∆
)
(

n−1
∑

k=1
vk

i +
v0

i +vn
i

2 ) + Rn
i , un

i (∂Ω) = 0, i = 1, 2, 3, · · · , m, n = 1, 2, 3, · · · .
(34)

We have

N
∑

n=1
∥∇un∥2 ≤

N
∑

n=1
∥∇u0∥2 +

t2−α
N

Âτ2Γ(3−α)

(
∥v0∥2+∥(−∆)s/2

c |v0|∥2
)
+

Γ(2−α)tα−1
N

B̂τ

N
∑

n=1
∥Rn∥2, (35)

with An
i ≥ Â > 0.

Proof. Summing i and n from 1 to m and from 1 to N by multiplying both sides of (34) with
wi, the following is obtained:

1
τΓ(2 − α)

m

∑
i=1

{
N

∑
n=1

wi

(
(
1 + (−∆)s

c
)
[

an
0 vn

i −
n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

])
vn

i

}

= −
N

∑
n=1

m

∑
i=1

(
An

i wi

[
∑
x∈x

(−∆)s
c(

n−1

∑
k=1

vk +
v0 + vn

2
)

]
vn

i

)

+
N

∑
n=1

m

∑
i=1

(
An

i wi

[
∑
x∈x

∆(
n−1

∑
k=1

vk +
v0 + vn

2
)

]
vn

i

)
+

N

∑
n=1

m

∑
i=1

wiRn
i vn

i .

(36)

Using Lemma 1, we have

1
τΓ(2 − α)

N

∑
n=1

m

∑
i=1

(
wi

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]
vn

i

)

≥ 1
2Γ(2 − α)

t1−α
N

N

∑
n=1

∥vn∥2 − t2−α
N

2τΓ(3 − α)
∥v0∥2

,

(37)

1
τΓ(2 − α)

N

∑
n=1

m

∑
i=1

(
wi(−∆)s

c

[
an

0 vn
i −

n−1

∑
k=1

an
(n−k)v

k
i − an

nv0
i

]
vn

i

)

≥ 1
2Γ(2 − α)

t1−α
N

N

∑
n=1

∥(−∆)s/2
c |vn|∥2 − t2−α

N
2τΓ(3 − α)

∥(−∆)s/2
c |v0|∥2,

(38)

and
1

τΓ(2 − α)

N

∑
n=1

m

∑
i=1

(
wi∆

[
a0vn

i −
n−1

∑
k=1

(an−k−1 − an−k)vk
i − an−1v0

i

]
vn

i

)

≥ 1
2Γ(2 − α)

t1−α
N

N

∑
n=1

∥∇vn∥2 − t2−α
N

2τΓ(3 − α)
∥∇v0∥2.

(39)

When the boundary conditions in (34) are applied, it results in vn
i (∂Ω) = 0. Consequently,

−τ
m

∑
i=1

(
wi(−∆)s

c(
n−1

∑
k=1

vk
i +

v0
i + vn

i
2

)vn
i

)

= −τ
m

∑
i=1

(
wi(−∆)s

c(
n−1

∑
k=1

vk
i +

v0
i + vn

i
2

)vn
i

)
= − τ

2
∥

n

∑
k=1

(−∆)s/2
c |vk|∥2,

τ
m

∑
i=1

(
wi∆(

n−1

∑
k=1

vk
i +

v0
i + vn

i
2

)vn
i

)

= −τ
m

∑
i=1

(
wi∆(

n−1

∑
k=1

vk
i +

v0
i + vn

i
2

)vn
i

)
= − τ

2
∥

n

∑
k=1

∇vk∥2.

(40)
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In addition,

N

∑
n=1

m

∑
i=1

wiRn
i vn

i ≤ 1
2

1
Γ(2 − α)

t1−α
N

N

∑
n=1

∥vn∥2 +
Γ(2 − α)

2
tα−1

N

N

∑
n=1

∥Rn∥2. (41)

Substituting (37)–(41) into (36), we obtain

1
2Γ(2−α)

t1−α
N

N
∑

n=1
∥vn∥2 − t2−α

N
2τΓ(3−α)

N
∑

n=1
∥v0∥2 + 1

2Γ(2−α)
t1−α

N

N
∑

n=1
∥(−∆)s/2

c |vn|∥2

− t2−α
N

2τΓ(3−α)

N
∑

n=1
∥(−∆)s/2

c |v0|∥2

≤ − τÂ
2

N
∑

n=1
∥

n
∑

k=1
(−∆)s/2

c |vk|∥2 − τÂ
2

N
∑

n=1
∥

n
∑

k=1
∇vk∥2 + 1

2Γ(2−α)
t1−α

N

N
∑

n=1
∥vn∥2

+ Γ(2−α)
2 tα−1

N

N
∑

n=1
∥Rn∥2.

(42)

Then,

N
∑

n=1
∥

n
∑

k=1
∇vk∥2 ≤ t2−α

N
Âτ2Γ(3−α)

(
∥v0∥2+∥(−∆)s/2

c |v0|∥2
)
+

Γ(2−α)tα−1
N

Âτ

N
∑

n=1
∥Rn∥2. (43)

Replacing v with u in (43), the ensuing inequality is derived:

N

∑
n=1

∥∇|un|∥2 ≤
N

∑
n=1

∥∇u0∥2 + (
τ

2
)

2 N

∑
n=1

∥
n

∑
k=1

∇vk∥2

≤
N

∑
n=1

∥∇u0∥2 +
t2−α

N

Âτ2Γ(3 − α)

(
∥v0∥2+∥(−∆)s/2

c |v0|∥2
)
+

Γ(2 − α)tα−1
N

Âτ

N

∑
n=1

∥Rn∥2.

(44)

□

Theorem 2. Uniqueness in solvability is achieved by the difference scheme (6) and (7).

Proof. As (6) and (7) constitute the linear algebraic equations at different time ti, it is
sufficient for the corresponding homogeneous equations to be demonstrated:

1
τΓ(2 − α)

(1 − (−∆)s
c)

[
an

0 v(tn)−
n−1

∑
k=1

(an
(n−k−1) − an

(n−k))v(tk)− an
(n−1)v(t0)

]

= τAn
i (−∆)s

c(
n−1

∑
k=1

vk
i +

v0
i + vn

i
2

) + τBn
i ∆(

n−1

∑
k=1

vk
i +

v0
i + vn

i
2

),

un
i (Γ) = 0, 1 ≤ i ≤ m, n ≥ 1.

(45)

Only a zero solution is attainable. Through the utilization of Lemma 4, the following
is derived:

∥∇un∥ = 0, n = 1, · · · , N.

Combining the boundary conditions in (2), we obtain

un
i = vn

i = 0, n ≥ 1, 1 ≤ i ≤ m.

This completes the proof. □

Theorem 3. Let u(x, t) and v(x, t) be the solution of (6) and (7). Then, the following inequality
holds:

∥u(xi, tn)− un
i ∥∞ ≤ C̃D̃

√
Γ(2 − α)Tα(τ2 + h2),

where C̃, D̃ represent constant numbers.
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Proof. Denote
v̂n

i = v(xi, tn)− vn
i ,

ûn
i = u(xi, tn)− un

i , n ≥ 0
(46)

Subtracting (6) and (7) from (29) and (30), respectively, the error equations are
encountered:

1
τΓ(2−α)

(1 − (−∆)s
c)

[
an

0 v̂(tn)−
n−1
∑

k=1
(an

(n−k−1) − an
(n−k))v̂(tk)− an

(n−1)v̂(t0)

]

= τAn
i (−∆)s

c(
n−1
∑

k=1
v̂k

i +
v̂0

i +v̂n
i

2 ) + τBn
i ∆(

n−1
∑

k=1
vk

i +
v0

i +vn
i

2 ), ûn
i (Γ) = v̂n

i (Γ) = 0, n ≥ 1.

(47)
Using Lemma 4, we have

∥∇ûn∥2 ≤ Γ(2 − α)tα−1
n

4Ĉ
τ

n

∑
k=1

∥Rk∥2
, τ < nτ ≤ T. (48)

Taking into account (29) and (31), the following is obtained:

|∇ûn| ≤ c̃

√
DΓ(2 − α)Tα

4Ĉ
(τ2 + h2), τ < nτ ≤ T. (49)

The result is obtained by observing (32):

∥ûn∥∞ ≤ C̃D̃
√

Γ(2 − α)Tα(τ2 + h2), τ < nτ ≤ T. (50)

where C̃, D̃ represent constant numbers, completing the proof. □

4. Numerical Experiments

In this section, some experiments showcase the effectiveness of the current scheme.

4.1. One-Dimensional Space-Fractional Laplace Case

Consider the following problem:

c
0D

α(x,t)
t (1 + (−∆)su(x, t)) + A(x, t)((−∆)s − ∆u(x, t)) = u2(x, t) + f (x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = sin(πt); u(0, t) = u(1, t) = 0, t ∈ (0, 1].
(51)

The exact solution of the system is

u(x, t) = tk+ 5
4 sin (πx), (52)

with
α(x, t) = 5

4 + 1
2 sin (x) sin (t). (53)

In Figure 1, the upper two figures depict the present solutions for this nonlinear system
at s = 0.3 (upper left) and s = 0.7 (upper right), with h = 1/32, τ = 1/10 and k = 2.
According to the exact solutions on the lower left and the values of u with different t with
s = 0.3 (the circle represents the analytical solution and the asterisk represents the numerical
solution), the present scheme is very accurate. Figure 2 displays the curves of the present
scheme and the exact solutions at the boundary line (x = 0.5, t = 0.4) for s = 0.6 and
k = 2, 3. It can be observed from these figures that the proposed methods effectively match
the analytical solution.
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Table 1 displays the present space convergence orders at t = 1, which are close to our
theoretical values O(h2).

Table 1. Space convergence situation (τ = 1/1000).

h 1/8 1/16 1/32 1/64 1/128 1/256

k = 2, s = 0.65
Error 8.7888 × 10−3 2.1888 × 10−3 5.4653 × 10−4 1.3644 × 10−4 3.3945 × 10−5 8.3243 × 10−6

Order 2.0055 2.0018 2.0021 2.0070 2.0278
k = 3, s = 0.75

Error 1.0329 × 10−2 2.5707 × 10−3 6.4201 × 10−4 1.6051 × 10−4 4.0172 × 10−5 1.0091 × 10−5

Order 2.0065 2.0015 2.0000 1.9984 1.9931

4.2. Two-Dimensional Space-Fractional Laplace Case

To assess the numerical effectiveness, the following two-dimensional numerical exper-
iment is considered:

c
0D

α(t)
t (1 + (−∆)su(x, y, t)) + A(x, y, t)((−∆)s − ∆u(x, y, t))

= 2u(x, y, t)− u2(x, y, t) + f (x, y, t), (x, y) ∈ (0, 1)2, t ∈ (0, 1],
(54)

with the boundary conditions

u(x, y, 0) = 0; u(∂Ω, t) = 0, t ∈ (0, 1]. (55)

The equation’s exact solution is as follows:

u(x, y, t) = exp(t) sin(2πx) sin(2πy) (56)

with
α(t) = α0 +

1
4

t.

With τ = 1/1000 and s = 0.4, 0.7, the maximum errors considered for different space
mesh sizes at t = 1 are provided in Table 2. From this table, the temporal convergence
order is close to O(τ2). This result demonstrates the robust stability of this scheme.

Table 2. The maximum errors and the corresponding spatial order at t = 1.

τ 1/8 1/16 1/32 1/64 1/128

s = 0.4
Error 1.0479 × 10−1 2.5846 × 10−2 6.4394 × 10−3 1.6078 × 10−3 4.0182 × 10−4
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s = 0.7
Error 6.4704 × 10−2 1.5905 × 10−2 3.9593 × 10−3 9.8852 × 10−4 2.4705 × 10−4

Order 2.0244 2.0061 2.0019 2.0005
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Table 1 displays the present space convergence orders at t = 1, which are close to our
theoretical values O(h2).
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Table 1. Space convergence situation (τ = 1/1000).

h 1/8 1/16 1/32 1/64 1/128 1/256

k = 2, s = 0.65
Error 8.7888 × 10−3 2.1888 × 10−3 5.4653 × 10−4 1.3644 × 10−4 3.3945 × 10−5 8.3243 × 10−6

Order 2.0055 2.0018 2.0021 2.0070 2.0278
k = 3, s = 0.75

Error 1.0329 × 10−2 2.5707 × 10−3 6.4201 × 10−4 1.6051 × 10−4 4.0172 × 10−5 1.0091 × 10−5

Order 2.0065 2.0015 2.0000 1.9984 1.9931

4.2. Two-Dimensional Space-Fractional Laplace Case

To assess the numerical effectiveness, the following two-dimensional numerical exper-
iment is considered:

c
0D

α(t)
t (1 + (−∆)su(x, y, t)) + A(x, y, t)((−∆)s − ∆u(x, y, t))

= 2u(x, y, t)− u2(x, y, t) + f (x, y, t), (x, y) ∈ (0, 1)2, t ∈ (0, 1],
(54)

with the boundary conditions

u(x, y, 0) = 0; u(∂Ω, t) = 0, t ∈ (0, 1]. (55)

The equation’s exact solution is as follows:

u(x, y, t) = exp(t) sin(2πx) sin(2πy) (56)

with
α(t) = α0 +

1
4

t.

With τ = 1/1000 and s = 0.4, 0.7, the maximum errors considered for different space
mesh sizes at t = 1 are provided in Table 2. From this table, the temporal convergence
order is close to O(τ2). This result demonstrates the robust stability of this scheme.

Table 2. The maximum errors and the corresponding spatial order at t = 1.

τ 1/8 1/16 1/32 1/64 1/128

s = 0.4
Error 1.0479 × 10−1 2.5846 × 10−2 6.4394 × 10−3 1.6078 × 10−3 4.0182 × 10−4

Order 2.0195 2.0050 2.0018 2.0005
s = 0.7
Error 6.4704 × 10−2 1.5905 × 10−2 3.9593 × 10−3 9.8852 × 10−4 2.4705 × 10−4

Order 2.0244 2.0061 2.0019 2.0005

In Figure 4, the curved surfaces of the present numerical scheme (left) and the analyt-
ical solution (right) are depicted, with hx = hy = 1/32, τ = 1/10, α = 1.4 and s = 0.7 at
t = 1. It is evident that the numerical solutions closely approximate the analytical solutions.
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Figure 4. The surface of the numerical solution (left) and the exact solution (right) for s = 0.7 and
α0 = 1.4.

4.3. Three-Dimensional Space-Fractional Laplace Case

To assess the numerical effectiveness, a three-dimensional fourth-order equation is
considered with a cubic nonlinear term.

c
0D

α(t)
t (1 + (−∆)s(x, y, z, t)) + A(x, y, t)((−∆)s − ∆u(x, y, z, t))

= u3(x, y, z, t)− u(x, y, z, t) + f (x, y, z, t), (x, y, z) ∈ (0, 1)3, t ∈ (0, 1],

u(Γ, 0) = 0; u(∂Γ, t) = 0, t ∈ (0, 1].

(57)

The exact solution of the system is

u(x, y, z, t) =
t3

3
sin(πx) sin(πy) sin(πz). (58)

Table 3 provides numerical results for the maximum errors and the corresponding
spatial convergence order for various spatial mesh sizes with h = 1/64 at t = 1. From these
results, it can be concluded that the spatial convergence order is close to O(h2). When
τ = 1/40, the accuracy of the two types of maximum errors does not show further im-
provement. This occurs because the series of maximum errors reaches the upper limit of
accuracy of the space discretization.

Table 3. The maximum errors and the corresponding spatial order at t = 1 and h = 1/64.

τ 1/5 1/10 1/15 1/20 1/30 1/40

s = 0.3
Error 0.0030 6.9817 × 10−4 2.8642 × 10−4 1.7173 × 10−4 7.3608 × 10−5 8.8225 × 10−5

Order 2.1033 2.1975 1.7781 2.0894 −0.6296
s = 0.7
Error 0.0029 8.4384 × 10−4 3.4971 × 10−4 1.6787 × 10−4 6.7312 × 10−5 7.9198 × 10−5

Order 1.7810 2.1725 2.5511 2.2538 −0.5653

5. Conclusions

In this paper, a compact finite difference scheme method using the Picard integral
formulation is presented for solving the multi-dimensional time–space fractional partial
differential system with a variable order and different nonlinear terms. In contrast to many
other schemes, the proposed method takes into account the regularity of the derivative term
v. Detailed proofs establish the stability and solvability of this present scheme. To validate
the practicality and accuracy of this compact scheme, three numerical experiments are
computed and analyzed in different dimensional spatial domains. The numerical results
show that the convergence rate aligns with the theoretical value of O

(
τ2 + h2) in L∞ norm.

Figure 4. The surface of the numerical solution (left) and the exact solution (right) for s = 0.7 and
α0 = 1.4.
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4.3. Three-Dimensional Space-Fractional Laplace Case

To assess the numerical effectiveness, a three-dimensional fourth-order equation is
considered with a cubic nonlinear term.

c
0D

α(t)
t (1 + (−∆)s(x, y, z, t)) + A(x, y, t)((−∆)s − ∆u(x, y, z, t))

= u3(x, y, z, t)− u(x, y, z, t) + f (x, y, z, t), (x, y, z) ∈ (0, 1)3, t ∈ (0, 1],

u(Γ, 0) = 0; u(∂Γ, t) = 0, t ∈ (0, 1].

(57)

The exact solution of the system is

u(x, y, z, t) =
t3

3
sin (πx) sin (πy) sin (πz). (58)

Table 3 provides numerical results for the maximum errors and the corresponding
spatial convergence order for various spatial mesh sizes with h = 1/64 at t = 1. From
these results, it can be concluded that the spatial convergence order is close to O(h2).
When τ = 1/40, the accuracy of the two types of maximum errors does not show further
improvement. This occurs because the series of maximum errors reaches the upper limit of
accuracy of the space discretization.

Table 3. The maximum errors and the corresponding spatial order at t = 1 and h = 1/64.

τ 1/5 1/10 1/15 1/20 1/30 1/40

s = 0.3
Error 0.0030 6.9817 × 10−4 2.8642 × 10−4 1.7173 × 10−4 7.3608 × 10−5 8.8225 × 10−5

Order 2.1033 2.1975 1.7781 2.0894 −0.6296
s = 0.7
Error 0.0029 8.4384 × 10−4 3.4971 × 10−4 1.6787 × 10−4 6.7312 × 10−5 7.9198 × 10−5

Order 1.7810 2.1725 2.5511 2.2538 −0.5653

5. Conclusions

In this paper, a compact finite difference scheme method using the Picard integral
formulation is presented for solving the multi-dimensional time–space fractional partial
differential system with a variable order and different nonlinear terms. In contrast to many
other schemes, the proposed method takes into account the regularity of the derivative term
v. Detailed proofs establish the stability and solvability of this present scheme. To validate
the practicality and accuracy of this compact scheme, three numerical experiments are
computed and analyzed in different dimensional spatial domains. The numerical results
show that the convergence rate aligns with the theoretical value of O

(
τ2 + h2) in L∞ norm.
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